Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Synthetic Strategies and Pharmaceutical Applications of Thiazine and its Derivatives: An Updated Review

Author(s): Yashumati Ratan*, Aishwarya Rajput, Ashutosh Pareek*, Vivek Jain, Aaushi Pareek, Madan Mohan Gupta and Mohammad Amjad Kamal*

Volume 25, Issue 9, 2024

Published on: 17 October, 2023

Page: [1142 - 1166] Pages: 25

DOI: 10.2174/1389201025666230908141543

Price: $65

Abstract

Thiazines are a sizable class of organic heterocycles that are notable for their skeletal versatility and relative chemical simplicity, making them among the most flexible sources of biologically active compounds. The term "green synthesis" refers to implementing energy-efficient procedures for the nature-friendly production of materials and chemicals using green solvents, catalysts, and suitable reaction conditions. Considering the importance of green chemistry and the outstanding therapeutic profile of thiazines, the present work was designed to review the recent advances in green chemistry-based synthetic strategies of thiazine and its derivatives. The green synthetic approaches, including microwave-assisted, ultrasound-assisted, and various other synthetic methods for thiazine and its derivatives, were discussed and generalized. In addition, applications of thiazine and its derivatives in pharmaceutical sciences were explained with examples of marketed drugs.The discussed sustainable synthetic methods for thiazines and their derivatives could be useful in developing other medicinally important lead molecules. They could also aid in developing new synthetic schemes and apparatuses that may simplify chemical manufacturing processes and enable novel reactions with minimal by-products while questing for optimal, green solvents. This review can help anyone interested in this fascinating class of heterocycles to make decisions about selecting targets and tasks for future research.

Keywords: Thiazines, green synthesis, microwave assisted, ultrasonication, ultrasound-assisted, catalyst.

Graphical Abstract
[1]
Al-mulla, A. A review: Biological importance of heterocyclic compounds. Der Pharma Chem., 2017, 9(13), 141-147.
[2]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules., 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[3]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[4]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[5]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. IJPSR, 2012, 3(9), 2947-2954.
[6]
Shcherbakova, I. A drug mystery of heterocycles: Various molecules for one target or one compound for multiple targets? Chem. Heterocycl. Compd., 2013, 49(1), 2-18.
[http://dx.doi.org/10.1007/s10593-013-1229-x]
[7]
Badshah, S.; Naeem, A. Bioactive thiazine and benzothiazine derivatives: Green synthesis methods and their medicinal importance. Molecules., 2016, 21(8), 1054.
[http://dx.doi.org/10.3390/molecules21081054] [PMID: 27537865]
[8]
Barkenbus, C.; Landis, P.S. The preparation of 1,4-thiazine. J. Am. Chem. Soc., 1948, 70(2), 684-685.
[http://dx.doi.org/10.1021/ja01182a075]
[9]
Okafor, C.O. The chemistry and applications of angular phenothiazine derivatives. Dyes Pigments, 1986, 7(4), 249-287.
[http://dx.doi.org/10.1016/0143-7208(86)85013-6]
[10]
Yadav, L.D.S.; Singh, A. Microwave activated solvent-free cascade reactions yielding highly functionalised 1,3-thiazines. Tetrahedron Lett., 2003, 44(30), 5637-5640.
[http://dx.doi.org/10.1016/S0040-4039(03)01353-4]
[11]
Stoodley, R.J. 1,4-thiazines and their dihydro derivatives. Katritzky, AR; Boulton, AJ In: Advances in Heterocyclic Chemistry; Academic Press, 1979; 24, pp. 293-361.
[12]
Chaviara, A.T.; Cox, P.J.; Repana, K.H.; Papi, R.M.; Papazisis, K.T.; Zambouli, D.; Kortsaris, A.H.; Kyriakidis, D.A.; Bolos, C.A. Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J. Inorg. Biochem., 2004, 98(8), 1271-1283.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.05.010] [PMID: 15271502]
[13]
Nagaraj, A.; Sanjeeva, R.C. Synthesis and biological study of novel bis-chalcones, bis-thiazines and bis-pyrimidines. J. Indian Chem. Soc., 2008, 5(2), 262-267.
[http://dx.doi.org/10.1007/BF03246116]
[14]
Sultana, R.; Sarmad, A.; Salman, B.S. Synthesize, characterize and evaluation of antibacterial and anti-fungal activity of thiazines. Int J Res Pharm Chem Anal., 2018, 1(1), 25-35.
[15]
Slyvka, N.; Saliyeva, L.; Holota, S.; Tkachuk, V. Convenient synthesis of 4-pyridinyloxy-modified inflammatory agents. Biointerface Res. Appl. Chem., 2022, 13(2), 183.
[http://dx.doi.org/10.33263/BRIAC132.183]
[16]
Singh, U.P.; Pathak, M.; Dubey, V.; Bhat, H.R.; Gahtori, P.; Singh, R.K. Design, synthesis, antibacterial activity, and molecular docking studies of novel hybrid 1,3-thiazine-1,3,5-triazine derivatives as potential bacterial translation inhibitor. Chem. Biol. Drug Des., 2012, 80(4), 572-583.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01430.x] [PMID: 22702334]
[17]
Rathod, S.P.; Charjan, A.P.; Rajput, P.R. Synthesis and antibacterial activities of chloro-substituted-1, 3-thiazines. Rasayan J. Chem., 2010, 3(2), 363-367.
[18]
Jeleń, M.; Pluta, K.; Zimecki, M.; Morak-Młodawska, B.; Artym, J.; Kocięba, M. 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur. J. Med. Chem., 2015, 89(7), 411-420.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.070] [PMID: 25462256]
[19]
Tozkoparan, B.; Aktay, G.; Yeşilada, E. Synthesis of some 1,2,4-triazolo[3,2-b]-1,3-thiazine-7-ones with potential analgesic and antiinflammatory activities. Farmaco, 2002, 57(2), 145-152.
[http://dx.doi.org/10.1016/S0014-827X(01)01195-8] [PMID: 11902657]
[20]
Chauhan, N.B.; Patel, N.B.; Patel, V.M.; Mistry, B.M. Synthesis and biological evaluation of coumarin clubbed thiazines scaffolds as antimicrobial and antioxidant. Med. Chem. Res., 2018, 27(9), 2141-2149.
[http://dx.doi.org/10.1007/s00044-018-2222-9]
[21]
Ferreira, M.; Assunção, L.S.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B.; Sá, M.M. Synthesis of 1,3-thiazine-2,4-diones with potential anticancer activity. Eur. J. Med. Chem., 2013, 70(12), 411-418.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.017] [PMID: 24177368]
[22]
Kalyankar, B.D.; Wasekar, C.P.; Yadao, S.B. An expeditious approach towards synthesis of pyrazolo[3,4-D][1,3]thiazine derivatives with their antimicrobial evaluation. Int J Res Biosci Agric Technol., 2022, 2(10), 126-131.
[23]
Satbir, M.; Savita, N.; Suchita, S.; Virender, S. Synthesis and biological activities of 1,4-benzothiazine derivatives: An overview. Chem. Biol. Interact., 2017, 7(1), 1-18.
[24]
Begum, S.; Begum, A. Therapeutic utility of 1,3-thiazines mini review. Saudi J Med Pharm Sci., 2016, 2(12), 326-338.
[25]
Ishak, E.A. Microwave-assisted green synthesis of 1,3-thiazines as potential anti-fungal agents using lemon juice. J. Mater. Environ. Sci., 2019, 10(1), 54-59.
[26]
Boiani, M.; Piacenza, L.; Hernández, P.; Boiani, L.; Cerecetto, H.; González, M.; Denicola, A. Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: Is oxidative stress involved? Biochem. Pharmacol., 2010, 79(12), 1736-1745.
[http://dx.doi.org/10.1016/j.bcp.2010.02.009] [PMID: 20178775]
[27]
Shapiro, G.I.; LoRusso, P.; Dowlati, A.; T Do, K.; Jacobson, C.A.; Vaishampayan, U.; Weise, A.; Caimi, P.F.; Eder, J.P.; French, C.A.; Labriola-Tompkins, E.; Boisserie, F.; Pierceall, W.E.; Zhi, J.; Passe, S.; DeMario, M.; Kornacker, M.; Armand, P. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br. J. Cancer, 2021, 124(4), 744-753.
[http://dx.doi.org/10.1038/s41416-020-01180-1] [PMID: 33311588]
[28]
Meltzer, H.Y. Atypical antipsychotic drugs: Theories of mechanism of action. Sibley, DR; Hanin, I.; Kuhar, M.; Phil, S. In: Handbook of Contemporary Neuropharmacology; John Wiley & Sons, Inc, 2007; pp. 411-448.
[29]
Grinchii, D.; Dremencov, E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int. J. Mol. Sci., 2020, 21(24), 9532.
[http://dx.doi.org/10.3390/ijms21249532] [PMID: 33333774]
[30]
Berkowitz, R.D.; Mack, R.J.; McCallum, S.W. Meloxicam for intravenous use: Review of its clinical efficacy and safety for management of postoperative pain. Pain Manag., 2021, 11(3), 249-258.
[http://dx.doi.org/10.2217/pmt-2020-0082] [PMID: 33291975]
[31]
Shukla, D.; Bhola, N.D.; Bhola, R.D.; Nimje, A.M. Efficacy of preoperative piroxicam, diclofenac, paracetamol with tramadol and placebo tablets for relief of postoperative pain after the removal of impacted mandibular third molars: A randomised controlled trial. Cureus., 2022, 14(7), e26839.
[http://dx.doi.org/10.7759/cureus.26839] [PMID: 35974862]
[32]
Egan, M.F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; Tariot, P.N.; Vellas, B.; van Dyck, C.H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Mo, Y.; Sur, C.; Michelson, D. Randomized trial of verubecestat for prodromal alzheimer’s disease. N. Engl. J. Med., 2019, 380(15), 1408-1420.
[http://dx.doi.org/10.1056/NEJMoa1812840] [PMID: 30970186]
[33]
Ratan, Y.; Rajput, A.; Maleysm, S.; Pareek, A.; Jain, V.; Pareek, A.; Kaur, R.; Singh, G. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in alzheimer’s disease. Biomedicines., 2023, 11(5), 1398.
[http://dx.doi.org/10.3390/biomedicines11051398] [PMID: 37239068]
[34]
Baig, R.B.N.; Varma, R.S. Solvent-free synthesis. In: An Introduction to Green Chemistry Methods; Luque, R.; Colmenares, J.C., Eds.; Future Science Group: London, 2013; pp. 18-38.
[http://dx.doi.org/10.4155/ebo.13.4]
[35]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K.; Mohanta, B.C. Microwave-assisted synthesis: Paradigm of green chemistry. J. Indian Chem. Soc., 2018, 95(11), 1327-1339.
[36]
Li, J.T.; Wang, S.X.; Chen, G.F.; Li, T.S. Some applications of ultrasound irradiation in organic synthesis. Curr. Org. Synth., 2005, 2(3), 415-436.
[http://dx.doi.org/10.2174/1570179054368509]
[37]
Geng, L.J.; Li, J.T.; Wang, S.X. Application of grinding method to solid-state organic synthesis. Youji Huaxue, 2005, 25(5), 608-613.
[38]
Rajasekhar, K.K.; Ananth, V.S.; Nithiyananthan, T.S.; Hareesh, G.; Kumar, P.N.; Reddy, R.S.P. Comparative study of conventional and microwave induced synthesis of selected heterocyclic molecules. Int. J. Chemtech Res., 2010, 2(1), 592-597.
[39]
Suprita, S.R.; Singh, S. Green methods for synthesis of various Heterocycles: Sustainable approach. Int. J. Chem. Stud., 2017, 5(6), 479-485.
[40]
Vlocskó, R.B.; Xie, G.; Török, B. Green synthesis of aromatic nitrogen-containing heterocycles by catalytic and non-traditional activation methods. Molecules, 2023, 28(10), 4153.
[http://dx.doi.org/10.3390/molecules28104153] [PMID: 37241894]
[41]
Das Soni, G. Advantages of green chemistry. Int J Res., 2015, 3(9), 1-5.
[42]
Koel, M.; Kaljurand, M. Application of the principles of green chemistry in analytical chemistry. Pure Appl. Chem., 2006, 78(11), 1993-2002.
[http://dx.doi.org/10.1351/pac200678111993]
[43]
Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules., 2015, 20(6), 10928-10946.
[http://dx.doi.org/10.3390/molecules200610928] [PMID: 26076112]
[44]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J.; Alvarez-Builla, J. Green chemistry in organic synthesis. ChemInform., 2010, 41(25)
[http://dx.doi.org/10.1002/chin.201025200]
[45]
Ramya Sucharitha, E.; Krishna, T.M.; Manchal, R.; Ramesh, G.; Narsimha, S. Fused benzo[1,3]thiazine-1,2,3-triazole hybrids: Microwave-assisted one-pot synthesis, in vitro antibacterial, antibiofilm, and in silico ADME studies. Bioorg. Med. Chem. Lett., 2021, 47, 128201.
[http://dx.doi.org/10.1016/j.bmcl.2021.128201] [PMID: 34139328]
[46]
Molloa, M.C.; Biscegliaa, J.A.; Kilimcilera, N.B.; Mancinellib, M.; Orelli, L.R. Microwave-assisted synthesis of 2-substituted 2-thiazolines and 5,6-dihydro-4H-1,3-thiazines. Synthesis, 2020, 52(11)
[47]
Chougale, U.B.; Kharade, P.R.; Chavan, H.V.; Dhongade, S.R. Microwave assisted synthesis of some novel thiazine derivatives and prediction of their bioactivity. Mater. Today Proc., 2020, 23, 301-308.
[http://dx.doi.org/10.1016/j.matpr.2020.02.028]
[48]
Nongkhlaw, R.L.; Nongrum, R.; Tumtin, S.; Phucho, I.T. Green and efficient synthesis of 1,2-bis(2H-benzo[e][1,3]oxazin-3(4H)-yl)ethanes and 1,2-bis(2H-benzo[e][1,3]thiazin-3(4H)-yl)ethanes. ARKIVOC, 2019, 2019(5), 255-264.
[http://dx.doi.org/10.24820/ark.5550190.p010.854]
[49]
Jun, H.G.; Kim, E.M.; Yoon, H.J.; Gong, Y.D. Microwave-assisted solid-phase synthesis of N-substituted-2-aminobenzo[d][1,3]thiazine derivatives from a BOMBA resin. Bull. Korean Chem. Soc., 2017, 38(3), 334-341.
[http://dx.doi.org/10.1002/bkcs.11088]
[50]
Wadhwa, P.; Kaur, T.; Sharma, A. Solvent-free pot-, atom- and step-economic synthesis of novel benzo [d] thiazole- [1,3]- thiazine hybrids in a one-pot reaction. Asian J. Org. Chem., 2016, 5(6), 763-769.
[http://dx.doi.org/10.1002/ajoc.201600098]
[51]
Balwe, S.G.; Shinde, V.V.; Jeong, Y.T. Iron-catalyzed microwave-promoted expeditious one-pot synthesis of benzo[b][1,4]thiazine-4-carbonitrile under solvent-free condition. Tetrahedron Lett., 2016, 57(46), 5074-5078.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.002]
[52]
Jayaseelan, D.; Ganapathi, M.; Guhanathan, S. Microwave assisted synthesis of 4,6- diphenyl substituted thiazine derivatives and its characterisation. Org Chem An Inidan J., 2015, 11(8), 305-311.
[53]
Bhowmik, S.; Mishra, A.; Batra, S. Microwave-assisted one-pot synthesis of 2-aryl-5,6-dihydro-4H-1,3-thiazines via reaction between Lawesson’s reagent and allyl arylamides derived from Morita–Baylis–Hillman acetates. RSC Advances, 2011, 1(8), 1464-1470.
[http://dx.doi.org/10.1039/c1ra00362c]
[54]
Rathod, A.K.; Kulkarni, G.M. A microwave-assisted : Synthesis and characterization of thiazines or 2-mercapto-4,6- Diaryl-5,6-dihydropyrimidines and their antimicrobial activity. Int. J. Pharm. Tech. Res., 2011, 3(1), 197-200.
[55]
Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure–activity relationship of 4-hydroxy-N′-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.020] [PMID: 21470723]
[56]
Gaina, L.; Porumb, D.; Silaghi-Dumitrescu, I.; Cristea, C.; Silaghi-Dumitrescu, L. On the microwave-assisted synthesis of acylphenothiazine derivatives — Experiment versus theory synergism. Can. J. Chem., 2010, 88(1), 42-49.
[http://dx.doi.org/10.1139/V09-163]
[57]
Wan, J.P.; Pan, Y.H.; Mao, H.; Chen, Y.H.; Pan, Y.J. Microwave-assisted three-component reaction for rapid synthesis of some 5, 6-dihydro-4H-1,3- thiazine derivatives under solvent-free conditions. Synth. Commun., 2010, 40(5), 709-716.
[http://dx.doi.org/10.1080/00397910903013689]
[58]
Charris, J.; Barazarte, A.; Domínguez, J.; Gamboa, N. Microwave-assisted synthesis of quinolones and 4H-1,4-benzo thiazine 1,1-dioxides. J. Chem. Res., 2005, 2005(1), 27-28.
[http://dx.doi.org/10.3184/0308234053431158]
[59]
Yadav, L.D.S.; Yadav, S.; Rai, V.K. Mercaptoacetic acid based expeditious synthesis of polyfunctionalised 1,3-thiazines. Tetrahedron, 2005, 61(42), 10013-10017.
[http://dx.doi.org/10.1016/j.tet.2005.08.021]
[60]
Dandia, A.; Arya, K.; Sati, M.; Gautam, S. Microwave assisted green chemical synthesis of novel spiro[indole-pyrido thiazines]: a system reluctant to be formed under thermal conditions. Tetrahedron., 2004, 60(24), 5253-5258.
[http://dx.doi.org/10.1016/j.tet.2004.04.018]
[61]
Dandia, A.; Singh, R.; Mérienne, C.; Morgant, G.; Loupy, A. Solvent-free one-pot synthesis and crystal structure of a spiro[indole-thiazine]. Sulfur Letters, 2003, 26(5-6), 201-207.
[http://dx.doi.org/10.1080/02786110310001637617]
[62]
Mishra, A.; Singh, S.; Quraishi, M.A.; Srivastava, V. A catalyst-free expeditious green synthesis of quinoxaline, oxazine, thiazine, and dioxin derivatives in water under ultrasound irradiation. Org. Prep. Proced. Int., 2019, 51(4), 345-356.
[http://dx.doi.org/10.1080/00304948.2019.1596469]
[63]
Ansari, M.D.; Sagir, H.; Yadav, V.B.; Yadav, N.; Verma, A.; Siddiqui, I.R. Organo-nanocatalysis: An emergent green methodology for construction of bioactive oxazines and thiazines under ultrasonic irradiation. J. Mol. Struct., 2019, 1196, 54-57.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.052]
[64]
Arafa, W.A.A.; Faty, R.A.M.; Mourad, A.K. A new sustainable strategy for synthesis of novel series of bis-imidazole and bis-1, 3-thiazine derivatives. J. Heterocycl. Chem., 2018, 55(8), 1886-1894.
[http://dx.doi.org/10.1002/jhet.3221]
[65]
Choudhary, A.S.; Malik, M.K.; Patil, S.R.; Prabhu, K.H.; Deshmukh, R.R.; Sekar, N. Phenazines and thiazine: Green synthesis, photophysical properties and dichroic behavior in nematic host. Can. Chem. Trans., 2014, 2(4), 365-380.
[66]
Arya, K.; Rawat, D.S.; Sasai, H. Zeolite supported Brønsted-acid ionic liquids: an eco approach for synthesis of spiro[indole-pyrido[3,2-e]thiazine] in water under ultrasonication. Green Chem., 2012, 14(7), 1956-1963.
[http://dx.doi.org/10.1039/c2gc35168d]
[67]
Zia-ur-Rehman, M.; Choudary, J.A.; Elsegood, M.R.J.; Siddiqui, H.L.; Khan, K.M. A facile synthesis of novel biologically active 4-hydroxy-N′-(benzylidene)-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxides. Eur. J. Med. Chem., 2009, 44(3), 1311-1316.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.002] [PMID: 18804313]
[68]
Dabholkar, V V.; Ansari, FY. Synthesis of thiazines using an unusual means-sonication. Indian J Chem - Sect B Org Med Chem., 2008, 47(B), 1759-1761.
[69]
Dazmiri, M.G.; Hosseini, S.N.; Ghasemi, N. ZnO/Fe3O4 MNPs promoted green synthesis of imidazoline under solvent-free Conditions. Iran J Org Chem., 2022, 14(1), 3269-3275.
[70]
Bdaiwi, Z.M.; Ghanem, H.T. Synthesis and characterization of some heterocyclic derivatives from 2-amino thiazol and study of biological activity of prepared derivatives. Int J Pharm Res., 2020, 12(2), 1207-1216.
[71]
Bankar, V.V.; Dhankar, R.P. A practical green synthesis of thiazine derivatives using phase transfer catalyst. Rasayan J. Chem., 2018, 11(3), 1294-1299.
[http://dx.doi.org/10.31788/RJC.2018.1134012]
[72]
Saroha, M.; Khanna, G.; Khurana, J.M. Green synthesis of novel naphtho[1,2-e]/benzo [e][1,3] thiazine derivatives via one-pot three-component reaction using tetra n-butyl ammonium bromide. ChemistrySelect, 2018, 3(44), 12560-12562.
[http://dx.doi.org/10.1002/slct.201802778]
[73]
Ghasemi, N. Synthesis of 1, 3-thiazines using N-formylmorpholine as a green solvent. Iran J Org Chem., 2018, 10(2), 2373-2376.
[74]
Nematpour, M.; Abedi, E.; Sadeghi, V. A green, synthesis of spiro-indene-2,6′-thiazines from tetramethylguanidine-heterocumulene and ninhydrin-malononitrile adducts. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(7), 783-786.
[http://dx.doi.org/10.1080/10426507.2017.1286490]
[75]
Wu, H.M.; Zhou, K.; Wu, T.; Cao, Y.G. Synthesis of pyrazine-1,3-thiazine hybrid analogues as antiviral agent against HIV-1, influenza A (H1N1), enterovirus 71 (EV71), and coxsackievirus B3 (CVB3). Chem. Biol. Drug Des., 2016, 88(3), 411-421.
[http://dx.doi.org/10.1111/cbdd.12769] [PMID: 27062664]
[76]
Tayade, D.; Ingole, S. Green synthesis of 2-substitutedimino-4-amino-6-methyl formamidino-1,3,5- thiadiazines. Int J Chem Pharm Sci., 2016, 7(2), 52-54.
[77]
Siddiqui, I.R.; Rahila; Shamim, S.; Rai, P.; Shireen; Waseem, M.A.; Srivastava, A.; Srivastava, A. Basic ionic liquid promoted domino knoevenagel-thia-michael reaction: An efficient and multicomponent strategy for synthesis of 1, 3-thiazines. J. Heterocycl. Chem., 2016, 53(4), 1284-1291.
[http://dx.doi.org/10.1002/jhet.2379]
[78]
Edayadulla, N.; Ramesh, P. Synthesis of 2,6-dicarbethoxy-3,5-diaryltetrahydro-1,4-thiazine-1,1-dioxide derivatives as potent anticonvulsant agents. Eur. J. Med. Chem., 2015, 106, 44-49.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.010] [PMID: 26519928]
[79]
Singh, U.P.; Bhat, H.R.; Singh, R.K. Ceric ammonium nitrate (CAN) catalysed expeditious one-pot synthesis of 1,3-thiazine as IspE kinase inhibitor of Gram-negative bacteria using polyethylene glycol (PEG-400) as an efficient recyclable reaction medium. C. R. Chim., 2013, 16(5), 462-468.
[http://dx.doi.org/10.1016/j.crci.2012.11.019]
[80]
Dandia, A.; Singh, R.; Saini, D. Ionic liquid-mediated three-component synthesis of fluorinated spiro-thiazine derivatives and their antimycobacterial and DNA cleavage activities. J. Chem. Sci., 2013, 125(5), 1045-1053.
[http://dx.doi.org/10.1007/s12039-013-0493-8]
[81]
Rai, V.K.; Rai, P.K.; Thakur, Y. Masked mercapto acid-driven MCR in task-specific ionic liquid: A new sterocontrolled entry into bicyclic 1,3-thiazines. Tetrahedron Lett., 2013, 54(48), 6469-6473.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.068]
[82]
Il, E.S.; Kim, D.G.; Kodess, M.I.; Matochkina, E.G.; Slepukhin, P.A. Synthesis of novel fluorine- and iodine-containing [1,2,4]triazolo[3,4-b][1,3]thiazines based 3-(alkenylthio)-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiols. J. Fluor. Chem., 2013, 149(32), 24-29.
[83]
Zhao, Y.; Bai, Y.; Zhang, Q.; Chen, Z.; Dai, Q.; Ma, C. A facile method for the synthesis of pyridazino[4,5-b][1,4]thiazine-diones via Smiles rearrangement. Tetrahedron Lett., 2013, 54(25), 3253-3255.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.026]
[84]
Rostami-Charati, F.; Hossaini, Z.; Moghimi, M.; Kowsari, E. A facile one-pot synthesis of functionalized thiazines in water. Chin. Chem. Lett., 2012, 23(9), 1007-1010.
[http://dx.doi.org/10.1016/j.cclet.2012.06.033]
[85]
Adly, O.M.I. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 95, 483-490.
[http://dx.doi.org/10.1016/j.saa.2012.04.030] [PMID: 22580142]
[86]
Banda, G.; Hipparagi, S.M. Ramjith. U.S., Jacob CM. Microwave assisted synthesis of fluoro, chloro 2-substituted benzimidazole thiazine derivatives for antibacterial and analgesic activities. IJRPS, 2012, 2(3), 146-158.
[87]
Elarfi, M.J.; Al-difar, H.A. Synthesis of some heterocyclic compounds derived from chalcones. Sci. Revs. Chem. Commun., 2012, 2(2), 103-107.
[88]
Wang, W.; Zhao, B.; Xu, C.; Wu, W. Synthesis and antitumor activity of the thiazoline and thiazine multithioether. Int. J. Org. Chem., 2012, 2(2), 117-120.
[http://dx.doi.org/10.4236/ijoc.2012.22018]
[89]
Baharfar, R.; Baghbanian, S.M.; Vahdat, S.M. An efficient one-pot synthesis of pyrimido[2,1-b][1,3]thiazine derivatives by reaction of activated acetylenes, thiouracils, and isocyanides. Tetrahedron Lett., 2011, 52(45), 6018-6020.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.008]
[90]
Yavari, I.; Nematpour, M.; Hossaini, Z. Ph3P-mediated one-pot synthesis of functionalized 3,4-dihydro-2H-1,3-thiazines from N,N′-dialkylthioureas and activated acetylenes in water. Monatsh. Chem., 2010, 141(2), 229-232.
[http://dx.doi.org/10.1007/s00706-009-0247-y]
[91]
Yadav, L.D.S.; Rai, V.K.; Yadav, B.S. The first ionic liquid-promoted one-pot diastereoselective synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones using masked amino/mercapto acids. Tetrahedron., 2009, 65(7), 1306-1315.
[http://dx.doi.org/10.1016/j.tet.2008.12.050]
[92]
Bansode, T.N.; Shelke, J.V.; Dongre, V.G. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur. J. Med. Chem., 2009, 44(12), 5094-5098.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.006] [PMID: 19651462]
[93]
Indumathi, S.; Perumal, S.; Banerjee, D.; Yogeeswari, P.; Sriram, D. l-Proline-catalysed facile green protocol for the synthesis and antimycobacterial evaluation of [1,4]-thiazines. Eur. J. Med. Chem., 2009, 44(12), 4978-4984.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.001] [PMID: 19781824]
[94]
Koketsu, M.; Tanaka, K.; Takenaka, Y.; Kwong, C.D.; Ishihara, H. Synthesis of 1,3-thiazine derivatives and their evaluation as potential antimycobacterial agents. Eur. J. Pharm. Sci., 2002, 15(3), 307-310.
[http://dx.doi.org/10.1016/S0928-0987(02)00014-3] [PMID: 11923063]
[95]
López-Muñoz, F.; Alamo, C.; cuenca, E.; Shen, W.; Clervoy, P.; Rubio, G. History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry, 2005, 17(3), 113-135.
[http://dx.doi.org/10.1080/10401230591002002] [PMID: 16433053]
[96]
Boyd-Kimball, D.; Gonczy, K.; Lewis, B.; Mason, T.; Siliko, N.; Wolfe, J. Classics in chemical neuroscience: Chlorpromazine. ACS Chem. Neurosci., 2019, 10(1), 79-88.
[http://dx.doi.org/10.1021/acschemneuro.8b00258] [PMID: 29929365]
[97]
Dudley, K.; Liu, X.; De Haan, S. Chlorpromazine dose for people with schizophrenia. Cochrane Database Syst. Rev., 2017, 4(4), CD007778.
[PMID: 28407198]
[98]
Matar, H.E.; Almerie, M.Q.; Sampson, S. Fluphenazine (oral) versus placebo for schizophrenia. Cochrane Database Syst. Rev., 2013, 7(7), CD006352.
[PMID: 23861067]
[99]
Lytle, S.; McVoy, M.; Sajatovic, M. Long-acting injectable antipsychotics in children and adolescents. J. Child Adolesc. Psychopharmacol., 2017, 27(1), 2-9.
[http://dx.doi.org/10.1089/cap.2016.0055] [PMID: 28112539]
[100]
Sampford, J.R.; Sampson, S.; Li, B.G.; Zhao, S.; Xia, J.; Furtado, V.A. Fluphenazine (oral) versus atypical antipsychotics for schizophrenia. Cochrane Libr., 2016, 2016(7), CD010832.
[http://dx.doi.org/10.1002/14651858.CD010832.pub2] [PMID: 27370402]
[101]
Maayan, N.; Quraishi, S.N.; David, A.; Jayaswal, A.; Eisenbruch, M.; Rathbone, J.; Asher, R.; Adams, C.E. Fluphenazine decanoate (depot) and enanthate for schizophrenia. Cochrane Libr., 2015, 2(2), CD000307.
[http://dx.doi.org/10.1002/14651858.CD000307.pub2] [PMID: 25654768]
[102]
Gardos, G.; Tecce, J.J.; Hartmann, E.; Bowers, P.; Cole, J.O. Treatment with mesoridazine and thioridazine in chronic schizophrenia: I. Assessment of clinical and electrophysiologic responses in refractory hallucinating schizophrenics. Compr. Psychiatry, 1978, 19(6), 517-525.
[http://dx.doi.org/10.1016/0010-440X(78)90083-4] [PMID: 720036]
[103]
Hartung, B.; Sampson, S.; Leucht, S. Perphenazine for schizophrenia. Cochrane Database Syst. Rev., 2015, 2015(3), CD003443.
[PMID: 25749632]
[104]
Tardy, M.; Huhn, M. RR E, S L. Perphenazine versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst. Rev., 2014, 10(CD009369), 1-41.
[105]
Hempel, C.; Nörenberg, W.; Sobottka, H.; Urban, N.; Nicke, A.; Fischer, W.; Schaefer, M. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology, 2013, 75, 365-379.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.027] [PMID: 23954492]
[106]
Kazmi, I.H.; Waseem, A.; Qaisar, S.; Asif, K. Compare the effectiveness of ondansetron Vs prochlorperazine for preventing nausea & vomiting after laparoscopic cholecystectomy. Pak. J. Med. Health Sci., 2021, 15(3), 555-557.
[107]
Din, L.; Preuss, C.V. Prochlorperazine. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022; pp. 1-6.
[108]
Whitworth, A.B.; Fleischhacker, W.W. Adverse effects of antipsychotic drugs. Int. Clin. Psychopharmacol., 1995, 9(S5), 21-28.
[http://dx.doi.org/10.1097/00004850-199501005-00005] [PMID: 7622830]
[109]
Sibilio, J.P.; Andrew, G.; Dart, D.; Moore, K.B.; Stehman, V.A. Treatment of chronic schizophrenia with promazine hydrochloride. Arch. Neurol. Psychiatry, 1957, 78(4), 419-424.
[http://dx.doi.org/10.1001/archneurpsyc.1957.02330400093012] [PMID: 13457517]
[110]
Simpson, R.W.; Jesson, J.G. The effects of promazine (sparine) in chronic schizophrenia. J. Ment. Sci., 1958, 104(437), 1199-1202.
[http://dx.doi.org/10.1192/bjp.104.437.1199] [PMID: 13621168]
[111]
Fenton, M.; Rathbone, J.; Reilly, J.; Sultana, A. Thioridazine for schizophrenia. Cochrane Database Syst. Rev., 2007, 2007(3), CD001944.
[PMID: 17636691]
[112]
McCreadie, R.G.; Todd, N.; Livingston, M.; Eccleston, D.; Watt, J.A.G.; Herrington, R.N.; Tait, D.; Crocket, G.; Mitchell, M.J.; Huitfeldf, B. A double-blind comparative study of remoxipride and thioridazine in the acute phase of schizophrenia. Acta Psychiatr. Scand., 1990, 82(S358), 136-137.
[http://dx.doi.org/10.1111/j.1600-0447.1990.tb05305.x] [PMID: 1978473]
[113]
Koch, K.; Mansi, K.; Haynes, E.; Adams, C.E.; Sampson, S.; Furtado, V.A. Trifluoperazine versus placebo for schizophrenia. Cochrane Database Syst. Rev., 2014, 2014(1), CD010226.
[PMID: 24414883]
[114]
Marques, L.O.; Lima, M.S.; Soares, B.G. Trifluoperazine for schizophrenia. Cochrane Database Syst. Rev., 2004, 2004(1), CD003545.
[PMID: 14974020]
[115]
Hanlon, T.; Ota, K.Y.; Livchitz, C.; Kurland, A.A. Chlorpromazine, triflupromazine, and prochlorperazine in chronic psychosis. Arch. Gen. Psychiatry, 1959, 1(2), 223.
[http://dx.doi.org/10.1001/archpsyc.1959.03590020119011]
[116]
Reinhardt, R.F.; Schiff, S.B.; Sinnett, R. The use of triflupromazine with iproniazid for the treatment of chronic schizophrenic patients. Am. J. Psychiatry, 1959, 116(1), 68-69.
[http://dx.doi.org/10.1176/ajp.116.1.68] [PMID: 13661455]
[117]
Habib, A.S.; Reuveni, J.; Taguchi, A.; White, W.D.; Gan, T.J. A comparison of ondansetron with promethazine for treating postoperative nausea and vomiting in patients who received prophylaxis with ondansetron: A retrospective database analysis. Anesth. Analg., 2007, 104(3), 548-551.
[http://dx.doi.org/10.1213/01.ane.0000252433.73485.be] [PMID: 17312206]
[118]
Deitrick, C.L.; Mick, D.J.; Lauffer, V.; Prostka, E.; Nowak, D.; Ingersoll, G. A comparison of two differing doses of promethazine for the treatment of postoperative nausea and vomiting. J. Perianesth. Nurs., 2015, 30(1), 5-13.
[http://dx.doi.org/10.1016/j.jopan.2014.01.009] [PMID: 25616881]
[119]
Cantisani, C.; Ricci, S.; Grieco, T.; Paolino, G.; Faina, V.; Silvestri, E.; Calvieri, S. Topical promethazine side effects: Our experience and review of the literature. BioMed Res. Int., 2013, 2013(151509), 1-9.
[http://dx.doi.org/10.1155/2013/151509] [PMID: 24350243]
[120]
Elakkad, Y.E.; Younis, M.K.; Allam, R.M.; Mohsen, A.F.; Khalil, I.A. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int. J. Pharm., 2021, 601(120483), 120483.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120483] [PMID: 33737098]
[121]
Yilmaz, E. The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid–tenoxicam injections in the treatment of patients with knee osteoarthritis. Clin. Rheumatol., 2019, 38(11), 3243-3252.
[http://dx.doi.org/10.1007/s10067-019-04641-y] [PMID: 31243588]
[122]
Goindi, S.; Narula, M.; Kalra, A. Microemulsion-based topical hydrogels of tenoxicam for treatment of arthritis. AAPS PharmSciTech, 2016, 17(3), 597-606.
[http://dx.doi.org/10.1208/s12249-015-0383-0] [PMID: 26285672]
[123]
Gonzalez, J.P.; Todd, P.A. Tenoxicam. Drugs, 1987, 34(3), 289-310.
[http://dx.doi.org/10.2165/00003495-198734030-00001] [PMID: 3315620]
[124]
Narayana, S.; Mohammed, Y.; Arun, H.S. A comparative study of efficacy and safety of piroxicam and naproxen in the management of pain in osteoarthritis of the knee. J. Nat. Sci. Biol. Med., 2018, 9(2), 180-184.
[http://dx.doi.org/10.4103/jnsbm.JNSBM_154_17]
[125]
Bachhav, A.A.; Ahire, S.A.; Jadhav, A.G. Preformulation study of piroxicam. Int. J. Pharm. Sci. Res., 2019, 10(2), 811-818.
[126]
Dahl, S.L.; Ward, J.R. Pharmacology, clinical efficacy, and adverse effects of piroxicam, a new nonsteroidal anti-inflammatory agent. Pharmacotherapy, 1982, 2(2), 80-90.
[http://dx.doi.org/10.1002/j.1875-9114.1982.tb03178.x] [PMID: 6765393]
[127]
Cole, G.A.; Paul-Murphy, J.; Krugner-Higby, L.; Klauer, J.M.; Medlin, S.E.; Keuler, N.S.; Sladky, K.K. Analgesic effects of intramuscular administration of meloxicam in Hispaniolan parrots (Amazona ventralis) with experimentally induced arthritis. Am. J. Vet. Res., 2009, 70(12), 1471-1476.
[http://dx.doi.org/10.2460/ajvr.70.12.1471] [PMID: 19951118]
[128]
Bekker, A.; Kloepping, C.; Collingwood, S. Meloxicam in the management of post-operative pain: Narrative review. J. Anaesthesiol. Clin. Pharmacol., 2018, 34(4), 450-457.
[http://dx.doi.org/10.4103/joacp.JOACP_133_18] [PMID: 30774225]
[129]
Pathak, A.K. Meta-analytical research and therapeutic efficacy of meloxicam in arthritis. Int J Res Clin Med Pharm Pract., 2018, 1(1), 13-20.
[130]
Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci., 2017, 104, 114-123.
[http://dx.doi.org/10.1016/j.ejps.2017.04.001] [PMID: 28385631]
[131]
Ahmed, M.; Khanna, D.; Furst, D.E. Meloxicam in rheumatoid arthritis. Expert Opin. Drug Metab. Toxicol., 2005, 1(4), 739-751.
[http://dx.doi.org/10.1517/17425255.1.4.739] [PMID: 16863437]
[132]
Noble, S.; Balfour, J.A. Meloxicam. Drugs, 1996, 51(3), 424-430.
[http://dx.doi.org/10.2165/00003495-199651030-00007] [PMID: 8882380]
[133]
Wiseman, E.H.; Chiaini, J. Anti-inflammatory and pharmacokinetic properties of sudoxicam N-(2-thiazolyl)-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide. Biochem. Pharmacol., 1972, 21(17), 2323-2334.
[http://dx.doi.org/10.1016/0006-2952(72)90383-8] [PMID: 4630489]
[134]
Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: insights into the hepatotoxicity of sudoxicam. Chem. Res. Toxicol., 2008, 21(9), 1890-1899.
[http://dx.doi.org/10.1021/tx800185b] [PMID: 18707140]
[135]
Barnette, D.A.; Schleiff, M.A.; Datta, A.; Flynn, N.; Swamidass, S.J.; Miller, G.P. Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicol. Lett., 2021, 338, 10-20.
[http://dx.doi.org/10.1016/j.toxlet.2020.11.015] [PMID: 33253783]
[136]
Carty, T.J.; Marfat, A.; Moore, P.F.; Falkner, F.C.; Twomey, T.M.; Weissman, A. Ampiroxicam, an anti-inflammatory agent which is a prodrug of piroxicam. Agents Actions, 1993, 39(3-4), 157-165.
[http://dx.doi.org/10.1007/BF01998969] [PMID: 8304243]
[137]
Chishiki, M.; Kawada, A.; Fujioka, A.; Hiruma, M.; Ishibashi, A.; Banba, H. Photosensitivity due to Ampiroxicam. Dermatology, 1997, 195(4), 409-410.
[http://dx.doi.org/10.1159/000246002] [PMID: 9529571]
[138]
Hussain, Z.K. Histological study on the effect of ampiroxicam drug on liver of females mice. Iraqi J Sci., 2015, 56(1), 105-111.
[139]
Redasani, V.K.; Shinde, A.B.; Surana, S.J. Antiinflammatory and gastroprotective evaluation of prodrugs of piroxicam. Ulcers., 2014, 2014(8), 1-4.
[http://dx.doi.org/10.1155/2014/729754]
[140]
Olkkola, K.T.; Brunetto, A.V.; Mattila, M.J. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet., 1994, 26(2), 107-120.
[http://dx.doi.org/10.2165/00003088-199426020-00004] [PMID: 8162655]
[141]
Cherdchutham, W.; Sukhong, P.; Sae-oueng, K.; Supanwinijkul, N.; Wiangnak, K.; Srimuang, J.; Apichaimongkonkun, T.; Limratchapong, S.; Petchdee, S. Effects of xylazine and adrenaline combinations: Preliminary clinical application for non-surgical protocols of nephrosplenic entrapment in horses. Vet. World, 2021, 14(12), 3188-3193.
[http://dx.doi.org/10.14202/vetworld.2021.3188-3193] [PMID: 35153411]
[142]
Karasu, A.; Gençcelep, M. The effect of xylazine HCl used in repeated sedations for sheep on biochemical and clinical values. Kafkas Univ. Vet. Fak. Derg., 2015, 21(6), 831-836.
[143]
Veilleux-Lemieux, D.; Castel, A.; Carrier, D.; Beaudry, F.; Vachon, P. Pharmacokinetics of ketamine and xylazine in young and old Sprague-Dawley rats. J. Am. Assoc. Lab. Anim. Sci., 2013, 52(5), 567-570.
[PMID: 24041212]
[144]
Ruiz-Colón, K.; Chavez-Arias, C.; Díaz-Alcalá, J.E.; Martínez, M.A. Xylazine intoxication in humans and its importance as an emerging adulterant in abused drugs: A comprehensive review of the literature. Forensic Sci. Int., 2014, 240, 1-8.
[http://dx.doi.org/10.1016/j.forsciint.2014.03.015] [PMID: 24769343]
[145]
Xiao, Y.F.; Wang, B.; Wang, X.; Du, F.; Benzinou, M.; Wang, Y.X.J. Xylazine-induced reduction of tissue sensitivity to insulin leads to acute hyperglycemia in diabetic and normoglycemic monkeys. BMC Anesthesiol., 2013, 13(1), 33.
[http://dx.doi.org/10.1186/1471-2253-13-33] [PMID: 24138083]
[146]
Falk, N.; Berenstein, A.J.; Moscatelli, G.; Moroni, S.; González, N.; Ballering, G.; Freilij, H.; Altcheh, J. Effectiveness of Nifurtimox in the treatment of chagas disease: A long-term retrospective cohort study in children and adults. Antimicrob. Agents Chemother., 2022, 66(5), e02021-e21.
[http://dx.doi.org/10.1128/aac.02021-21] [PMID: 35416710]
[147]
Thakare, R.; Dasgupta, A.; Chopra, S. Update on nifurtimox for treatment of Chagas disease. Drugs Today., 2021, 57(4), 251-263.
[http://dx.doi.org/10.1358/dot.2021.57.4.3251712] [PMID: 33851689]
[148]
Berenstein, A.J.; Falk, N.; Moscatelli, G.; Moroni, S.; González, N.; Garcia-Bournissen, F.; Ballering, G.; Freilij, H.; Altcheh, J. Adverse events associated with nifurtimox treatment for chagas disease in children and adults. Antimicrob. Agents Chemother., 2021, 65(2), e01135-e20.
[http://dx.doi.org/10.1128/AAC.01135-20] [PMID: 33168612]
[149]
Gudiol, C.; Nicolae, S.; Royo-Cebrecos, C.; Aguilar-Guisado, M.; Montero, I.; Martín-Gandul, C.; Perayre, M.; Berbel, D.; Encuentra, M.; Arnan, M.; Cisneros-Herreros, J.M.; Carratalà, J. Administration of taurolidine-citrate lock solution for prevention of central venous catheter infection in adult neutropenic haematological patients: A randomised, double-blinded, placebo-controlled trial (TAURCAT). Trials, 2018, 19(1), 264.
[http://dx.doi.org/10.1186/s13063-018-2647-y] [PMID: 29720244]
[150]
Korzilius, J.W.; Gillis, V.E.L.M.; Wouters, Y.; Wanten, G.J.A. Taurolidine-related adverse events in patients on home parenteral nutrition frequently indicate catheter-related problems. Clin. Nutr., 2022, 41(10), 2178-2184.
[http://dx.doi.org/10.1016/j.clnu.2022.07.025] [PMID: 36067590]
[151]
Liu, Y.; Zhang, A.Q.; Cao, L.; Xia, H.T.; Ma, J.J. Taurolidine lock solutions for the prevention of catheter-related bloodstream infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One, 2013, 8(11), e79417.
[http://dx.doi.org/10.1371/journal.pone.0079417] [PMID: 24278133]
[152]
Cai, Y.; Yang, L.; Shangguan, X.; Zhao, Y.; Huang, R. Status and safety signals of cephalosporins in children: A spontaneous reporting database study. Front. Pharmacol., 2021, 12(736618), 736618.
[http://dx.doi.org/10.3389/fphar.2021.736618] [PMID: 34744720]
[153]
Chaudhry, S.B.; Veve, M.P.; Wagner, J.L. Cephalosporins: A focus on side chains and β-lactam cross-reactivity. Pharmacy., 2019, 7(3), 103.
[http://dx.doi.org/10.3390/pharmacy7030103] [PMID: 31362351]
[154]
Macy, E.; Contreras, R. Adverse reactions associated with oral and parenteral use of cephalosporins: A retrospective population-based analysis. J. Allergy Clin. Immunol., 2015, 135(3), 745-752.e5.
[http://dx.doi.org/10.1016/j.jaci.2014.07.062] [PMID: 25262461]
[155]
Egan, M.F.; Mukai, Y.; Voss, T.; Kost, J.; Stone, J.; Furtek, C.; Mahoney, E.; Cummings, J.L.; Tariot, P.N.; Aisen, P.S.; Vellas, B.; Lines, C.; Michelson, D. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 68.
[http://dx.doi.org/10.1186/s13195-019-0520-1] [PMID: 31387606]
[156]
Oblak, A.L.; Cope, Z.A.; Quinney, S.K.; Pandey, R.S.; Biesdorf, C.; Masters, A.R.; Onos, K.D.; Haynes, L.; Keezer, K.J.; Meyer, J.A.; Peters, J.S.; Persohn, S.A.; Bedwell, A.A.; Eldridge, K.; Speedy, R.; Little, G.; Williams, S.P.; Noarbe, B.; Obenaus, A.; Sasner, M.; Howell, G.R.; Carter, G.W.; Williams, H.; Lamb, B.T.; Territo, P.R.; Sukoff Rizzo, S.J. Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice. Alzheimers Dement., 2022, 8(1), e12317.
[http://dx.doi.org/10.1002/trc2.12317] [PMID: 35846156]
[157]
Roboz, G.J.; Desai, P.; Lee, S.; Ritchie, E.K.; Winer, E.S.; DeMario, M.; Brennan, B.; Nüesch, E.; Chesne, E.; Brennan, L.; Lechner, K.; Kornacker, M.; DeAngelo, D.J. A dose escalation study of RO6870810/TEN-10 in patients with acute myeloid leukemia and myelodysplastic syndrome. Leuk. Lymphoma, 2021, 62(7), 1740-1748.
[http://dx.doi.org/10.1080/10428194.2021.1881509] [PMID: 33586590]
[158]
Dickinson, M.; Briones, J.; Herrera, A.F.; González-Barca, E.; Ghosh, N.; Cordoba, R.; Rutherford, S.C.; Bournazou, E.; Labriola-Tompkins, E.; Franjkovic, I.; Chesne, E.; Brouwer-Visser, J.; Lechner, K.; Brennan, B.; Nüesch, E.; DeMario, M.; Rüttinger, D.; Kornacker, M.; Hutchings, M. Phase 1b study of the BET protein inhibitor RO6870810 with venetoclax and rituximab in patients with diffuse large B-cell lymphoma. Blood Adv., 2021, 5(22), 4762-4770.
[http://dx.doi.org/10.1182/bloodadvances.2021004619] [PMID: 34581757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy