Research Article

基于结构的蛋白质-肽亲和数据集及其非冗余基准:在计算肽学中的潜在应用

卷 31, 期 26, 2024

发表于: 06 November, 2023

页: [4127 - 4137] 页: 11

弟呕挨: 10.2174/0929867331666230908102925

价格: $65

摘要

背景:多肽在多种细胞功能中起着至关重要的作用,并通过与多种蛋白质的相互作用参与许多生物过程,在过去的几十年里,它也被开发为一类有前途的治疗药物,用于靶向可药物蛋白质。了解蛋白质-肽相互作用(PpIs)的结构和亲和力之间的内在联系对于计算肽学领域具有相当大的价值,例如指导蛋白质-肽对接计算,开发蛋白质-肽亲和力评分函数,以及为特定蛋白质受体设计肽配体。 目的:我们尝试创建一个数据源,将PpI结构与亲和力关联起来。 方法:通过全面调查整个蛋白质数据库(PDB)数据库以及本体丰富的文献信息,我们手动策划了一个基于结构的蛋白质-肽亲和数据集PpIDS,该数据集收集了350多个PpI复合物样品,这些样品具有实验测量的结构和亲和数据。将数据集进一步简化为一个由102个剔除样本组成的非冗余基准,即PpI[S/ A]BM,该基准只选择结构可靠、功能多样、进化非同源的样本。 结果:收集到的结构用x射线晶体学或溶液核磁共振在高分辨率水平上进行了解析,而沉积的亲和力通过解离常数(即Kd值)来表征,Kd值是蛋白质和肽之间分子间相互作用强度的直接生物物理测量,范围从亚纳摩尔到毫摩尔。set/benchmark中的PpI样品根据其肽配体的二级结构,任意分为α-螺旋、部分α-螺旋、结合形成的β-片、自折叠形成的β-链、混合等不规则类型,共分为6类。此外,我们还根据它们的生物学功能和结合行为对这些PpI进行了分类。 结论:

关键词: 基于结构的蛋白质-肽亲和数据集,蛋白质-肽相互作用,数据调查,基准,复杂结构,结合亲和,计算肽学。

[1]
Lucchese, G.; Stufano, A.; Trost, B.; Kusalik, A.; Kanduc, D. Peptidology: Short amino acid modules in cell biology and immunology. Amino Acids, 2007, 33(4), 703-707.
[http://dx.doi.org/10.1007/s00726-006-0458-z] [PMID: 17077961]
[2]
Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of Action. Int. J. Mol. Sci., 2022, 23(3), 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[3]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[4]
Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48.
[http://dx.doi.org/10.1038/s41392-022-00904-4] [PMID: 35165272]
[5]
Neduva, V.; Russell, R.B. Linear motifs: Evolutionary interaction switches. FEBS Lett., 2005, 579(15), 3342-3345.
[http://dx.doi.org/10.1016/j.febslet.2005.04.005] [PMID: 15943979]
[6]
London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein–protein interactions-from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959.
[http://dx.doi.org/10.1016/j.cbpa.2013.10.011] [PMID: 24183815]
[7]
Neduva, V.; Russell, R.B. Peptides mediating interaction networks: New leads at last. Curr. Opin. Biotechnol., 2006, 17(5), 465-471.
[http://dx.doi.org/10.1016/j.copbio.2006.08.002] [PMID: 16962311]
[8]
Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350.
[http://dx.doi.org/10.1016/j.copbio.2008.06.004] [PMID: 18602004]
[9]
Lin, J.; Wang, S.; Wen, L.; Ye, H.; Shang, S.; Li, J.; Shu, J.; Zhou, P. Targeting peptide-mediated interactions in omics. Proteomics, 2023, 23(6), 2200175.
[http://dx.doi.org/10.1002/pmic.202200175] [PMID: 36461811]
[10]
London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149.
[http://dx.doi.org/10.1002/prot.22785] [PMID: 20607702]
[11]
Yang, C.; Zhang, S.; He, P.; Wang, C.; Huang, J.; Zhou, P. Self-binding peptides: Folding or binding? J. Chem. Inf. Model., 2015, 55(2), 329-342.
[http://dx.doi.org/10.1021/ci500522v] [PMID: 25643174]
[12]
Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996.
[http://dx.doi.org/10.2174/0929867311320150005] [PMID: 23317161]
[13]
London, N.; Raveh, B.; Schueler-Furman, O. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr. Opin. Struct. Biol., 2013, 23(6), 894-902.
[http://dx.doi.org/10.1016/j.sbi.2013.07.006] [PMID: 24138780]
[14]
Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537.
[http://dx.doi.org/10.1016/j.drudis.2018.05.006] [PMID: 29733895]
[15]
Romero-Molina, S.; Ruiz-Blanco, Y.B.; Mieres-Perez, J.; Harms, M.; Münch, J.; Ehrmann, M.; Sanchez-Garcia, E. PPI-Affinity: A web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J. Proteome Res., 2022, 21(8), 1829-1841.
[http://dx.doi.org/10.1021/acs.jproteome.2c00020] [PMID: 35654412]
[16]
Zhou, P.; Wen, L.; Lin, J.; Mei, L.; Liu, Q.; Shang, S.; Li, J.; Shu, J. Integrated unsupervised–supervised modeling and prediction of protein–peptide affinities at structural level. Brief. Bioinform., 2022, 23(3), bbac097.
[http://dx.doi.org/10.1093/bib/bbac097] [PMID: 35352094]
[17]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[18]
Vanhee, P.; Reumers, J.; Stricher, F.; Baeten, L.; Serrano, L.; Schymkowitz, J.; Rousseau, F. PepX: A structural database of non-redundant protein–peptide complexes. Nucleic Acids Res., 2010, 38(S1), D545-D551.
[http://dx.doi.org/10.1093/nar/gkp893] [PMID: 19880386]
[19]
London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199.
[http://dx.doi.org/10.1016/j.str.2009.11.012] [PMID: 20159464]
[20]
Frappier, V.; Duran, M.; Keating, A.E.; Pixel, D.B. PixelDB: Protein-peptide complexes annotated with structural conservation of the peptide binding mode. Protein Sci., 2018, 27(1), 276-285.
[http://dx.doi.org/10.1002/pro.3320] [PMID: 29024246]
[21]
Wen, Z; He, J; Tao, H; Huang, SY PepBDB: A comprehensive structural database of biological peptide-protein interactions. Bioinformatics., 2019, 35(1), 175-177.
[22]
Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem., 2005, 48(12), 4111-4119.
[http://dx.doi.org/10.1021/jm048957q] [PMID: 15943484]
[23]
Benson, M.L.; Smith, R.D.; Khazanov, N.A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H.A. Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res., 2008, 36(Database issue), D674-D678.
[PMID: 18055497]
[24]
Han, K.; Wu, G.; Lv, F. Development of QSAR-improved statistical potential for the structure-based analysis of protein–peptide binding affinities. Mol. Inform., 2013, 32(9-10), 783-792.
[http://dx.doi.org/10.1002/minf.201300064] [PMID: 27480231]
[25]
Zhou, Y.; Ni, Z.; Chen, K.; Liu, H.; Chen, L.; Lian, C.; Yan, L. Modeling protein-peptide recognition based on classical quantitative structure-affinity relationship approach: Implication for proteome-wide inference of peptide-mediated interactions. Protein J., 2013, 32(7), 568-578.
[http://dx.doi.org/10.1007/s10930-013-9519-9] [PMID: 24150505]
[26]
Block, P.; Sotriffer, C.A.; Dramburg, I.; Klebe, G. AffinDB: A freely accessible database of affinities for protein-ligand complexes from the PDB. Nucleic Acids Res., 2006, 34(90001), D522-D526.
[http://dx.doi.org/10.1093/nar/gkj039] [PMID: 16381925]
[27]
Kastritis, P.L.; Moal, I.H.; Hwang, H.; Weng, Z.; Bates, P.A.; Bonvin, A.M.J.J.; Janin, J. A structure-based benchmark for protein-protein binding affinity. Protein Sci., 2011, 20(3), 482-491.
[http://dx.doi.org/10.1002/pro.580] [PMID: 21213247]
[28]
Zhou, P.; Miao, Q.; Yan, F.; Li, Z.; Jiang, Q.; Wen, L.; Meng, Y. Is protein context responsible for peptide-mediated interactions? Mol. Omics, 2019, 15(4), 280-295.
[http://dx.doi.org/10.1039/C9MO00041K] [PMID: 31112188]
[29]
Kastritis, P.L.; Bonvin, A.M.J.J. Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J. Proteome Res., 2010, 9(5), 2216-2225.
[http://dx.doi.org/10.1021/pr9009854] [PMID: 20329755]
[30]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7(1), 539.
[http://dx.doi.org/10.1038/msb.2011.75] [PMID: 21988835]
[31]
Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptide–protein computational docking. J. Comput. Chem., 2020, 41(4), 362-369.
[http://dx.doi.org/10.1002/jcc.26114] [PMID: 31793016]
[32]
Jenssen, TK; Laegreid, A; Komorowski, J; Hovig, E A literature network of human genes for high-throughput analysis of gene expression. Nat Genet, 2001, 28, 21-28.
[33]
Blaszczyk, M.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein–peptide docking using CABS-dock and contact information. Brief. Bioinform., 2019, 20(6), 2299-2305.
[http://dx.doi.org/10.1093/bib/bby080] [PMID: 30247502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy