Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review

Author(s): Marziyeh Esmaeilzadeh Kashi, Mahdiyeh Ghorbani, Hasan Badibostan, Veronique Seidel, Seyed Hamzeh Hosseini, Javad Asili, Abolfazl Shakeri* and Amirhossein Sahebkar

Volume 24, Issue 8, 2024

Published on: 27 September, 2023

Page: [844 - 862] Pages: 19

DOI: 10.2174/1389557523666230911141331

Price: $65

Open Access Journals Promotions 2
Abstract

Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC50=0.23 μg/ml) and MDA-MB-431 (IC50=0.5 μg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against Staphylococcus aureus (MIC of 0.2 μg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.

Keywords: Naphthoquinones, cytotoxicity, antimicrobial activity, carbonyl groups, pharmacological properties, bioactive compounds.

Graphical Abstract
[1]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot., 2005, 58(1), 1-26.
[http://dx.doi.org/10.1038/ja.2005.1] [PMID: 15813176]
[2]
Raihan, T.; Rabbee, M.F.; Roy, P.; Choudhury, S.; Baek, K.H.; Azad, A.K. Microbial metabolites: The emerging hotspot of antiviral compounds as potential candidates to avert viral pandemic alike COVID-19. Front. Mol. Biosci., 2021, 8, 732256-732286.
[http://dx.doi.org/10.3389/fmolb.2021.732256] [PMID: 34557521]
[3]
Gao, Y.; Shang, Q.; Li, W.; Guo, W.; Stojadinovic, A.; Mannion, C.; Man, Y.; Chen, T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer, 2020, 11(17), 5135-5149.
[http://dx.doi.org/10.7150/jca.47470] [PMID: 32742461]
[4]
Amirzakariya, B.Z.; Shakeri, A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). Phytochemistry, 2022, 197, 113130-113165.
[http://dx.doi.org/10.1016/j.phytochem.2022.113130] [PMID: 35183568]
[5]
Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Silva, F.C.D.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90(12)(2), 1187-1214.
[http://dx.doi.org/10.1590/0001-3765201820170815] [PMID: 29873671]
[6]
Eghbaliferiz, S.; Emami, S.A.; Tayarani-Najaran, Z.; Iranshahi, M.; Shakeri, A.; Hohmann, J.; Asili, J. Cytotoxic diterpene quinones from Salvia tebesana Bunge. Fitoterapia, 2018, 128, 97-101.
[http://dx.doi.org/10.1016/j.fitote.2018.05.005] [PMID: 29772301]
[7]
Ahmadi, E.S.; Tajbakhsh, A.; Iranshahy, M.; Asili, J.; Kretschmer, N.; Shakeri, A.; Sahebkar, A. Naphthoquinone derivatives isolated from plants: Recent advances in biological activity. Mini Rev. Med. Chem., 2020, 20(19), 2019-2035.
[http://dx.doi.org/10.2174/1389557520666200818212020] [PMID: 32811411]
[8]
Sharifi, S. Computational investigation on naphthoquinone derivatives: Nuclear magnetic resonance (NMR) and quantum mechanic. J Phys Theor Chem., 2018, 15(1), 27-38.
[9]
Pusparajah, P.; Letchumanan, V.; Law, J.W.F.; Ab Mutalib, N.S.; Ong, Y.S.; Goh, B.H.; Tan, L.T.H.; Lee, L.H. Streptomyces sp.—A treasure trove of weapons to combat methicillin-resistant staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci., 2021, 22(17), 9360-9377.
[http://dx.doi.org/10.3390/ijms22179360] [PMID: 34502269]
[10]
Takahashi, Y.; Nakashima, T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics, 2018, 7(2), 45-61.
[http://dx.doi.org/10.3390/antibiotics7020045] [PMID: 29795019]
[11]
Jiang, B.; Li, S.; Zhao, W.; Li, T.; Zuo, L.; Nan, Y.; Wu, L.; Liu, H.; Yu, L.; Shan, G.; Zuo, L. 6-Deoxy-13-hydroxy-8,11-dione-dihydrogranaticin B, an intermediate in granaticin biosynthesis, from Streptomyces sp. CPCC 200532. J. Nat. Prod., 2014, 77(9), 2130-2133.
[http://dx.doi.org/10.1021/np500138k] [PMID: 25153802]
[12]
Wu, Z.; Li, S.; Li, J.; Chen, Y.; Saurav, K.; Zhang, Q.; Zhang, H.; Zhang, W.; Zhang, W.; Zhang, S.; Zhang, C. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar. Drugs, 2013, 11(6), 2113-2125.
[http://dx.doi.org/10.3390/md11062113] [PMID: 23771045]
[13]
Alferova, V.A.; Novikov, R.A.; Bychkova, O.P.; Rogozhin, E.A.; Shuvalov, M.V.; Prokhorenko, I.A.; Sadykova, V.S.; Kulko, A.B.; Dezhenkova, L.G.; Stepashkina, E.A.; Efremov, M.A.; Sineva, O.N.; Kudryakova, G.K.; Peregudov, A.S.; Solyev, P.N.; Tkachev, Y.V.; Fedorova, G.B.; Terekhova, L.P.; Tyurin, A.P.; Trenin, A.S.; Korshun, V.A. Astolides A and B, antifungal and cytotoxic naphthoquinone-derived polyol macrolactones from Streptomyces hygroscopicus. Tetrahedron, 2018, 74(52), 7442-7449.
[http://dx.doi.org/10.1016/j.tet.2018.11.015]
[14]
Alferova, V.A.; Shuvalov, M.V.; Korshun, V.A.; Tyurin, A.P. Naphthoquinone-derived polyol macrolides from natural sources. Russ. Chem. Bull., 2019, 68(5), 955-966.
[http://dx.doi.org/10.1007/s11172-019-2506-3]
[15]
Moussa, M.; Ebrahim, W.; Bonus, M.; Gohlke, H.; Mándi, A.; Kurtán, T.; Hartmann, R.; Kalscheuer, R.; Lin, W.; Liu, Z.; Proksch, P. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances, 2019, 9(3), 1491-1500.
[http://dx.doi.org/10.1039/C8RA09067J] [PMID: 35518011]
[16]
Pathirana, C.; Jensen, P.R.; Fenical, W. Marinone and debromomarinone: Antibiotic sesquiterpenoid naphthoquinones of a new structure class from a marine bacterium. Tetrahedron Lett., 1992, 33(50), 7663-7666.
[http://dx.doi.org/10.1016/0040-4039(93)88010-G]
[17]
Song, Y.; Huang, H.; Chen, Y.; Ding, J.; Zhang, Y.; Sun, A.; Zhang, W.; Ju, J. Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J. Nat. Prod., 2013, 76(12), 2263-2268.
[http://dx.doi.org/10.1021/np4006025] [PMID: 24251399]
[18]
Nakagawa, K.; Hiraoka, Y.; Imamura, N. Diepoxyactinorhodin: A new pyranonaphthoquinone dimer from Streptomyces sp. J. Antibiot., 2013, 66(5), 295-297.
[http://dx.doi.org/10.1038/ja.2013.12] [PMID: 23531988]
[19]
Wu, C.; Du, C.; Ichinose, K.; Choi, Y.H.; van Wezel, G.P. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a combined NMR-Based metabolomics and bioinformatics workflow. J. Nat. Prod., 2017, 80(2), 269-277.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00478] [PMID: 28128554]
[20]
Liu, C.; Jiang, Y.; Lei, H.; Chen, X.; Ma, Q.; Han, L.; Huang, X. Four new nanaomycins produced by Streptomyces hebeiensis derived from lichen. Chem. Biodivers., 2017, 14(7), e1700057.
[http://dx.doi.org/10.1002/cbdv.201700057] [PMID: 28390085]
[21]
Wang, X.; Shaaban, K.A.; Elshahawi, S.I.; Ponomareva, L.V.; Sunkara, M.; Zhang, Y.; Copley, G.C.; Hower, J.C.; Morris, A.J.; Kharel, M.K.; Thorson, J.S. Frenolicins C-G, pyranonaphthoquinones from Streptomyces sp. RM-4-15. J. Nat. Prod., 2013, 76(8), 1441-1447.
[http://dx.doi.org/10.1021/np400231r] [PMID: 23944931]
[22]
Lu, J-J.; Bao, J-L.; Wu, G-S.; Xu, W-S.; Huang, M-Q.; Chen, X-P.; Wang, Y.T. Quinones derived from plant secondary metabolites as anti-cancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 456-463.
[PMID: 22931417]
[23]
Motohashi, K.; Izumikawa, M.; Kagaya, N.; Takagi, M.; Shin-ya, K. JBIR-76 and JBIR-77, modified naphthoquinones from Streptomyces sp. RI-77. J. Antibiot., 2016, 69(9), 707-708.
[http://dx.doi.org/10.1038/ja.2015.135] [PMID: 26732254]
[24]
Harunari, E.; Imada, C.; Igarashi, Y. Konamycins A and B and Rubromycins CA1 and CA2, aromatic polyketides from the tunicate-derived Streptomyces hyaluromycini MB-PO13 T. J. Nat. Prod., 2019, 82(6), 1609-1615.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00107] [PMID: 31181919]
[25]
Lacret, R.; Oves-Costales, D.; Pérez-Victoria, I.; de la Cruz, M.; Díaz, C.; Vicente, F.; Genilloud, O.; Reyes, F. MDN-0171, a new medermycin analogue from Streptomyces albolongus CA-186053. Nat. Prod. Res., 2019, 33(1), 66-73.
[http://dx.doi.org/10.1080/14786419.2018.1434636] [PMID: 29411643]
[26]
Jiang, Y.J.; Zhang, D.S.; Zhang, H.J.; Li, J.Q.; Ding, W.J.; Xu, C.D.; Ma, Z.J. Medermycin-Type naphthoquinones from the marine-derived Streptomyces sp. XMA39. J. Nat. Prod., 2018, 81(9), 2120-2124.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00544] [PMID: 30209946]
[27]
Martucci, H.; Campit, S.E.; Gee, S.R.; Bray, W.M.; Gokey, T.; Cada, A.K.; Yen, T.Y.; Minoura, K.; Guliaev, A.B.; Lokey, R.S.; Amagata, T. Naphthablins B and C, meroterpenoids identified from the marine sediment-derived Streptomyces sp. CP26-58 using hela cell-based cytological profiling. J. Nat. Prod., 2017, 80(3), 684-691.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00996] [PMID: 28128950]
[28]
Um, S.; Bach, D.H.; Shin, B.; Ahn, C.H.; Kim, S.H.; Bang, H.S.; Oh, K.B.; Lee, S.K.; Shin, J.; Oh, D.C. Naphthoquinone–oxindole alkaloids, coprisidins A and B, from a Gut-Associated bacterium in the dung beetle, Copris tripartitus. Org. Lett., 2016, 18(22), 5792-5795.
[http://dx.doi.org/10.1021/acs.orglett.6b02555] [PMID: 27934498]
[29]
Guo, Z.; Pan, G.; Xu, Z.; Yang, D.; Hindra; Zhu, X.; Huang, Y.; Zhao, L.X.; Jiang, Y.; Duan, Y.; Shen, B. New isofuranonaphthoquinones and isoindolequinones from Streptomyces sp. CB01883. J. Antibiot., 2017, 70(4), 414-422.
[http://dx.doi.org/10.1038/ja.2016.122] [PMID: 27731333]
[30]
Park, J.S.; Kwon, H. New naphthoquinone terpenoids from marine actinobacterium, Streptomyces sp. CNQ-509. Mar. Drugs, 2018, 16(3), 90-98.
[http://dx.doi.org/10.3390/md16030090] [PMID: 29534540]
[31]
Pérez, M.; Schleissner, C.; Fernández, R.; Rodríguez, P.; Reyes, F.; Zuٌiga, P.; de la Calle, F.; Cuevas, C. PM100117 and PM100118, new antitumor macrolides produced by a marine Streptomyces caniferus GUA-06-05-006A. J. Antibiot., 2016, 69(5), 388-394.
[http://dx.doi.org/10.1038/ja.2015.121] [PMID: 26648119]
[32]
Lu, C.; Yang, C.; Xu, Z. Three naphthoquinones from Streptomyces sp. XZYN-4. Rec. Nat. Prod., 2016, 10, 430-440.
[33]
Jiang, Z.; Guo, L.; Chen, C.; Liu, S.; Zhang, L.; Dai, S.; He, Q.; You, X.; Hu, X.; Tuo, L.; Jiang, W.; Sun, C. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J. Antibiot., 2015, 68(12), 771-774.
[http://dx.doi.org/10.1038/ja.2015.70] [PMID: 26104142]
[34]
Li, S.; Hu, X.; Li, L.; Hu, X.; Wang, J.; Hu, X.; Liu, H.; Yu, L.; You, X.; Jiang, B.; Wu, L. 1-hydroxy-7-oxolavanducyanin and Δ7″8″-6″-hydroxynaphthomevalin from Streptomyces sp. CPCC 203577. J. Antibiot., 2020, 73(5), 324-328.
[http://dx.doi.org/10.1038/s41429-020-0282-9] [PMID: 32051568]
[35]
Matsuo, H.; Nakanishi, J.; Noguchi, Y.; Kitagawa, K.; Shigemura, K.; Sunazuka, T.; Takahashi, Y.; Ōmura, S.; Nakashima, T. Nanaomycin K, a new epithelial–mesenchymal transition inhibitor produced by the actinomycete “Streptomyces rosa subsp. notoensis” OS-3966. J. Biosci. Bioeng., 2020, 129(3), 291-295.
[http://dx.doi.org/10.1016/j.jbiosc.2019.09.007] [PMID: 31582334]
[36]
Shen, X.; Wang, X.; Huang, T.; Deng, Z.; Lin, S. Naphthoquinone-based meroterpenoids from marine-derived Streptomyces sp. B9173. Biomolecules, 2020, 10(8), 1187-1197.
[http://dx.doi.org/10.3390/biom10081187] [PMID: 32824158]
[37]
Zhang, Z.; Sibero, M.T.; Kai, A.; Fukaya, K.; Urabe, D.; Igarashi, Y. TMKS8A, an antibacterial and cytotoxic chlorinated α-lapachone, from a sea slug-derived actinomycete of the genus Streptomyces. J. Antibiot., 2021, 74(7), 464-469.
[http://dx.doi.org/10.1038/s41429-021-00415-4] [PMID: 33707649]
[38]
Chokpaiboon, S.; Unagul, P.; Kongthong, S.; Danwisetkanjana, K.; Pilantanapak, A.; Suetrong, S.; Bunyapaiboonsri, T. A pyrone, naphthoquinone, and cyclic urea from the marine-derived fungus Astrosphaeriella nypae BCC 5335. Tetrahedron Lett., 2016, 57(10), 1171-1173.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.002]
[39]
Padumadasa, C.; Xu, Y.M.; Wijeratne, E.M.K.; Espinosa-Artiles, P.; U’Ren, J.M.; Arnold, A.E.; Gunatilaka, A.A.L. Cytotoxic and noncytotoxic metabolites from Teratosphaeria sp. FL2137, a fungus associated with Pinus clausa. J. Nat. Prod., 2018, 81(3), 616-624.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00838] [PMID: 29373790]
[40]
Tadpetch, K.; Chukong, C.; Jeanmard, L.; Thiraporn, A.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J. Cytotoxic naphthoquinone and a new succinate ester from the soil fungus Fusarium solani PSU-RSPG227. Phytochem. Lett., 2015, 11, 106-110.
[http://dx.doi.org/10.1016/j.phytol.2014.11.018]
[41]
Chowdhury, N.S.; Sohrab, M.H.; Rana, M.S.; Hasan, C.M.; Jamshidi, S.; Rahman, K.M. Cytotoxic naphthoquinone and azaanthraquinone derivatives from an endophytic Fusarium solani. J. Nat. Prod., 2017, 80(4), 1173-1177.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00610] [PMID: 28257197]
[42]
Macías-Rubalcava, M.L.; Ruiz-Velasco Sobrino, M.E.; Meléndez-González, C.; Hernández-Ortega, S. Naphthoquinone spiroketals and organic extracts from the endophytic fungus Edenia gomezpompae as potential herbicides. J. Agric. Food Chem., 2014, 62(16), 3553-3562.
[http://dx.doi.org/10.1021/jf500965k] [PMID: 24689520]
[43]
Xu, Y.; Mafezoli, J.; Oliveira, M.C.F.; U’Ren, J.M.; Arnold, A.E.; Gunatilaka, A.A.L. Anteaglonialides A–F and palmarumycins CE1–CE3 from Anteaglonium sp. FL0768, a fungal endophyte of the spikemoss Selaginella arenicola. J. Nat. Prod., 2015, 78(11), 2738-2747.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00717] [PMID: 26539727]
[44]
Elnaggar, M.S.; Ebada, S.S.; Ashour, M.L.; Ebrahim, W.; Singab, A.; Lin, W.; Liu, Z.; Proksch, P. Two new triterpenoids and a new naphthoquinone derivative isolated from a hard coral-derived fungus Scopulariopsis sp. Fitoterapia, 2017, 116, 126-130.
[http://dx.doi.org/10.1016/j.fitote.2016.12.003] [PMID: 27932272]
[45]
Cadelis, M.M.; Geese, S.; Uy, B.B.; Mulholland, D.R.; van de Pas, S.J.; Grey, A.; Weir, B.S.; Copp, B.R.; Wiles, S. Antimicrobial metabolites against methicillin-resistant Staphylococcus aureus from the endophytic fungus Neofusicoccum australe. Molecules, 2021, 26(4), 1094-1103.
[http://dx.doi.org/10.3390/molecules26041094] [PMID: 33669637]
[46]
Flores-Bocanegra, L.; Raja, H.A.; Bacon, J.W.; Maldonado, A.C.; Burdette, J.E.; Pearce, C.J.; Oberlies, N.H. Cytotoxic naphthoquinone analogues, including heterodimers, and their structure elucidation using LR-HSQMBC NMR experiments. J. Nat. Prod., 2021, 84(3), 771-778.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00856] [PMID: 33006889]
[47]
Liu, H.; Yan, C.; Li, C.; You, T.; She, Z. Naphthoquinone derivatives with anti-inflammatory activity from mangrove-derived endophytic fungus Talaromyces sp. SK-S009. Molecules, 2020, 25(3), 576-584.
[http://dx.doi.org/10.3390/molecules25030576] [PMID: 32013142]
[48]
Lu, C.; Li, Y.; Deng, J.; Li, S.; Shen, Y.; Wang, H.; Shen, Y. Hygrocins C-G, cytotoxic naphthoquinone ansamycins from gdmAI-disrupted Streptomyces sp. LZ35. J. Nat. Prod., 2013, 76(12), 2175-2179.
[http://dx.doi.org/10.1021/np400474s] [PMID: 24490633]
[49]
Supratman, U.; Hirai, N.; Sato, S.; Watanabe, K.; Malik, A.; Annas, S.; Harneti, D.; Maharani, R.; Koseki, T.; Shiono, Y. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant. Nat. Prod. Res., 2021, 35(9), 1406-1412.
[http://dx.doi.org/10.1080/14786419.2019.1650358] [PMID: 31402713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy