Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Evaluation of the Composite Skin Patch Loaded with Bioactive Functional Factors Derived from Multicellular Spheres of EMSCs for Regeneration of Full-thickness Skin Defects in Rats

Author(s): Xuan Zhang, Wentao Shi, Xun Wang, Yin Zou, Wen Xiang* and Naiyan Lu

Volume 19, Issue 8, 2024

Published on: 16 October, 2023

Page: [1142 - 1152] Pages: 11

DOI: 10.2174/1574888X19666230908142426

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine.

Methods: Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch.

Results: The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats.

Conclusion: In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.

Keywords: Ectodermal mesenchymal stem cells (EMSCs), three-dimensional multicellular spheres culture, conditioned medium (CM), skin defects, regeneration medicine.

Graphical Abstract
[1]
Lim KM. Skin epidermis and barrier function. Int J Mol Sci 2021; 22(6): 3035.
[http://dx.doi.org/10.3390/ijms22063035] [PMID: 33809733]
[2]
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111.
[http://dx.doi.org/10.1186/s13287-019-1212-2] [PMID: 30922387]
[3]
Huang C, Dong L, Zhao B, et al. Anti‐inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12(11): e1094.
[http://dx.doi.org/10.1002/ctm2.1094] [PMID: 36354147]
[4]
Wang L, Li L, Lou W. Repair of a cervical skin defect using xenogeneic acellular dermal matrix in a patient with advanced laryngeal carcinoma. J Laryngol Otol 2015; 129(7): 715-7.
[http://dx.doi.org/10.1017/S0022215115001413] [PMID: 26080657]
[5]
Han C, Zhang L, Sun J, Shi H, Zhou J, Gao C. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 2010; 11(7): 524-30.
[http://dx.doi.org/10.1631/jzus.B0900400] [PMID: 20593518]
[6]
Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: Can we reconstruct functional skin tissue in vitro? Cells 2020; 9(7): 1622.
[http://dx.doi.org/10.3390/cells9071622] [PMID: 32640572]
[7]
Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013; 6(6): e26631.
[http://dx.doi.org/10.4161/cib.26631] [PMID: 24567776]
[8]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[9]
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12(1): 260.
[http://dx.doi.org/10.1186/s12967-014-0260-8] [PMID: 25304688]
[10]
Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. Int J Mol Sci 2019; 20(7): 1656.
[http://dx.doi.org/10.3390/ijms20071656] [PMID: 30987106]
[11]
Deng W, Shao F, He Q, et al. EMSCs build an all-in-one niche via cell-cell lipid raft assembly for promoted neuronal but suppressed astroglial differentiation of neural stem cells. Adv Mater 2019; 31(10): 1806861.
[http://dx.doi.org/10.1002/adma.201806861] [PMID: 30633831]
[12]
Forni PE, Wray S. Neural crest and olfactory system: New prospective. Mol Neurobiol 2012; 46(2): 349-60.
[http://dx.doi.org/10.1007/s12035-012-8286-5] [PMID: 22773137]
[13]
Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 2008; 180(4): 2581-7.
[http://dx.doi.org/10.4049/jimmunol.180.4.2581] [PMID: 18250469]
[14]
Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25(10): 2648-59.
[http://dx.doi.org/10.1634/stemcells.2007-0226] [PMID: 17615264]
[15]
Xiang W, Wang X, Yu X, et al. Therapeutic efficiency of nasal mucosa-derived ectodermal mesenchymal stem cells in rats with acute hepatic failure. Stem Cells Int 2023; 2023: 1-13.
[http://dx.doi.org/10.1155/2023/6890299] [PMID: 36655034]
[16]
Lu N, Wang X, Li X, et al. EMSCs-seeded micro-stripe patterned polycaprolactone promoting sciatic nerve regeneration. Advanced Materials Interfaces 2023; 10(5): 2201929.
[http://dx.doi.org/10.1002/admi.202201929]
[17]
Baer PC, Griesche N, Luttmann W, Schubert R, Luttmann A, Geiger H. Human adipose-derived mesenchymal stem cells in vitro: Evaluation of an optimal expansion medium preserving stemness. Cytotherapy 2010; 12(1): 96-106.
[http://dx.doi.org/10.3109/14653240903377045] [PMID: 19929458]
[18]
Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6(6): e20526.
[http://dx.doi.org/10.1371/journal.pone.0020526] [PMID: 21694780]
[19]
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159: 62-77.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.051] [PMID: 28780462]
[20]
Li M, Fu T, Yang S, et al. Agarose-based spheroid culture enhanced stemness and promoted odontogenic differentiation potential of human dental follicle cells in vitro. In Vitro Cell Dev Biol Anim 2021; 57(6): 620-30.
[http://dx.doi.org/10.1007/s11626-021-00591-5] [PMID: 34212339]
[21]
Zhang Z, He Q, Deng W, et al. Nasal ectomesenchymal stem cells: Multi-lineage differentiation and transformation effects on fibrin gels. Biomaterials 2015; 49: 57-67.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.057] [PMID: 25725555]
[22]
Shi W, Que Y, Zhang X, et al. Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair. NPG Asia Mater 2021; 13(1): 28.
[http://dx.doi.org/10.1038/s41427-021-00297-w]
[23]
Xiao S, Huang G, Wei Z, et al. IL-10 Gene-Modified Human Amniotic Mesenchymal Stem Cells Augment Regenerative Wound Healing by Multiple Synergistic Effects. Stem Cells Int 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/9158016] [PMID: 31281390]
[24]
Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 2000; 20(3): 173-7.
[http://dx.doi.org/10.1076/0271-3683(200003)2031-9FT173] [PMID: 10694891]
[25]
Romano RA, Smalley K, Magraw C, et al. Δ Np63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139(4): 772-82.
[http://dx.doi.org/10.1242/dev.071191] [PMID: 22274697]
[26]
Sen CK. Human wounds and its burden: An updated compendium of estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39-48.
[http://dx.doi.org/10.1089/wound.2019.0946] [PMID: 30809421]
[27]
Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on skin: Mechanisms, recent advances and drug reviewing issues. Yao Wu Shi Pin Fen Xi 2018; 26(1): 14-20.
[PMID: 29389549]
[28]
Kucharzewski M, Rojczyk E, Wilemska-Kucharzewska K, Wilk R, Hudecki J, Los MJ. Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2019; 843: 307-15.
[http://dx.doi.org/10.1016/j.ejphar.2018.12.012] [PMID: 30537490]
[29]
Safina I, Childress LT, Myneni SR, Vang KB, Biris AS. Cell-Biomaterial constructs for wound healing and skin regeneration. Drug Metab Rev 2022; 54(1): 63-94.
[http://dx.doi.org/10.1080/03602532.2021.2025387] [PMID: 35129408]
[30]
Fang Z, Chen P, Tang S, et al. Will mesenchymal stem cells be future directions for treating radiation-induced skin injury? Stem Cell Res Ther 2021; 12(1): 179.
[http://dx.doi.org/10.1186/s13287-021-02261-5] [PMID: 33712078]
[31]
Litvinov RI, Pieters M, de Lange-Loots Z, Weisel JW. Fibrinogen and Fibrin. Subcell Biochem 2021; 96: 471-501.
[http://dx.doi.org/10.1007/978-3-030-58971-4_15] [PMID: 33252741]
[32]
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2020; 20(1): 1900283.
[http://dx.doi.org/10.1002/mabi.201900283] [PMID: 31769933]
[33]
Weisel JW, Litvinov RI. Fibrin Formation, Structure and Properties. Subcell Biochem 2017; 82: 405-56.
[http://dx.doi.org/10.1007/978-3-319-49674-0_13] [PMID: 28101869]
[34]
Lai E, Bao B, Zhu Y, Lin H. Transglutaminase-catalyzed bottom-up synthesis of polymer hydrogel. Front Bioeng Biotechnol 2022; 10: 824747.
[http://dx.doi.org/10.3389/fbioe.2022.824747] [PMID: 35392400]
[35]
Coffin ST, Gaudette GR. Aprotinin extends mechanical integrity time of cell-seeded fibrin sutures. J Biomed Mater Res A 2016; 104(9): 2271-9.
[http://dx.doi.org/10.1002/jbm.a.35754] [PMID: 27101153]
[36]
Maiz-Fernández S, Pérez-Álvarez L, Silván U, Vilas-Vilela JL, Lanceros-Mendez S. Photocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid. Int J Biol Macromol 2022; 216: 291-302.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.004] [PMID: 35798076]
[37]
Jiao Y, Pang X, Zhai G. Advances in hyaluronic acid-based drug delivery systems. Curr Drug Targets 2016; 17(6): 720-30.
[http://dx.doi.org/10.2174/1389450116666150531155200] [PMID: 26028046]
[38]
Giri S, Machens HG, Bader A. Therapeutic potential of endogenous stem cells and cellular factors for scar-free skin regeneration. Drug Discov Today 2019; 24(1): 69-84.
[http://dx.doi.org/10.1016/j.drudis.2018.10.014] [PMID: 30408529]
[39]
Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM. Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 2011; 22(21): 4068-78.
[http://dx.doi.org/10.1091/mbc.e10-08-0703] [PMID: 21900500]
[40]
Crum CP, McKeon FD. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol 2010; 5(1): 349-71.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102117] [PMID: 20078223]
[41]
Li Y, Zhang J, Yue J, Gou X, Wu X. Epidermal Stem Cells in Skin Wound Healing. Adv Wound Care (New Rochelle) 2017; 6(9): 297-307.
[http://dx.doi.org/10.1089/wound.2017.0728] [PMID: 28894637]
[42]
Kurinna S, Seltmann K, Bachmann AL, et al. Interaction of the NRF2 and p63 transcription factors promotes keratinocyte proliferation in the epidermis. Nucleic Acids Res 2021; 49(7): 3748-63.
[http://dx.doi.org/10.1093/nar/gkab167] [PMID: 33764436]
[43]
Oh JE, Kim RH, Shin KH, Park NH, Kang MK. DeltaNp63α protein triggers epithelial-mesenchymal transition and confers stem cell properties in normal human keratinocytes. J Biol Chem 2011; 286(44): 38757-67.
[http://dx.doi.org/10.1074/jbc.M111.244939] [PMID: 21880709]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy