Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives

Author(s): Rajat Goyal, Garima Mittal, Suman Khurana, Neelam Malik, Vivek Kumar, Arti Soni*, Hitesh Chopra and Mohammad Amjad Kamal*

Volume 25, Issue 9, 2024

Published on: 18 September, 2023

Page: [1132 - 1141] Pages: 10

DOI: 10.2174/1389201025666230830125410

Price: $65

conference banner
Abstract

The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the blood–brain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.

Keywords: Quercetin, neurodegenerative disorders, antioxidant, nanoparticles, nanotechnology, blood-brain barrier.

Graphical Abstract
[1]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[2]
Hodjat, M.; Rahmani, S.; Khan, F.; Niaz, K.; Navaei-Nigjeh, M.; Mohammadi, N.S.; Abdollahi, M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch. Toxicol., 2017, 91(7), 2577-2597.
[http://dx.doi.org/10.1007/s00204-017-1979-9] [PMID: 28516248]
[3]
Zheng, J.C.; Chen, S. Translational Neurodegeneration in the era of fast growing international brain research. Transl. Neurodegener., 2022, 11(1), 1-2.
[http://dx.doi.org/10.1186/s40035-021-00276-9] [PMID: 34974845]
[4]
Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response., 2007, 5(3), 174-186.
[http://dx.doi.org/10.2203/dose-response.07-004.Mattson]
[5]
Kratz, E.M.; Sołkiewicz, K.; Kubis-Kubiak, A.; Piwowar, A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int. J. Mol. Sci., 2021, 22(2), 630.
[http://dx.doi.org/10.3390/ijms22020630] [PMID: 33435263]
[6]
Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: From nutrition to nanomedicine. Rev. Neurosci., 2019, 30(5), 555-572.
[http://dx.doi.org/10.1515/revneuro-2018-0080] [PMID: 30753166]
[7]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals., 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[8]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90.
[http://dx.doi.org/10.4103/0973-7847.99898] [PMID: 23055633]
[9]
Dwivedi, N.; Shah, J.; Mishra, V.; Tambuwala, M.; Kesharwani, P. Nanoneuromedicine for management of neurodegenerative disorder. J. Drug Deliv. Sci. Technol., 2019, 49, 477-490.
[http://dx.doi.org/10.1016/j.jddst.2018.12.021]
[10]
Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res., 2009, 8(3)
[http://dx.doi.org/10.4314/tjpr.v8i3.44546]
[11]
Maravajhala, V.; Papishetty, S.; Bandlapalli, S. Nanotechnology in development of drug delivery system. Int. J. Pharm. Sci. Res., 2012, 3(1), 84.
[12]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[13]
Cirillo, G.; Vittorio, O.; Hampel, S.; Iemma, F.; Parchi, P.; Cecchini, M.; Puoci, F.; Picci, N. Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity. Eur. J. Pharm. Sci., 2013, 49(3), 359-365.
[http://dx.doi.org/10.1016/j.ejps.2013.04.008] [PMID: 23602995]
[14]
Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother., 2018, 101, 860-870.
[http://dx.doi.org/10.1016/j.biopha.2018.03.007] [PMID: 29635895]
[15]
Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.; Martínez, Y.; Akber Khan, S.; Yin, Y. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res., 2020, 152, 104629.
[http://dx.doi.org/10.1016/j.phrs.2020.104629] [PMID: 31918019]
[16]
Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396.
[http://dx.doi.org/10.1016/j.jep.2012.07.005] [PMID: 22820241]
[17]
Chuenkitiyanon, S.; Pengsuparp, T.; Jianmongkol, S. Protective effect of quercetin on hydrogen peroxide-induced tight junction disruption. Int. J. Toxicol., 2010, 29(4), 418-424.
[http://dx.doi.org/10.1177/1091581810366487] [PMID: 20445016]
[18]
Chen, J.; Deng, X.; Liu, N.; Li, M.; Liu, B.; Fu, Q.; Qu, R.; Ma, S. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J. Funct. Foods, 2016, 22, 463-476.
[http://dx.doi.org/10.1016/j.jff.2016.01.036]
[19]
Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, C.H.; Jeong, H.R.; Lee, U.; Heo, H.J. Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem., 2012, 132(2), 1019-1024.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.089]
[20]
Abraham, M.H.; Acree, W.E., Jr On the solubility of quercetin. J. Mol. Liq., 2014, 197, 157-159.
[http://dx.doi.org/10.1016/j.molliq.2014.05.006]
[21]
Sharma, D.R.; Sunkaria, A.; Wani, W.Y.; Sharma, R.K.; Verma, D.; Priyanka, K.; Bal, A.; Gill, K.D. Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway. Neurotoxicology, 2015, 51, 116-137.
[http://dx.doi.org/10.1016/j.neuro.2015.10.002] [PMID: 26493151]
[22]
Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J. Biol. Sci., 2017, 24(6), 1186-1194.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.017] [PMID: 28855811]
[23]
Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol., 2016, 56, 21-38.
[http://dx.doi.org/10.1016/j.tifs.2016.07.004]
[24]
Chakraborty, S.; Stalin, S.; Das, N.; Thakur Choudhury, S.; Ghosh, S.; Swarnakar, S. The use of nano-quercetin to arrest mitochondrial damage and MMP-9 upregulation during prevention of gastric inflammation induced by ethanol in rat. Biomaterials., 2012, 33(10), 2991-3001.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.037] [PMID: 22257724]
[25]
Nathiya, S.; Durga, M.; Thiyagarajan, D. Quercetin, encapsulated quercetin and its application-a review. Int. J. Pharm. Pharm. Sci., 2014, 20-26.
[26]
Ji, W.H.; Xiao, Z.B.; Liu, G.Y.; Zhang, X. Development and application of nano-flavor-drug carriers in neurodegenerative diseases. Chin. Chem. Lett., 2017, 28(9), 1829-1834.
[http://dx.doi.org/10.1016/j.cclet.2017.06.024]
[27]
Gao, Y.; Chen, X.; Liu, H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia. J. PhotochemPhotobiol B. Biol., 2018, 187, 184-189.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.003]
[28]
Johnson, I.; Williamson, G. Phytochemical functional foods; CRC press, 2003.
[29]
Moalin, M.; Strijdonck, G.P.F.; Beckers, M.; Hagemen, G.J.; Borm, P.J.; Bast, A.; Haenen, G.R.M.M. A planar conformation and the hydroxyl groups in the B and C rings play a pivotal role in the antioxidant capacity of quercetin and quercetin derivatives. Molecules, 2011, 16(11), 9636-9650.
[http://dx.doi.org/10.3390/molecules16119636] [PMID: 22105713]
[30]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[31]
Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46.
[http://dx.doi.org/10.1016/j.cbi.2017.01.019] [PMID: 28137512]
[32]
Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng., 2010, 100(2), 208-218.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.04.001]
[33]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[34]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules, 2019, 10(1), 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[35]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[36]
Jaimand, K.; Rezaee, M.B.; Behrad, Z.; Najafy-Ashtiany, A. Comparison of extraction and measurement of quercetin from stigma, style, sepals, petals and stamen of Crocus sativus by HPLC in combination with heat and ultrasonic. J Medicinal Plants By-product., 2012, 1(2), 167-170.
[http://dx.doi.org/10.22092/JMPB.2012.108481]
[37]
Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev., 2016, 2016, 2986796.
[http://dx.doi.org/10.1155/2016/2986796] [PMID: 26904161]
[38]
Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Herbal antioxidant in clinical practice: A review. Asian Pac. J. Trop. Biomed., 2014, 4(1), 78-84.
[http://dx.doi.org/10.1016/S2221-1691(14)60213-6] [PMID: 24144136]
[39]
Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol., 2015, 4(2), 147-179.
[http://dx.doi.org/10.5455/jice.20150313021918] [PMID: 26401403]
[40]
Oliveira, T.T.; Campos, K.M.; Cerqueira-Lima, A.T. Potential therapeutic effect of allium cepa l. and quercetin in a murine model of blomiatropicalis induced asthma. DARU J. Pharm. Sci., 2015, 23, 1-18.
[http://dx.doi.org/10.1186/s40199-015-0098-5] [PMID: 25890178]
[41]
Gondi, M.; Prasada, R.U.J.S. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Technol., 2015, 52(12), 7883-7893.
[http://dx.doi.org/10.1007/s13197-015-1963-4] [PMID: 26604360]
[42]
Bovy, A.; Schijlen, E.; Hall, R.D. Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): The potential for metabolomics. Metabolomics, 2007, 3(3), 399-412.
[http://dx.doi.org/10.1007/s11306-007-0074-2] [PMID: 25653576]
[43]
Zhou, T.S.; Zhou, R.; Yu, Y.B.; Xiao, Y.; Li, D.H.; Xiao, B.; Yu, O.; Yang, Y.J. Cloning and characterization of a flavonoid 3′-hydroxylase gene from tea plant (Camellia sinensis). Int. J. Mol. Sci., 2016, 17(2), 261.
[http://dx.doi.org/10.3390/ijms17020261] [PMID: 26907264]
[44]
Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci., 2015, 16(12), 12791-12835.
[http://dx.doi.org/10.3390/ijms160612791] [PMID: 26057747]
[45]
Altaf, R.; Asmawi, M.B.; Dewa, A.; Sadikun, A.; Umar, M. Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacogn. Rev., 2013, 7(1), 73-80.
[http://dx.doi.org/10.4103/0973-7847.112853] [PMID: 23922460]
[46]
Speciale, A.; Ferlazzo, G.; Harzallah, D.; Boussahel, S.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Cristani, M. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn. Mag., 2015, 11(42), 102.
[http://dx.doi.org/10.4103/0973-1296.157707] [PMID: 26109754]
[47]
Nestler, E.J.; Hyman, S.E.; Malenka, R.C. Molecular neuropharmacology: A foundation for clinical neuroscience, 2nd ed.; McGraw-Hill Medical: New York, 2001.
[48]
Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother., 2016, 84, 892-908.
[http://dx.doi.org/10.1016/j.biopha.2016.10.011] [PMID: 27756054]
[49]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[50]
Babazadeh, A.; Vahed, F.M.; Liu, Q.; Siddiqui, S.A.; Kharazmi, M.S.; Jafari, S.M. Natural bioactive molecules as neuromedicines for the treatment/prevention of neurodegenerative diseases. ACS Omega, 2023, 8(4), 3667-3683.
[http://dx.doi.org/10.1021/acsomega.2c06098] [PMID: 36743024]
[51]
Islam, F.; Khadija, J.F.; Harun-Or-Rashid, M.; Rahaman, M.; Nafady, M.H.; Islam, M.; Akter, A.; Emran, T.B.; Wilairatana, P.; Mubarak, M.S. Bioactive compounds and their derivatives: An insight into prospective phytotherapeutic approach against alzheimer’s disease. Oxid. Med. Cell. Longev., 2022, 2022, 5100904.
[http://dx.doi.org/10.1155/2022/5100904]
[52]
Sharifi-Rad, J.; Quispe, C.; Shaheen, S.; El Haouari, M.; Azzini, E.; Butnariu, M.; Sarac, I.; Pentea, M.; Ramírez-Alarcón, K.; Martorell, M.; Kumar, M.; Docea, A.O.; Cruz-Martins, N.; Calina, D. Flavonoids as potential anti-platelet aggregation agents: From biochemistry to health promoting abilities. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8045-8058.
[http://dx.doi.org/10.1080/10408398.2021.1924612] [PMID: 33983094]
[53]
Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417.
[http://dx.doi.org/10.1039/C4FO01178C] [PMID: 25761771]
[54]
Islam, M.S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; Abdullayeva, B.; Docea, A.O.; Calina, D.; Sharifi-Rad, J. Neuropharmacological effects of quercetin: A literature-based review. Front. Pharmacol., 2021, 12, 665031.
[http://dx.doi.org/10.3389/fphar.2021.665031] [PMID: 34220504]
[55]
Nassiri-Asl, M.; Hajiali, F.; Taghiloo, M.; Abbasi, E.; Mohseni, F.; Yousefi, F. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models. Toxicol. Ind. Health., 2016, 32(5), 936-944.
[http://dx.doi.org/10.1177/0748233713518603] [PMID: 24442347]
[56]
van der Woude, H.; ter Veld, M.G.R.; Jacobs, N.; van der Saag, P.T.; Murk, A.J.; Rietjens, I.M.C.M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol. Nutr. Food Res., 2005, 49(8), 763-771.
[http://dx.doi.org/10.1002/mnfr.200500036] [PMID: 15937998]
[57]
Arredondo, F.; Echeverry, C.; Abin-Carriquiry, J.A.; Blasina, F.; Antúnez, K.; Jones, D.P.; Go, Y.M.; Liang, Y.L.; Dajas, F. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic. Biol. Med., 2010, 49(5), 738-747.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.020] [PMID: 20554019]
[58]
Costa, L.G.; de Laat, R.; Dao, K.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology., 2014, 43, 3-9.
[http://dx.doi.org/10.1016/j.neuro.2013.08.011] [PMID: 24012887]
[59]
Boesch-Saadatmandi, C.; Pospissil, R.; Graeser, A.C.; Canali, R.; Boomgaarden, I.; Doering, F.; Wolffram, S.; Egert, S.; Mueller, M.; Rimbach, G. Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes--role of quercetin metabolism. Int. J. Mol. Sci., 2009, 10(9), 4168-4177.
[http://dx.doi.org/10.3390/ijms10094168] [PMID: 19865538]
[60]
Costa, L.G.; Tait, L.; de Laat, R.; Dao, K.; Giordano, G.; Pellacani, C.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: A mechanism of neuroprotection? Neurochem. Res., 2013, 38(9), 1809-1818.
[http://dx.doi.org/10.1007/s11064-013-1085-1] [PMID: 23743621]
[61]
Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules., 2020, 25(22), 5474.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[62]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell., 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[63]
Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[64]
Akyuz, E.; Paudel, Y.N.; Polat, A.K.; Dundar, H.E.; Angelopoulou, E. Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav., 2021, 115, 107701.
[http://dx.doi.org/10.1016/j.yebeh.2020.107701] [PMID: 33412369]
[65]
de Boer, V.C.J.; Dihal, A.A.; van der Woude, H.; Arts, I.C.W.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.C.M.; Keijer, J.; Hollman, P.C.H. Tissue distribution of quercetin in rats and pigs. J. Nutr., 2005, 135(7), 1718-1725.
[http://dx.doi.org/10.1093/jn/135.7.1718] [PMID: 15987855]
[66]
Omi, N.; Shiba, H.; Nishimura, E.; Tsukamoto, S.; Maruki-Uchida, H.; Oda, M.; Morita, M. Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: A randomized, placebo-controlled, double-blind trial. J. Int. Soc. Sports Nutr., 2019, 16(1), 39.
[http://dx.doi.org/10.1186/s12970-019-0303-x] [PMID: 31500646]
[67]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[68]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[69]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 428010.
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[70]
Suematsu, N.; Hosoda, M.; Fujimori, K. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett., 2011, 504(3), 223-227.
[http://dx.doi.org/10.1016/j.neulet.2011.09.028] [PMID: 21964380]
[71]
Haleagrahara, N.; Siew, C.J.; Ponnusamy, K. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J. Toxicol. Sci., 2013, 38(1), 25-33.
[http://dx.doi.org/10.2131/jts.38.25] [PMID: 23358137]
[72]
Bischoff, S.C. Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 733-740.
[http://dx.doi.org/10.1097/MCO.0b013e32831394b8] [PMID: 18827577]
[73]
Shamsi, A.; Shahwan, M.; Khan, M.S.; Husain, F.M.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rehman, M.T.; Hassan, M.I.; Islam, A. Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 2021, 6(11), 7922-7930.
[http://dx.doi.org/10.1021/acsomega.1c00527] [PMID: 33778303]
[74]
Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1–42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[75]
Kumar, P.; Singh, S.; Jamwal, S. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res., 2017, 12(7), 1137-1144.
[http://dx.doi.org/10.4103/1673-5374.211194] [PMID: 28852397]
[76]
Mukhopadhyay, P.; Prajapati, A.K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers – a review. RSC Advances, 2015, 5(118), 97547-97562.
[http://dx.doi.org/10.1039/C5RA18896B]
[77]
Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology., 2020, 28(1), 39-62.
[http://dx.doi.org/10.1007/s10787-019-00660-y] [PMID: 31754939]
[78]
Kumar, P.; Sharma, G.; Kumar, R.; Singh, B.; Malik, R.; Katare, O.P.; Raza, K. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: Biochemical, pharmacokinetic and biodistribution evidences. Int. J. Pharm., 2016, 515(1-2), 307-314.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.024] [PMID: 27756627]
[79]
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today, 2020, 25(1), 209-222.
[http://dx.doi.org/10.1016/j.drudis.2019.11.001] [PMID: 31707120]
[80]
Singh, D. Application of novel drug delivery system in enhancing the therapeutic potential of phytoconstituents. Asian J. Pharm., 2015, 9(4)
[81]
Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules., 2020, 25(15), 3322.
[http://dx.doi.org/10.3390/molecules25153322] [PMID: 32707934]
[82]
Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576.
[http://dx.doi.org/10.2174/1871520619666190705150214] [PMID: 31284873]
[83]
Aluani, D.; Tzankova, V.; Yordanov, Y.; Kondeva-Burdina, M.; Yoncheva, K. In vitro protective effects of encapsulated quercetin in neuronal models of oxidative stress injury. Biotechnol. Biotechnol. Equip., 2017, 31(5), 1055-1063.
[http://dx.doi.org/10.1080/13102818.2017.1347523]
[84]
Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol., 2011, 63(3), 342-351.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[85]
Sun, D.; Li, N.; Zhang, W.; Zhao, Z.; Mou, Z.; Huang, D.; Liu, J.; Wang, W. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf. B. Biointerfaces, 2016, 148, 116-129.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.052] [PMID: 27591943]
[86]
Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061] [PMID: 27915007]
[87]
Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[88]
Kuo, Y.C.; Chen, I.Y.; Rajesh, R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J. Taiwan Inst. Chem. Eng., 2018, 87, 1-14.
[http://dx.doi.org/10.1016/j.jtice.2018.03.001]
[89]
Ghosh, A.; Sarkar, S.; Mandal, A.K.; Das, N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One, 2013, 8(4), e57735.
[http://dx.doi.org/10.1371/journal.pone.0057735] [PMID: 23620721]
[90]
Han, Q.; Wang, X.; Cai, S.; Liu, X.; Zhang, Y.; Yang, L.; Wang, C.; Yang, R. Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(9), 1387-1393.
[http://dx.doi.org/10.1039/C7TB03053C] [PMID: 32254423]
[91]
Phachonpai, W.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Preechagoon, D. Neuroprotective effect of quercetin encapsulated liposomes: A novel therapeutic strategy against Alzheimer’s disease. Am. J. Appl. Sci., 2010, 7(4), 480-485.
[http://dx.doi.org/10.3844/ajassp.2010.480.485]
[92]
Liu, H.; Han, Y.; Wang, T.; Zhang, H.; Xu, Q.; Yuan, J.; Li, Z. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J. Am. Chem. Soc., 2020, 142(52), 21730-21742.
[http://dx.doi.org/10.1021/jacs.0c09390] [PMID: 33315369]
[93]
Qamar, Z.; Ashhar, M.U.; Annu; Qizilibash, F.F.; Sahoo, P.K.; Ali, A.; Ali, J.; Baboota, S. Lipid nanocarrier of selegiline augmented anti-Parkinson’s effect via P-gp modulation using quercetin. Int. J. Pharm., 2021, 609, 121131.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121131] [PMID: 34563617]
[94]
Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305.
[http://dx.doi.org/10.1021/acsabm.9b00518] [PMID: 35021530]
[95]
Lingineni, K.; Belekar, V.; Tangadpalliwar, S.R.; Garg, P. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood–brain barrier (BBB) permeability. Mol. Divers., 2017, 21(2), 355-365.
[http://dx.doi.org/10.1007/s11030-016-9715-6] [PMID: 28050687]
[96]
Goyal, D.; Shuaib, S.; Mann, S.; Goyal, B. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: Potential therapeutics of Alzheimer’s disease. ACS Comb. Sci., 2017, 19(2), 55-80.
[http://dx.doi.org/10.1021/acscombsci.6b00116] [PMID: 28045249]
[97]
Chakraborty, S.; Dhakshinamurthy, G.S.; Misra, S.K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. A, 2017, 105(10), 2906-2928.
[http://dx.doi.org/10.1002/jbm.a.36141] [PMID: 28643475]
[98]
Dong, X. Current strategies for brain drug delivery. Theranostics., 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[99]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108(2-3), 193-214.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.024] [PMID: 16246446]
[100]
Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine., 2011, 7(6), 744-752.
[http://dx.doi.org/10.1016/j.nano.2011.02.008] [PMID: 21419873]
[101]
Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials., 2019, 224, 119491.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119491] [PMID: 31546096]
[102]
Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale., 2018, 10(36), 16962-16983.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[103]
Win-Shwe, T.T.; Fujimaki, H. Nanoparticles and neurotoxicity. Int. J. Mol. Sci., 2011, 12(9), 6267-6280.
[http://dx.doi.org/10.3390/ijms12096267] [PMID: 22016657]
[104]
Zheng, W.; Wei, M.; Li, S.; Le, W. Nanomaterial-modulated autophagy: Underlying mechanisms and functional consequences. Nanomedicine, 2016, 11(11), 1417-1430.
[http://dx.doi.org/10.2217/nnm-2016-0040] [PMID: 27193191]
[105]
Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ 1–42 mouse model of Alzheimer’s disease. Mol. Neurobiol., 2017, 54(8), 6490-6506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[106]
Ratheesh, G.; Tian, L.; Venugopal, J.R.; Ezhilarasu, H.; Sadiq, A.; Fan, T-P.; Ramakrishna, S. Role of medicinal plants in neurodegenerative diseases. Biomanufacturing Rev., 2017, 2(1), 2.
[http://dx.doi.org/10.1007/s40898-017-0004-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy