Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Design and Applications of 1,8-naphthalimide-poly(amidoamine) Dendritic Platforms

Author(s): Fangfang Luo, Xin Luo, Le Wang*, Yi Qu* and Xue-Bo Yin*

Volume 27, Issue 13, 2023

Published on: 04 October, 2023

Page: [1164 - 1178] Pages: 15

DOI: 10.2174/1385272827666230911115827

Price: $65

conference banner
Abstract

Poly(amidoamine) (PAMAM) is easily prepared with ethylenediamine as the precursor to form a dendritic structure with a size of 1.4 -11.4 nm from generation 1 to 10. The terminal amino groups of PAMAM could be grafted active species, such as 1,8-naphthalimide (NI) or its derivatives, to integrate their photophysical properties into PAMAM as NI-PAMAM. With/without metals, the new dendritic platforms can be found for different applications, including but not limited to sensing, imaging, antibacterial, anticancer, and liquid crystal and battery matrix. By controlling the different generations of dendrimers, the precise size less than 10 nm can be realized. In this review, we a) provide an overview of the 1,8-naphthalimide-poly(amidoamine) dendritic platforms and b) prospect that functionalized dendrimers (high algebra) could act as “nanoparticles” with the precise size to bridge the gap between functional molecules and real nanoparticles.

Keywords: Dendrimer, poly(amidoamine) (PAMAM), 1, 8-naphthalimide (NI), metal, nanoparticle, amino group.

Graphical Abstract
[1]
Fréchet, J.M.J. Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy. Science, 1994, 263(5154), 1710-1715.
[http://dx.doi.org/10.1126/science.8134834] [PMID: 8134834]
[2]
Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci., 2005, 30(3-4), 294-324.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007]
[3]
Dykes, G.M. Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol., 2001, 76(9), 903-918.
[http://dx.doi.org/10.1002/jctb.464]
[4]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[5]
Song, C.; Shen, M.; Rodrigues, J.; Mignani, S.; Majoral, J-P.; Shi, X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord. Chem. Rev., 2020, 421, 213463.
[http://dx.doi.org/10.1016/j.ccr.2020.213463]
[6]
Patle, R.Y.; Meshram, J.S. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. React. Chem. Eng., 2021, 7(1), 9-40.
[http://dx.doi.org/10.1039/D1RE00074H]
[7]
Guizze, F.; Serra, C.H.R.; Giarolla, J. PAMAM dendrimers: A review of methodologies employed in biopharmaceutical classification. J. Pharm. Sci., 2022, 111(10), 2662-2673.
[http://dx.doi.org/10.1016/j.xphs.2022.07.009] [PMID: 35850238]
[8]
Tu, W.P. Synthesis of polyamidoamine (PAMAM) dendrime. Energy, 2005, 1, 32-34.
[9]
Ertürk, A.S.; Tülü, M. Bozdoğan, A.E.; Parali, T. Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. Eur. Polym. J., 2014, 52, 218-226.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.12.018]
[10]
Dotson, M.E. Improvements in PAMAM dendrimer synthesis; University of Cincinnati, 2001.
[11]
Maiti, P.K.; Çaǧın, T.; Wang, G.; Goddard, W.A. Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004, 37(16), 6236-6254.
[http://dx.doi.org/10.1021/ma035629b]
[12]
Srikun, D.; Albers, A.E.; Chang, C.J. A dendrimer-based platform for simultaneous dual fluorescence imaging of hydrogen peroxide and pH gradients produced in living cells. Chem. Sci., 2011, 2(6), 1156-1165.
[http://dx.doi.org/10.1039/c1sc00064k]
[13]
Fuchs, S.; Kapp, T.; Otto, H.; Schöneberg, T.; Franke, P.; Gust, R.; Schlüter, A.D. A surface-modified dendrimer set for potential application as drug delivery vehicles: Synthesis, in vitro toxicity, and intracellular localization. Chemistry, 2004, 10(5), 1167-1192.
[http://dx.doi.org/10.1002/chem.200305386] [PMID: 15007808]
[14]
Shcharbin, D.; Szwedzka, M.; Bryszewska, M. Does fluorescence of ANS reflect its binding to PAMAM dendrimer? Bioorg. Chem., 2007, 35(2), 170-174.
[http://dx.doi.org/10.1016/j.bioorg.2006.10.003] [PMID: 17126376]
[15]
Cardona, C.M.; Alvarez, J.; Kaifer, A.E.; McCarley, T.D.; Pandey, S.; Baker, G.A.; Bonzagni, N.J.; Bright, F.V. Dendrimers functionalized with a single fluorescent dansyl group attached “off ecnter”: Synthesis and photophysical studies. J. Am. Chem. Soc., 2000, 122(26), 6139-6144.
[http://dx.doi.org/10.1021/ja000949l]
[16]
Grabchev, I.; Bojinov, V.; Chovelon, J.M. Synthesis, photophysical and photochemical properties of fluorescent poly(amidoamine) dendrimers. Polymer , 2003, 44(16), 4421-4428.
[http://dx.doi.org/10.1016/S0032-3861(03)00407-5]
[17]
Marinova, N.V.; Georgiev, N.I.; Bojinov, V.B. Synthesis and photophysical properties of novel 1,8-naphthalimide light-harvesting antennae based on benzyl aryl ether architecture. J. Lumin., 2018, 204, 253-260.
[http://dx.doi.org/10.1016/j.jlumin.2018.08.011]
[18]
Duke, R.M.; Veale, E.B.; Pfeffer, F.M.; Kruger, P.E.; Gunnlaugsson, T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev., 2010, 39(10), 3936-3953.
[http://dx.doi.org/10.1039/b910560n] [PMID: 20818454]
[19]
Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met., 2020, 262, 116328.
[http://dx.doi.org/10.1016/j.synthmet.2020.116328]
[20]
Li, Y.; Wu, Y.; Chang, J.; Chen, M.; Liu, R.; Li, F. A bioprobe based on aggregation induced emission (AIE) for cell membrane tracking. Chem. Commun., 2013, 49(96), 11335-11337.
[http://dx.doi.org/10.1039/c3cc46991c] [PMID: 24162955]
[21]
Banerjee, S.; Veale, E.B.; Phelan, C.M.; Murphy, S.A.; Tocci, G.M.; Gillespie, L.J.; Frimannsson, D.O.; Kelly, J.M.; Gunnlaugsson, T. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev., 2013, 42(4), 1601-1618.
[http://dx.doi.org/10.1039/c2cs35467e] [PMID: 23325367]
[22]
Eduardo, R.T.; Filho, P.B.; Berlinck, R.G.S.; Berlinck, R.G.S. Efficient sonochemical synthesis of 3- and 4-electron withdrawing ring substituted N-Alkyl-1,8-naphthalimides from the related anhydrides. Synth. Commun., 2006, 34(11), 1989-1999.
[23]
Lee, J.; Yang, J.; Kwon, S.G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater., 2017, 8, 16034.
[24]
Chen, Y.; Lai, Z.; Zhang, X.; Fan, Z.; He, Q.; Tan, C.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem., 2020, 4(5), 243-256.
[http://dx.doi.org/10.1038/s41570-020-0173-4] [PMID: 37127983]
[25]
MacFarlane, L.R.; Shaikh, H.; Garcia-Hernandez, J.D.; Vespa, M.; Fukui, T.; Manners, I. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater., 2020, 6(1), 7-26.
[http://dx.doi.org/10.1038/s41578-020-00233-4]
[26]
Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev., 2010, 110(4), 1857-1959.
[http://dx.doi.org/10.1021/cr900327d] [PMID: 20356105]
[27]
Caminade, A.M.; Fruchon, S.; Turrin, C.O.; Poupot, M.; Ouali, A.; Maraval, A.; Garzoni, M.; Maly, M.; Furer, V.; Kovalenko, V.; Majoral, J.P.; Pavan, G.M.; Poupot, R. The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nat. Commun., 2015, 6(1), 7722.
[http://dx.doi.org/10.1038/ncomms8722] [PMID: 26169490]
[28]
Mignani, S.; Rodrigues, J.; Tomas, H.; Zablocka, M.; Shi, X.; Caminade, A.M.; Majoral, J.P. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem. Soc. Rev., 2018, 47(2), 514-532.
[http://dx.doi.org/10.1039/C7CS00550D] [PMID: 29154385]
[29]
Wu, X.; Li, Z.; Zhao, Y.; Yang, C.; Zhao, W.; Zhao, X. Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials. Photon. Res., 2022, 10(4), 965.
[http://dx.doi.org/10.1364/PRJ.447131]
[30]
Torres-Pérez, S.A.; Vallejo-Castillo, L.; Vázquez-Leyva, S.; Zepeda-Vallejo, L.G.; Herbert-Pucheta, J.E.; Severac, C.; Dague, E.; Pérez-Tapia, S.M.; Ramón-Gallegos, E. Structural and physicochemical characteristics of one-step PAMAM dendrimeric nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2022, 633, 127819.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127819]
[31]
Staneva, D.; Manov, H.; Vasileva-Tonkova, E.; Kukeva, R.; Stoyanova, R.; Grabchev, I. Enhancing the antibacterial activity of PAMAM dendrimer modified with 1,8-naphthalimides and its copper complex via light illumination. Polym. Adv. Technol., 2022, 33(10), 3163-3172.
[http://dx.doi.org/10.1002/pat.5768]
[32]
Wu, J.S.; Li, J.X.; Shu, N.; Duan, Q.J.; Tong, Q.S.; Zhang, J.Y.; Huang, Y-C.; Yang, S-Y.; Zhao, Z-B.; Du, J-Z. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res., 2022, 15(1), 510-518.
[http://dx.doi.org/10.1007/s12274-021-3510-0]
[33]
Canonico, B.; Cangiotti, M.; Montanari, M.; Papa, S.; Fusi, V.; Giorgi, L.; Ciacci, C.; Ottaviani, M.F.; Staneva, D.; Grabchev, I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol. Chem., 2022, 403(3), 345-360.
[http://dx.doi.org/10.1515/hsz-2021-0388] [PMID: 34883001]
[34]
Cangiotti, M.; Staneva, D.; Ottaviani, M.F.; Vasileva-Tonkova, E.; Grabchev, I. Synthesis and characterization of fluorescent PAMAM dendrimer modified with 1,8-naphthalimide units and its Cu(II) complex designed for specific biomedical application. J. Photochem., 2021, 415, 113312.
[35]
Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C.L.; Peng, L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem., 2019, 13(16), 34-48.
[http://dx.doi.org/10.1016/j.mtchem.2019.04.004]
[36]
Grabchev, I.; Staneva, D.; Chovelon, J.M. Photophysical investigations on the sensor potential of novel, poly(propylenamine) dendrimers modified with 1,8-naphthalimide units. Dyes Pigments, 2010, 85(3), 189-193.
[http://dx.doi.org/10.1016/j.dyepig.2009.10.023]
[37]
Staneva, D.; Grabchev, I.; Soumillion, J.P.; Bojinov, V. A new fluorosensor based on bis-1,8-naphthalimide for metal cations and protons. J. Photochem. Photobiol. Chem., 2007, 189(2-3), 192-197.
[http://dx.doi.org/10.1016/j.jphotochem.2007.01.028]
[38]
Georgiev, N.I.; Bojinov, V.B.; Nikolov, P.S. The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes Pigments, 2011, 88(3), 350-357.
[http://dx.doi.org/10.1016/j.dyepig.2010.08.004]
[39]
Silva, A.D.; Gunaratne, H.; Gunnlaugsson, T.; Huxley, A.; Mccoy, C.P. Signaling recognition events with fluorescent sensors and switches. Chem. Rev., 1997, 97(5), 1515-1566.
[40]
de-Silva, A.P.; Moody, T.S.; Wright, G.D. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst , 2009, 134(12), 2385-2393.
[41]
Takahashi, M.; Morimoto, H.; Miyake, K.; Yamashita, M.; Kawai, H.; Sei, Y.; Yamaguchi, K. Evaluation of energy transfer in perylene-cored anthracene dendrimers. Chem. Commun., 2006, 29(29), 3084-3086.
[http://dx.doi.org/10.1039/b606215f] [PMID: 16855693]
[42]
Georgiev, N.I.; Bojinov, V.B.; Venkova, A.I. Design, synthesis and pH sensing properties of novel PAMAM light-harvesting dendrons based on rhodamine 6G and 1,8-naphthalimide. J. Fluoresc., 2013, 23(3), 459-471.
[http://dx.doi.org/10.1007/s10895-013-1168-z] [PMID: 23397487]
[43]
Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future perspectives. Chem. Soc. Rev., 2011, 40(5), 2673-2703.
[http://dx.doi.org/10.1039/c0cs00097c] [PMID: 21286593]
[44]
Staneva, D.; Angelova, S.; Tonkova, E.V.; Grozdanov, P.P.; Grabchev, I. Synthesis, photophysical characterisation and antimicrobial activity of a new anionic PAMAM dendrimer. J. Photochem., 2020, 403, 112878.
[45]
Sadeghi-Kiakhani, M.; Safapour, S. Functionalization of poly(amidoamine) dendrimer-based nano-architectures using a naphthalimide derivative and their fluorescent, dyeing and antimicrobial properties on wool fibers. Luminescence, 2016, 31(4), 1005-1012.
[http://dx.doi.org/10.1002/bio.3065] [PMID: 26663475]
[46]
Grabchev, I.; Chovelon, J.M. Synthesis and functional properties of green fluorescent poly(methylmethacrylate) for use in liquid crystal systems. Polym. Adv. Technol., 2003, 14(9), 601-608.
[http://dx.doi.org/10.1002/pat.376]
[47]
Zhao, S.; Li, C.; Wang, W.; Zhang, H.; Gao, M.; Xiong, X.; Wang, A.; Yuan, K.; Huang, Y.; Wang, F. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(10), 3334-3339.
[http://dx.doi.org/10.1039/c3ta01220d]
[48]
Rouault, T.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol., 2006, 2(8), 406-414.
[http://dx.doi.org/10.1038/nchembio807] [PMID: 16850017]
[49]
Lee, M.H.; Giap, T.V.; Kim, S.H.; Lee, Y.H.; Kang, C.; Kim, J.S. A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6GSchiff base. Chem. Commun., 2010, 46(9), 1407-1409.
[http://dx.doi.org/10.1039/B921526C] [PMID: 20162130]
[50]
Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev., 2012, 112(3), 1910-1956.
[http://dx.doi.org/10.1021/cr200201z] [PMID: 22040233]
[51]
Yang, L.; Yang, W.; Xu, D.; Zhang, Z.; Liu, A. A highly selective and sensitive Fe3+ fluorescent sensor by assembling three 1,8-naphthalimide fluorophores with a tris(aminoethylamine) ligand. Dyes Pigments, 2013, 97(1), 168-174.
[http://dx.doi.org/10.1016/j.dyepig.2012.12.016]
[52]
Staneva, D.; Bosch, P.; Grabchev, I. Ultrasonic synthesis and spectral characterization of a new blue fluorescent dendrimer as highly selective chemosensor for Fe3+ cations. J. Mol. Struct., 2012, 1015, 1-5.
[http://dx.doi.org/10.1016/j.molstruc.2012.02.010]
[53]
Zhou, Y.; Zhou, H.; Ma, T.; Zhang, J.; Niu, J. A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 88, 56-59.
[http://dx.doi.org/10.1016/j.saa.2011.11.054] [PMID: 22196798]
[54]
Javanbakht, M.; Ganjali, M.R.; Norouzi, P.; Badiei, A.; Hasheminasab, A.; Abdouss, M. Carbon paste electrode modified with functionalized nanoporous silica gel as a new sensor for determination of silver ion. Electroanalysis, 2007, 19(12), 1307-1314.
[http://dx.doi.org/10.1002/elan.200603854]
[55]
Dodangeh, M.; Gharanjig, K.; Arami, M. A novel Ag+ cation sensor based on polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 154, 207-214.
[http://dx.doi.org/10.1016/j.saa.2015.09.031] [PMID: 26529637]
[56]
Christian, G. Reagents for lithium electrodes and sensors for blood serum analysis. Sensors , 2002, 2(10), 432-435.
[http://dx.doi.org/10.3390/s21000432]
[57]
Qin, W.; Obare, S.O.; Murphy, C.J.; Angel, S.M. Specific fluorescence determination of lithium ion based on 2-(2-hydroxyphenyl)benzoxazole. Analyst , 2001, 126(9), 1499-1501.
[http://dx.doi.org/10.1039/b104216p]
[58]
Obarea, S.O.; Murphy, C.J. Selective blue emission from an HPBO–Li+ complex in alkaline media. New J. Chem., 2001, 25(12), 1600-1604.
[http://dx.doi.org/10.1039/b103562m]
[59]
Hiratani, K.; Kaneyama, M.; Nagawa, Y.; Koyama, E.; Kanesato, M. Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc., 2004, 126(42), 13568-13569.
[http://dx.doi.org/10.1021/ja046929r] [PMID: 15493885]
[60]
Grabchev, I.; Dumas, S.; Chovelon, J.M. A polyamidoamine dendrimer as a selective colorimetric and ratiometric fluorescent sensor for Li+ cations in alkali media. Dyes Pigments, 2009, 82(3), 336-340.
[http://dx.doi.org/10.1016/j.dyepig.2009.02.003]
[61]
Yordanova, S.; Grabchev, I.; Stoyanov, S.; Milusheva, V.; Petkov, I. Synthesis and functional characteristics of two new yellow-green fluorescent PAMAM dendrimers periphery modified with 1,8-naphthalimides. Inorg. Chim. Acta, 2014, 409, 89-95.
[http://dx.doi.org/10.1016/j.ica.2013.09.023]
[62]
Grabchev, I.; Staneva, D.; Bojinov, V.; Betcheva, R.; Gregoriou, V. Spectral investigation of coordination of cuprum cations and protons at PAMAM dendrimer peripherally modified with 1,8-naphthalimide units. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 70(3), 532-536.
[http://dx.doi.org/10.1016/j.saa.2007.07.057] [PMID: 17890144]
[63]
Grabchev, I.; Qian, X.; Bojinov, V.; Xiao, Y.; Zhang, W. Synthesis and photophysical properties of 1,8-naphthalimide-labelled PAMAM as PET sensors of protons and of transition metal ions. Polymer , 2002, 43(21), 5731-5736.
[http://dx.doi.org/10.1016/S0032-3861(02)00417-2]
[64]
Yilmaz, M.D.; Bozdemir, O.A.; Akkaya, E.U. Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative. Org. Lett., 2006, 8(13), 2871-2873.
[http://dx.doi.org/10.1021/ol061110z] [PMID: 16774278]
[65]
Dodangeh, M.; Gharanjig, K.; Arami, M. Synthesis, characterization, and photo-physical properties of dendrimers modified with 1,8-naphthalimide derivatives as novel fluorescent pH sensors. IEEE Sens. J., 2014, 14(8), 2889-2896.
[http://dx.doi.org/10.1109/JSEN.2014.2319293]
[66]
Georgiev, N.I.; Asiri, A.M.; Qusti, A.H.; Alamry, K.A.; Bojinov, V.B. Design and synthesis of pH-selective fluorescence sensing PAMAM light-harvesting dendrons based on 1,8-naphthalimides. Sens. Actuators B Chem., 2014, 190(1), 185-198.
[http://dx.doi.org/10.1016/j.snb.2013.08.074]
[67]
Georgiev, N.I.; Asiri, A.M.; Alamry, K.A.; Obaid, A.Y.; Bojinov, V.B. Selective ratiometric pH-sensing PAMAM light-harvesting dendrimer based on Rhodamine 6G and 1,8-naphthalimide. J. Photochem. Photobiol. Chem., 2014, 277(1), 62-74.
[http://dx.doi.org/10.1016/j.jphotochem.2013.12.005]
[68]
Alamry, K.A.; Georgiev, N.I.; El-Daly, S.A.; Taib, L.A.; Bojinov, V.B. A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 792-800.
[http://dx.doi.org/10.1016/j.saa.2014.07.076] [PMID: 25150429]
[69]
Alamry, K.A.; Georgiev, N.I.; El-Daly, S.A.; Taib, L.A.; Bojinov, V.B. A ratiometric rhodamine–naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture. J. Lumin., 2015, 158, 50-59.
[http://dx.doi.org/10.1016/j.jlumin.2014.09.014]
[70]
Georgiev, N.I.; Asiri, A.M.; Qusti, A.H.; Alamry, K.A.; Bojinov, V.B. A pH sensitive and selective ratiometric PAMAM wavelength-shifting bichromophoric system based on PET, FRET and ICT. Dyes Pigments, 2014, 102, 35-45.
[http://dx.doi.org/10.1016/j.dyepig.2013.10.007]
[71]
Georgiev, N.I.; Bojinov, V.B.; Nikolov, P.S. Design and synthesis of a novel pH sensitive core and peripherally 1,8-naphthalimide-labeled PAMAM dendron as light harvesting antenna. Dyes Pigments, 2009, 81(1), 18-26.
[http://dx.doi.org/10.1016/j.dyepig.2008.08.009]
[72]
Tang, Y.H.; Ya-Ting Huang, A.; Chen, P.Y.; Chen, H.T.; Kao, C.L. Metallodendrimers and dendrimer nanocomposites. Curr. Pharm. Des., 2011, 17(22), 2308-2330.
[http://dx.doi.org/10.2174/138161211797052367] [PMID: 21736548]
[73]
Hang, Y.; Yang, L.; Qu, Y.; Hua, J. A new diketopyrrolopyrrole-based near-infrared (NIR) fluorescent biosensor for BSA detection and AIE-assisted bioimaging. Tetrahedron Lett., 2014, 55(51), 6998-7001.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.108]
[74]
Yao, S.; Qian, Y. Aggregation-induced emission, functionalized fluorescent nanoparticles and cells imaging of a water-soluble pyridyl-naphthalimide dendron. ChemistrySelect, 2018, 3(1), 308-313.
[http://dx.doi.org/10.1002/slct.201702567]
[75]
Bartlett, D.L.; Libutti, S.K.; Figg, W.D.; Fraker, D.L.; Alexander, H.R. Isolated hepatic perfusion for unresectable hepatic metastases from colorectal cancer. Surgery, 2001, 129(2), 176-187.
[http://dx.doi.org/10.1067/msy.2001.110365] [PMID: 11174711]
[76]
Abdalla, E.K.; Vauthey, J.N.; Ellis, L.M.; Ellis, V.; Pollock, R.; Broglio, K.R.; Hess, K.; Curley, S.A. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann. Surg., 2004, 239(6), 818-827.
[http://dx.doi.org/10.1097/01.sla.0000128305.90650.71] [PMID: 15166961]
[77]
Wittmer, A.; Khazaie, K.; Berger, M.R. Quantitative detection of lac-Z-transfected CC531 colon carcinoma cells in an orthotopic rat liver metastasis model. Clin. Exp. Metastasis, 1999, 17(5), 369-376.
[http://dx.doi.org/10.1023/A:1006643831825] [PMID: 10651303]
[78]
Alcala, M.A.; Shade, C.M.; Uh, H.; Kwan, S.Y.; Bischof, M.; Thompson, Z.P.; Gogick, K.A.; Meier, A.R.; Strein, T.G.; Bartlett, D.L.; Modzelewski, R.A.; Lee, Y.J.; Petoud, S.; Brown, C.K. Preferential accumulation within tumors and in vivo imaging by functionalized luminescent dendrimer lanthanide complexes. Biomaterials, 2011, 32(35), 9343-9352.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.076] [PMID: 21925728]
[79]
Aebischer, A.; Gumy, F.; Bünzli, J.C.G. Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). Phys. Chem. Chem. Phys., 2009, 11(9), 1346-1353.
[http://dx.doi.org/10.1039/b816131c] [PMID: 19224035]
[80]
Staneva, D.; Grabchev, I.; Bosch, P.; Vasileva-Tonkova, E.; Kukeva, R.; Stoyanova, R. Synthesis, characterisaion and antimicrobial activity of polypropylenamine metallodendrimers modified with 1,8-naphthalimides. J. Mol. Struct., 2018, 1164, 363-369.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.017]
[81]
Grabchev, I.; Vasileva-Tonkova, E.; Staneva, D.; Bosch, P.; Kukeva, R.; Stoyanova, R. Synthesis, spectral characterization, and in vitro antimicrobial activity in liquid medium and applied on cotton fabric of a new PAMAM metallodendrimer. IJPAC Int. J. Polym. Anal. Charact., 2018, 23(1), 45-57.
[http://dx.doi.org/10.1080/1023666X.2017.1387025]
[82]
Staneva, D.; Vasileva-Tonkova, E.; Bosch, P.; Grozdanov, P.; Grabchev, I. Synthesis and characterization of a new PAMAM metallodendrimer for antimicrobial modification of cotton fabric. Macromol. Res., 2018, 26(4), 332-340.
[http://dx.doi.org/10.1007/s13233-018-6043-x]
[83]
Grabchev, I.; Vasileva-Tonkova, E.; Staneva, D.; Bosch, P.; Kukeva, R.; Stoyanova, R. Impact of Cu(II) and Zn(II) ions on the functional properties of new PAMAM metallodendrimers. New J. Chem., 2018, 42(10), 7853-7862.
[http://dx.doi.org/10.1039/C8NJ00384J]
[84]
Staneva, D.; Vasileva-Tonkova, E.; Makki, M.S.I.; Sobahi, T.R.; Abdel-Rahman, R.M.; Boyaci, I.H.; Asiri, A.M.; Grabchev, I. Synthesis and spectral characterization of a new PPA dendrimer modified with 4-bromo-1,8-naphthalimide and in vitro antimicrobial activity of its Cu(II) and Zn(II) metal complexes. Tetrahedron, 2015, 71(7), 1080-1087.
[http://dx.doi.org/10.1016/j.tet.2014.12.083]
[85]
Grabchev, I.; Yordanova, S.; Vasileva-Tonkova, E.; Bosch, P.; Stoyanov, S. Poly(propylenamine) dendrimers modified with 4-amino-1,8-naphthalimide: Synthesis, characterization and in vitro microbiological tests of their Cu(II) and Zn(II) complexes. Inorg. Chim. Acta, 2015, 438, 179-188.
[http://dx.doi.org/10.1016/j.ica.2015.09.010]
[86]
Staneva, D.; Atanasova, D.; Nenova, A.; Vasileva-Tonkova, E.; Grabchev, I. Cotton fabric modified with a PAMAM dendrimer with encapsulated copper nanoparticles: Antimicrobial activity. Materials , 2021, 14(24), 7832.
[http://dx.doi.org/10.3390/ma14247832] [PMID: 34947424]
[87]
Staneva, D.; Vasileva-Tonkova, E.; Grozdanov, P.; Vilhelmova-Ilieva, N.; Nikolova, I.; Grabchev, I. Synthesis and photophysical characterisation of 3-bromo-4-dimethylamino-1,8-naphthalimides and their evaluation as agents for antibacterial photodynamic therapy. J. Photochem. Photobiol. Chem., 2020, 401(1), 112730.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112730]
[88]
Manov, H.; Staneva, D.; Vasileva-Tonkova, E.; Grozdanov, P.; Nikolova, I.; Stoyanov, S.; Grabchev, I. Photosensitive dendrimers as a good alternative to antimicrobial photodynamic therapy of Gram-negative bacteria. J. Photochem. Photobiol. Chem., 2021, 419(4), 113480.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113480]
[89]
Tweedy, B.G. A possible mechanism for the reduction of elemental sulfur by Monilinia fructicola. Phytopathology, 1964, 55, 910-914.
[90]
Staneva, D.; Yordanova, S.; Vasileva-Tonkova, E.; Stoyanov, S.; Grabchev, I. Synthesis of a new fluorescent poly(propylene imine) dendrimer modified with 4-nitrobenzofurazan. Sensor and antimicrobial activity. J. Photochem. Photobiol. Chem., 2020, 395, 112506.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112506]
[91]
Neelakantan, M.A.; Esakkiammal, M.; Mariappan, S.S.; Dharmaraja, J.; Jeyakumar, T. Synthesis, characterization and biocidal activities of some schiff base metal complexes. Indian J. Pharm. Sci., 2010, 72(2), 216-222.
[http://dx.doi.org/10.4103/0250-474X.65015] [PMID: 20838526]
[92]
Manov, H.; Staneva, D.; Tonkova, E.V.; Alexandrova, R.; Stoyanova, R.; Kukeva, R.; Stoyanov, R.; Grabchev, I. A new Cu(II) complex of PAMAM dendrimer modified with 1,8-naphthalimide: Antibacterial and anticancer activity. Biointerface Res. Appl. Chem., 2022, 4(12), 5534-5547.
[93]
Grabchev, I.; Staneva, D.; Vasileva-Tonkova, E.; Alexandrova, R.; Cangiotti, M.; Fattori, A.; Ottaviani, M.F. Antimicrobial and anticancer activity of new poly(propyleneamine) metallodendrimers. J. Polym. Res., 2017, 24(11), 210.
[http://dx.doi.org/10.1007/s10965-017-1387-0]
[94]
Zhao, Q.; Li, K.; Chen, S.; Qin, A.; Ding, D.; Zhang, S.; Liu, Y.; Liu, B.; Sun, J.Z.; Tang, B.Z. Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. J. Mater. Chem., 2012, 22(30), 15128.
[http://dx.doi.org/10.1039/c2jm31368e]
[95]
Wolarz, E.; Moryson, H.; Bauman, D. Dichroic fluorescent dyes for ‘guest-host’ liquid crystal displays. Displays, 1992, 13(4), 171-178.
[http://dx.doi.org/10.1016/0141-9382(92)90027-O]
[96]
Grabtschev, I.K.; Moneva, I.T.; Wolarz, E.; Bauman, D. New unsaturated 1,8-naphthalimide dyes for use in nematic liquid crystals. Z. Naturforsch. A, 1996, 51(12), 1185-1191.
[http://dx.doi.org/10.1515/zna-1996-1207]
[97]
Grabchev, I.; Moneva, I. Synthesis and properties of vinylic copolymers with fluorescent moieties as optical brighteners for liquid crystals. J. Appl. Polym. Sci., 1999, 74(1), 151-157.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19991003)74:1<151:AID-APP19>3.0.CO;2-A]
[98]
Grabchev, I.; Chovelon, J.M. Photophysical and photochemical properties of green fluorescent liquid crystalline systems. Z. Naturforsch. A, 2003, 58(1), 45-50.
[http://dx.doi.org/10.1515/zna-2003-0107]
[99]
Grabchev, I.; Sali, S.; Chovelon, J.M. Functional properties of fluorescent poly(amidoamine) dendrimers in nematic liquid crystalline media. Chem. Phys. Lett., 2006, 422(4-6), 547-551.
[http://dx.doi.org/10.1016/j.cplett.2006.02.080]
[100]
Fu, Y.; Zu, C.; Manthiram, A. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries. J. Am. Chem. Soc., 2013, 135(48), 18044-18047.
[http://dx.doi.org/10.1021/ja409705u] [PMID: 24245559]
[101]
Yin, Y.X.; Xin, S.; Guo, Y.G.; Wan, L.J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 2013, 52(50), 13186-13200.
[http://dx.doi.org/10.1002/anie.201304762] [PMID: 24243546]
[102]
Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater., 2015, 5(16), 1500117.
[http://dx.doi.org/10.1002/aenm.201500117]
[103]
Liu, W.; Jiang, J.; Yang, K.R.; Mi, Y.; Kumaravadivel, P.; Zhong, Y.; Fan, Q.; Weng, Z.; Wu, Z.; Cha, J.J.; Zhou, H.; Batista, V.S.; Brudvig, G.W.; Wang, H. Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3578-3583.
[http://dx.doi.org/10.1073/pnas.1620809114] [PMID: 28320950]
[104]
Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev., 2020, 120(2), 1397-1437.
[http://dx.doi.org/10.1021/acs.chemrev.9b00188] [PMID: 31549817]
[105]
Jia, J.; Gao, Y.; Dang, K.; Guo, X.; Ding, A. Naphthalimide-modified dendrimers as efficient and low cytotoxic nucleic acid delivery vectors. Polym. Int., 2012, 11(70), 1590-1594.
[106]
Staneva, D.; Grabchev, I. Spectral analysis of poly(propyleneamine) dendrimers peripherally modified with 1,8-naphthalimides. IJPAC Int. J. Polym. Anal. Charact., 2013, 18(5), 390-397.
[http://dx.doi.org/10.1080/1023666X.2013.785284]
[107]
Şahin Ün, Ş .; Zehra Topal, S.; Zorlu, Y. Naphthalimide-cyclophosphazene combination: Synthesis, crystal structure, photophysics and solid-state fluorescence. J. Lumin., 2017, 190, 23-28.
[http://dx.doi.org/10.1016/j.jlumin.2017.05.025]
[108]
Irie, Y.; Yamanaka, T.; Naka, K. Synthesis of a bi-functional terminal polyhedral octasilicate-core dendrimer containing carbazole and 1,8-naphthalimide, and its photoluminescence properties, film formability, and glass transition behavior. RSC Adv., 2016, 6(10), 8346-8353.
[http://dx.doi.org/10.1039/C5RA25982G]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy