Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Design, Synthesis, and Pharmacological Evaluation of Novel Tacrine Derivatives as Multi-target ANTI-Alzheimer’s Agents In Rat Models

Author(s): Remya R.S.*, Ramalakshmi N., Muralidharan P. and Nalini C.N.

Volume 23, Issue 3, 2023

Published on: 21 September, 2023

Page: [175 - 193] Pages: 19

DOI: 10.2174/1871524923666230908094645

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Alzheimer’s disease is a progressive neurodegenerative disorder for which no curative drugs are available and treatment available is just palliative.

Objectives: Current research focused on design of Tacrine-Flavone hybrids as multitargeted cholinesterase and monoamine oxidase B inhibitors.

Methods: A total of 10 Tacrine- Flavone hybrids were designed, synthesized and characterized. The in vitro neurotoxicity and hepatotoxicity of the synthesized compounds determined using SHSY5Y cell line and HEPG2 cell line. One most active compound (AF1) with least toxicity in in vitro studies was chosen for in vivo studies. Acute and subacute toxicity of the novel compound AF1 conducted on Wistar rats according to OECD guideline 423 and 407. The LD50 value of the novel compound calculated according to Finney’s method using Probit analysis. Anti-Alzheimer’s activity studies conducted on male Wistar rats. Behavioral studies conducted and AChE and MAO-B activity determined in rat brain.

Results and Discussion: All the compounds exhibited good inhibitory effect on MAO B and AChE. The neurotoxicity studies of the active compound AF1 did not show toxicity up to 100μg. The hepatotoxicity study of the most active compound AF1, showed the compound to be safe up to 200μg. The LD 50 value of the novel compound after a single oral administration was found to be 64 mg/kg bodyweight in rats. Subacute toxicity studies did not show any remarkable toxicity in the vital organs up to 40 mg/kg. Activity studies showed comparable results with standard at 20 mg/kg.

Conclusion: The results showed that the novel Tacrine-Flavone hybrids are multitarget-directed ligands, which are safe and active compared to tacrine and can be a promising lead molecule for further study.

Keywords: Acetyl cholinesterase, alzheimer’s disease, flavone, hepatotoxicity, monoamine oxidase, neurotoxicity, tacrine.

Graphical Abstract
[1]
Ogura H, Kosasa T, Kuriya Y, Yamanishi Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol 2000; 22(8): 609-13.
[http://dx.doi.org/10.1358/mf.2000.22.8.701373]
[2]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics.(Review) Mol Med Rep 2019; 20(2): 1479-87.
[http://dx.doi.org/10.3892/mmr.2019.10374] [PMID: 31257471]
[3]
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[4]
Domenico FD, Cenini G, Sultana R, et al. Glutathionylation of the pro-apoptotic protein p53 in Alzheimer’s disease brain: implications for AD pathogenesis. Neurochem Res 2009; 34(4): 727-33.
[http://dx.doi.org/10.1007/s11064-009-9924-9] [PMID: 19199029]
[5]
Fernández-Bachiller MI, Pérez C, Campillo NE, et al. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem 2009; 4(5): 828-41.
[http://dx.doi.org/10.1002/cmdc.200800414] [PMID: 19308922]
[6]
Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989; 245(4916): 417-20.
[http://dx.doi.org/10.1126/science.2474201] [PMID: 2474201]
[7]
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82(12): 4245-9.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[8]
Yáñez M, Viña D. Dual inhibitors of monoamine oxidase and cholinesterase for the treatment of Alzheimer disease. Curr Top Med Chem 2013; 13(14): 1692-706.
[http://dx.doi.org/10.2174/15680266113139990120] [PMID: 23889051]
[9]
Swerdlow RH. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2007; 2(3): 347-59.
[PMID: 18044185]
[10]
Ramalakshmi N. R S R, C N N. Multitarget directed ligand approaches for Alzheimer’s disease: A comprehensive review. Mini Rev Med Chem 2021; 21(16): 2361-88.
[http://dx.doi.org/10.2174/1389557521666210405161205] [PMID: 33820504]
[11]
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: Multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44: 118-24.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.001] [PMID: 23410524]
[12]
Bartolini M, Bertucci C, Cavrini V, Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003; 65(3): 407-16.
[http://dx.doi.org/10.1016/S0006-2952(02)01514-9] [PMID: 12527333]
[13]
King AM, Osman W, Edginton AN, Rao PPN. Cytochrome P450 binding studies of novel tacrinederivatives: Predicting the risk of hepatotoxicity Bioorganic & Medicinal. Chem Lett 2017; 27: 2443-9.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.006]
[14]
Wang Y, Sun Y, Guo Y, Wang Z, Huang L, Li X. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. J Enzyme Inhib Med Chem 2015; 31(3): 1-9.
[http://dx.doi.org/10.3109/14756366.2015.1024675] [PMID: 25798687]
[15]
Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 1994; 269(18): 13623-8.
[http://dx.doi.org/10.1016/S0021-9258(17)36875-8] [PMID: 8175797]
[16]
Tamagno E, Bardini P, Obbili A, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis 2002; 10(3): 279-88.
[http://dx.doi.org/10.1006/nbdi.2002.0515] [PMID: 12270690]
[17]
Muñoz-Torrero D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 2008; 15(24): 2433-55.
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[18]
Delfini M, Di Cocco ME, Piccioni F, et al. Tacrine derivatives–acetylcholinesterase interaction: 1H NMR relaxation study. Bioorg Chem 2007; 35(3): 243-57.
[http://dx.doi.org/10.1016/j.bioorg.2007.01.001] [PMID: 17303215]
[19]
Sadowski M, Wisniewski T. Disease modifying approaches for Alzheimer’s pathology. Curr Pharm Des 2007; 13(19): 1943-54.
[http://dx.doi.org/10.2174/138161207781039788] [PMID: 17627527]
[20]
Cai Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease.(Review) Mol Med Rep 2014; 9(5): 1533-41.
[http://dx.doi.org/10.3892/mmr.2014.2040] [PMID: 24626484]
[21]
Ramsay R, Tipton K. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 2017; 22(7): 1192.
[http://dx.doi.org/10.3390/molecules22071192] [PMID: 28714881]
[22]
Szymański P, Markowicz M, Mikiciuk-Olasik E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg Chem 2011; 39(4): 138-42.
[http://dx.doi.org/10.1016/j.bioorg.2011.05.001] [PMID: 21621811]
[23]
Camps P, Formosa X, Galdeano C, et al. Tacrinebaseddual binding site acetylcholinesterase inhibitors as potentialdisease-modifying anti-Alzheimer drug candidates. Chem Biol Interact 2010; 187(1-3): 411-5.
[http://dx.doi.org/10.1016/j.cbi.2010.02.013] [PMID: 20167211]
[24]
Romero A, Cacabelos R, Oset-Gasque MJ, Samadi A, Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23(7): 1916-22.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.017] [PMID: 23481643]
[25]
Minarini A, Milelli A, Simoni E, et al. Multifunctional tacrine derivatives in Alzheimer’s disease. Curr Top Med Chem 2013; 13(15): 1771-86.
[http://dx.doi.org/10.2174/15680266113139990136] [PMID: 23931443]
[26]
Musiał A, Bajda M, Malawska B. Recent developments in cholinesterases inhibitors for Alzheimer’s disease treatment. Curr Med Chem 2007; 14(25): 2654-79.
[http://dx.doi.org/10.2174/092986707782023217] [PMID: 17979717]
[27]
Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 2013; 23(24): 6737-42.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[28]
Bolognesi ML, Cavalli A, Valgimigli L, et al. Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem 2007; 50(26): 6446-9.
[http://dx.doi.org/10.1021/jm701225u] [PMID: 18047264]
[29]
Tumiatti V, Milelli A, Minarini A, et al. Structure-activity relationships of acetylcholinesterase noncovalent inhibitors based on a polyamine backbone. 4. Further investigation on the inner spacer. J Med Chem 2008; 51(22): 7308-12.
[http://dx.doi.org/10.1021/jm8009684] [PMID: 18954037]
[30]
Spilovska K, Zemek F, Korabecny J, et al. Adamantane – A lead structure for drugs in clinical practice. Curr Med Chem 2016; 23(29): 3245-66.
[http://dx.doi.org/10.2174/0929867323666160525114026] [PMID: 27222266]
[31]
Zemek F, Drtinova L, Nepovimova E, et al. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf 2014; 13(6): 759-74.
[http://dx.doi.org/10.1517/14740338.2014.914168] [PMID: 24845946]
[32]
Remya RS, Ramalakshmi N, Nalini CN, Niraimathi V, Amuthalakshmi S. Design synthesis and in vitro evaluation of tacrine-flavone hybrids as multifunctional cholinesterase inhibitors for Alzheimer’s disease Curr Comput Aided. Drug Des 2022; 18(4): 271-92.
[http://dx.doi.org/10.2174/1573409918666220804153754]
[33]
Patel S, Shah UH. Synthesis of flavones from 2-hydroxy acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian J Pharm Clin Res 2017; 10(2): 403-6.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15928]
[34]
Menezes M J, Manjrekar S, Pai V. A facile microwave assisted synthesis of flavones. Indian J Chem 2009; 48: 1311-4.
[35]
Gul HI, Demirtas A, Ucar G, Taslimi P, Gulcini II. Synthesis of mannich bases by two different methods and evaluation of their acetylcholine esterase and carbonic anhydrase inhibitory activities. Lett Drug Des Discov 2017; 14(5): 573-80.
[http://dx.doi.org/10.2174/1570180814666161128120612]
[36]
Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem 2015; 89: 743-816.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.076] [PMID: 25462280]
[37]
Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[38]
Camps P, Formosa X, Galdeano C, et al. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem 2008; 51(12): 3588-98.
[http://dx.doi.org/10.1021/jm8001313]
[39]
Keri RS, Quintanova C, Marques SM, Esteves AR, Cardoso SM, Santos MA. Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg Med Chem 2013; 21(15): 4559-69.
[http://dx.doi.org/10.1016/j.bmc.2013.05.028] [PMID: 23768661]
[40]
Borioni JL, Cavallaro V, Murray AP, Peñéñory AB, Puiatti M, García ME. Design, synthesis and evaluation of cholinesterase hybrid inhibitors using a natural steroidal alkaloid as precursor. Bioorg Chem 2021; 111: 104893.
[http://dx.doi.org/10.1016/j.bioorg.2021.104893] [PMID: 33882364]
[41]
Li F, Wang ZM, Wu JJ, et al. Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. J Enzyme Inhib Med Chem 2016; 31(sup3): 41-53.
[http://dx.doi.org/10.1080/14756366.2016.1201814] [PMID: 27384289]
[42]
Xie SS, Wang X, Jiang N, et al. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur J Med Chem 2015; 95(95): 153-65.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[43]
Xie SS, Lan JS, Wang X, et al. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2016; 24(7): 1528-39.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023]
[44]
Piemontese L, Tomás D, Hiremathad A, et al. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J Enzyme Inhib Med Chem 2018; 33(1): 1212-24.
[http://dx.doi.org/10.1080/14756366.2018.1491564] [PMID: 30160188]
[45]
Dias Viegas FP, de Freitas Silva M, Divino da Rocha M, et al. Design, synthesis and pharmacological evaluation of N -benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem 2018; 147(147): 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[46]
Lan JS, Xie SS, Li SY, Pan LF, Wang XB, Kong LY. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2014; 22(21): 6089-104.
[http://dx.doi.org/10.1016/j.bmc.2014.08.035] [PMID: 25282654]
[47]
Jeřábek J, Uliassi E, Guidotti L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur J Med Chem 2017; 127: 250-62.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[48]
Gazova Z, Soukup O, Sepsova V, et al. Multi-target-directed therapeutic potential of 7-methoxytacrine-adamantylamine heterodimers in the Alzheimer’s disease treatment. Biochim Biophys Acta Mol Basis Dis 2017; 1863(2): 607-19.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.020] [PMID: 27865910]
[49]
Chioua M, Buzzi E, Moraleda I, et al. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur J Med Chem 2018; 155: 839-46.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.044] [PMID: 29958119]
[50]
Venkataraman ND, Atlee WC, Muralidharan P. PurushothPrabhu T, Priya MS, Muthukumaran S. Assessment of acute dermal toxicity of ethanolicextractsfrom aerial parts of Ipomoea pes-caprae (L.) R. br on wistar albino rats. Res J Pharm Biol Chem Sci 2013; 4: 769-76.
[51]
Adeyemo-Salami OA, Makinde JM. Acute and sub-acute toxicity studies of the methanol extract of the leaves of Paullinia pinnata (Linn.) in Wistar albino mice and rats. Afr J Med Med Sci 2013; 42(1): 81-90.
[PMID: 23909098]
[52]
OECD Guidelines for the Testing of Chemicals. Section 4: Health effects test No. 423: Acute oral toxicity - acute toxic class method.
[53]
Kpemissi M, Metowogo K, Melila M, et al. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol Rep 2020; 7: 162-8.
[http://dx.doi.org/10.1016/j.toxrep.2020.01.007] [PMID: 31993335]
[54]
OECD Guidelines for the Testing of Chemicals. Organization for Economic Cooperation and Development; Paris, France: Test No. 407: repeated dose 28-day oral toxicity study in rodents 2008.
[55]
Rajashri K, Mudhol S, Serva Peddha M, Borse BB. Neuroprotective effect of spice oleoresins on memory and cognitive impairment associated with scopolamine-induced Alzheimer’s disease in rats. ACS Omega 2020; 5(48): 30898-905.
[http://dx.doi.org/10.1021/acsomega.0c03689] [PMID: 33324798]
[56]
El-Marasy SA, Abd-Elsalam RM, Ahmed-Farid OA. Ameliorative effect of silymarin on scopolamine-induced dementia in rats. Open Access Maced J Med Sci 2018; 6(7): 1215-24.
[http://dx.doi.org/10.3889/oamjms.2018.257] [PMID: 30087724]
[57]
Visweswari G, Christopher R, Rajendra W. Dose-dependent effect of withaniasomnifera on the cholinergic system in scopolamine-induced alzheimer’s disease in rats. Int J Pharma Sci 2014; 5(10): 4240-8.
[58]
Prieur E, Jadavji N. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Protoc 2019; 9(3): e3162.
[http://dx.doi.org/10.21769/BioProtoc.3162] [PMID: 33654968]
[59]
Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 2002; 26(1): 91-104.
[http://dx.doi.org/10.1016/S0149-7634(01)00041-0] [PMID: 11835987]
[60]
Miedel CJ, Patton JM, Miedel AN, Miedel ES, Levenson JM. Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology. J Vis Exp 2017; 55523(123)
[http://dx.doi.org/10.3791/55523] [PMID: 28605382]
[61]
Kraeuter AK, Guest PC, Sarnyai Z. The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 2019; 1916: 105-11.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_10] [PMID: 30535688]
[62]
Cleal M, Fontana BD, Ranson DC, et al. The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav Res Methods 2021; 53(2): 536-57.
[http://dx.doi.org/10.3758/s13428-020-01452-x] [PMID: 32748238]
[63]
Kang S, Kim J, Chang KA. Spatial memory deficiency early in 6xTg Alzheimer’s disease mouse model. Sci Rep 2021; 11(1): 1334.
[http://dx.doi.org/10.1038/s41598-020-79344-5] [PMID: 33446720]
[64]
Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci 2010; 87(17-18): 521-36.
[http://dx.doi.org/10.1016/j.lfs.2010.09.004] [PMID: 20837032]
[65]
Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 2011; 53(53): 2920.
[http://dx.doi.org/10.3791/2920] [PMID: 21808223]
[66]
Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[67]
Nunez J. Morris water maze experiment. J Vis Exp 2008; 897(19)
[http://dx.doi.org/10.3791/897-v] [PMID: 19066539]
[68]
Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH. Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(1): 1-18.
[http://dx.doi.org/10.1007/s00210-018-1589-y] [PMID: 30470917]
[69]
Nobakht M, Hoseini SM, Mortazavi P, et al. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer’s disease. Iran Biomed J 2011; 15(1-2): 51-8.
[PMID: 21725500]
[70]
Eslamizade MJ, Madjd Z, Rasoolijazi H, et al. Impaired memory and evidence of histopathology in ca1 pyramidal neurons through injection of aβ1-42 peptides into the frontal cortices of rat. Basic Clin Neurosci 2016; 7(1): 31-41.
[PMID: 27303597]
[71]
Ahmed N, Tarannum S. Acetylcholinesterase activity in the brain of alloxan diabetic albino rats: Presence of an inhibitor of this enzyme activity in the cerebral extract. Int J Diabetes Dev Ctries 2009; 29(4): 174-7.
[http://dx.doi.org/10.4103/0973-3930.57350] [PMID: 20336201]
[72]
Strauss V, Rey Moreno MC, Vogt J, et al. Acetylcholinesterase measurement in various brain regions and muscles of juvenile, adolescent, and adult rats. Toxicol Mech Methods 2017; 27(9): 666-76.
[http://dx.doi.org/10.1080/15376516.2017.1349849] [PMID: 28671028]
[73]
Nebbioso M, Pascarella A, Cavallotti C, Pescosolido N. Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes. Int J Exp Pathol 2012; 93(6): 401-5.
[http://dx.doi.org/10.1111/j.1365-2613.2012.00832.x]
[74]
Thentu JB, Bhyrapuneni G, Padala NP, Chunduru P, Pantangi HR, Nirogi R. Evaluation of monoamine oxidase A and B type enzyme occupancy using non-radiolabelled tracers in rat brain. Neurochem Int 2021; 145: 105006.
[http://dx.doi.org/10.1016/j.neuint.2021.105006] [PMID: 33636211]
[75]
Dar A, Khan KM, Ateeq HS, et al. Inhibition of monoamine oxidase–A activity in rat brain by synthetic hydrazines: Structure-activity relationship (SAR). J Enzyme Inhib Med Chem 2005; 20(3): 269-74.
[http://dx.doi.org/10.1080/14756360400026212] [PMID: 16119198]
[76]
National Library of Medicine (US), National Center for Biotechnology Information PubChem Compound Summary for CID 1935, Tacrine 2019. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tacrine

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy