Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Scoping Review

Drug-herb Synergistic Interactions between Clopidogrel and Natural Medicine

Author(s): Shitang Ma, Qin Zhang, Jiafu Hou, Shijuan Liu and Chengtao Feng*

Volume 22, Issue 4, 2024

Published on: 17 October, 2023

Page: [421 - 431] Pages: 11

DOI: 10.2174/1871525722666230907112509

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Natural medicine (NM) has been used since ancient times for therapeutic purposes worldwide. Presently, the combination of clopidogrel and NM with a reasonable synergistic effect has gained increasing acceptance in clinical therapeutics.

Methods: Here, we have performed a comprehensive retrieval of literature published in both English and Chinese databases until August 1, 2022, studying the synergistic interactions of clopidogrel and NM through pharmacokinetic/pharmacodynamic (PK-PD) analyses. We retrieved 7, 3, and 5 studies on PK analysis and 3, 3, and 8 studies on PD analysis for the interaction of clopidogrel with single herbal medicines, bioactive compounds, and herbal prescriptions, respectively. Most studies on NM have been found to mainly focus on preclinical observations, and there have been fewer clinical PK analyses.

Results: A potential drug-herb interaction has been observed to occur when clopidogrel and NM were metabolized by an enzyme network comprising P-gp, CES1, and CYP450. In contrast, most PD studies have focused on clinical observations, and few preclinical findings have been reported. Some cases have suggested that the combination of the two types of drugs would alter the antiplatelet efficacy and adverse effects. Studies on PK, however, have shown significant or slightly varying results for the drug prototype and its metabolites.

Conclusion: In the combination therapies, the interaction between clopidogrel and NM was found to alter antiplatelet aggregation pathways and P2Y12 receptor function.

Keywords: Natural medicine, clopidogrel, pharmacokinetic, pharmacodynamic, synergistic effect, clinical therapeutics.

Graphical Abstract
[1]
Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; Abualhasan, A.; Abu-Rmeileh, N.M.E.; Abushouk, A.I.; Adebayo, O.M.; Agarwal, G.; Agasthi, P.; Ahinkorah, B.O.; Ahmad, S.; Ahmadi, S.; Ahmed Salih, Y.; Aji, B.; Akbarpour, S.; Akinyemi, R.O.; Al Hamad, H.; Alahdab, F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Almustanyir, S.; Al-Raddadi, R.M.; Al-Shahi Salman, R.; Alvis-Guzman, N.; Ancuceanu, R.; Anderlini, D.; Anderson, J.A.; Ansar, A.; Antonazzo, I.C.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Aryan, Z.; Asgari, S.; Ashraf, T.; Athar, M.; Atreya, A.; Ausloos, M.; Baig, A.A.; Baltatu, O.C.; Banach, M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Barone, M.T.U.; Basu, S.; Bazmandegan, G.; Beghi, E.; Beheshti, M.; Béjot, Y.; Bell, A.W.; Bennett, D.A.; Bensenor, I.M.; Bezabhe, W.M.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhardwaj, P.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Bonny, A.; Brauer, M.; Brenner, H.; Bryazka, D.; Butt, Z.A.; Caetano dos Santos, F.L.; Campos-Nonato, I.R.; Cantu-Brito, C.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Catapano, A.L.; Chakraborty, P.A.; Charan, J.; Choudhari, S.G.; Chowdhury, E.K.; Chu, D-T.; Chung, S-C.; Colozza, D.; Costa, V.M.; Costanzo, S.; Criqui, M.H.; Dadras, O.; Dagnew, B.; Dai, X.; Dalal, K.; Damasceno, A.A.M.; D’Amico, E.; Dandona, L.; Dandona, R.; Darega Gela, J.; Davletov, K.; De la Cruz-Góngora, V.; Desai, R.; Dhamnetiya, D.; Dharmaratne, S.D.; Dhimal, M.L.; Dhimal, M.; Diaz, D.; Dichgans, M.; Dokova, K.; Doshi, R.; Douiri, A.; Duncan, B.B.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Endres, M.; Endries, A.Y.; Erku, D.A.; Faraon, E.J.A.; Farooque, U.; Farzadfar, F.; Feroze, A.H.; Filip, I.; Fischer, F.; Flood, D.; Gad, M.M.; Gaidhane, S.; Ghanei Gheshlagh, R.; Ghashghaee, A.; Ghith, N.; Ghozali, G.; Ghozy, S.; Gialluisi, A.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gnedovskaya, E.V.; Golechha, M.; Goulart, A.C.; Guo, Y.; Gupta, R.; Gupta, V.B.; Gupta, V.K.; Gyanwali, P.; Hafezi-Nejad, N.; Hamidi, S.; Hanif, A.; Hankey, G.J.; Hargono, A.; Hashi, A.; Hassan, T.S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Herteliu, C.; Holla, R.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Hwang, B-F.; Iacoviello, L.; Iavicoli, I.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Ismail, N.E.; Iso, H.; Isola, G.; Iwagami, M.; Jacob, L.; Jain, V.; Jang, S-I.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Johnson, W.D.; Jonas, J.B.; Joseph, N.; Jozwiak, J.J.; Jürisson, M.; Kalani, R.; Kalhor, R.; Kalkonde, Y.; Kamath, A.; Kamiab, Z.; Kanchan, T.; Kandel, H.; Karch, A.; Katoto, P.D.M.C.; Kayode, G.A.; Keshavarz, P.; Khader, Y.S.; Khan, E.A.; Khan, I.A.; Khan, M.; Khan, M.A.B.; Khatib, M.N.; Khubchandani, J.; Kim, G.R.; Kim, M.S.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Krishnamurthi, R.V.; Kumar, G.A.; Kusuma, D.; La Vecchia, C.; Lacey, B.; Lak, H.M.; Lallukka, T.; Lasrado, S.; Lavados, P.M.; Leonardi, M.; Li, B.; Li, S.; Lin, H.; Lin, R-T.; Liu, X.; Lo, W.D.; Lorkowski, S.; Lucchetti, G.; Lutzky Saute, R.; Magdy Abd El Razek, H.; Magnani, F.G.; Mahajan, P.B.; Majeed, A.; Makki, A.; Malekzadeh, R.; Malik, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mazzaglia, G.; Mehndiratta, M.M.; Menezes, R.G.; Meretoja, A.; Mersha, A.G.; Miao Jonasson, J.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Mirrakhimov, E.M.; Mohammad, Y.; Mohammadian-Hafshejani, A.; Mohammed, S.; Mokdad, A.H.; Mokhayeri, Y.; Molokhia, M.; Moni, M.A.; Montasir, A.A.; Moradzadeh, R.; Morawska, L.; Morze, J.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Naghavi, M.; Narasimha Swamy, S.; Nascimento, B.R.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, T.H.; Norrving, B.; Noubiap, J.J.; Nwatah, V.E.; Oancea, B.; Odukoya, O.O.; Olagunju, A.T.; Orru, H.; Owolabi, M.O.; Padubidri, J.R.; Pana, A.; Parekh, T.; Park, E-C.; Pashazadeh Kan, F.; Pathak, M.; Peres, M.F.P.; Perianayagam, A.; Pham, T-M.; Piradov, M.A.; Podder, V.; Polinder, S.; Postma, M.J.; Pourshams, A.; Radfar, A.; Rafiei, A.; Raggi, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Rahmani, A.M.; Rajai, N.; Ranasinghe, P.; Rao, C.R.; Rao, S.J.; Rathi, P.; Rawaf, D.L.; Rawaf, S.; Reitsma, M.B.; Renjith, V.; Renzaho, A.M.N.; Rezapour, A.; Rodriguez, J.A.B.; Roever, L.; Romoli, M.; Rynkiewicz, A.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Sahebkar, A.; Saif-Ur-Rahman, K.M.; Salah, R.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sathian, B.; Sattin, D.; Schiavolin, S.; Schlaich, M.P.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Seylani, A.; Sha, F.; Shahabi, S.; Shaikh, M.A.; Shannawaz, M.; Shawon, M.S.R.; Sheikh, A.; Sheikhbahaei, S.; Shibuya, K.; Siabani, S.; Silva, D.A.S.; Singh, J.A.; Singh, J.K.; Skryabin, V.Y.; Skryabina, A.A.; Sobaih, B.H.; Stortecky, S.; Stranges, S.; Tadesse, E.G.; Tarigan, I.U.; Temsah, M-H.; Teuschl, Y.; Thrift, A.G.; Tonelli, M.; Tovani-Palone, M.R.; Tran, B.X.; Tripathi, M.; Tsegaye, G.W.; Ullah, A.; Unim, B.; Unnikrishnan, B.; Vakilian, A.; Valadan Tahbaz, S.; Vasankari, T.J.; Venketasubramanian, N.; Vervoort, D.; Vo, B.; Volovici, V.; Vosoughi, K.; Vu, G.T.; Vu, L.G.; Wafa, H.A.; Waheed, Y.; Wang, Y.; Wijeratne, T.; Winkler, A.S.; Wolfe, C.D.A.; Woodward, M.; Wu, J.H.; Wulf Hanson, S.; Xu, X.; Yadav, L.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yatsuya, H.; Yonemoto, N.; Yu, C.; Yunusa, I.; Zaman, M.S.; Zaman, S.B.; Zamanian, M.; Zand, R.; Zandifar, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Y.; Zhang, Z-J.; Zhong, C.; Zuniga, Y.M.H.; Murray, C.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol., 2021, 20(10), 795-820.
[http://dx.doi.org/10.1016/S1474-4422(21)00252-0] [PMID: 34487721]
[2]
Scheitz, J.F.; Sposato, L.A.; Schulz-Menger, J.; Nolte, C.H.; Backs, J.; Endres, M. Stroke-heart syndrome: Recent Advances and Challenges. J. Am. Heart Assoc., 2022, 11(17), e026528.
[http://dx.doi.org/10.1161/JAHA.122.026528] [PMID: 36056731]
[3]
Matsumaru, Y.; Kitazono, T.; Kadota, K.; Nakao, K.; Nakagawa, Y.; Shite, J.; Yokoi, H.; Kozuma, K.; Tanabe, K.; Akasaka, T.; Shinke, T.; Ueno, T.; Hirayama, A.; Uemura, S.; Kuroda, T.; Takita, A.; Harada, A.; Iijima, R.; Murakami, Y.; Saito, S.; Nakamura, M. Relationship between platelet aggregation and stroke risk after percutaneous coronary intervention: A PENDULUM analysis. Heart Vessels, 2022, 37(6), 942-953.
[http://dx.doi.org/10.1007/s00380-021-02003-w] [PMID: 34973085]
[4]
Khalil, P.; Kabbach, G. Direct oral anticoagulants in addition to antiplatelet therapy for secondary prevention after acute coronary syndromes: A review. Curr. Cardiol. Rep., 2019, 21(1), 5.
[http://dx.doi.org/10.1007/s11886-019-1088-x] [PMID: 30689068]
[5]
Motovska, Z.; Kala, P. Benefits and risks of clopidogrel use in patients with coronary artery disease: Evidence from randomized studies and registries. Clin. Ther., 2008, 30(Pt 2), 2191-2202.
[http://dx.doi.org/10.1016/j.clinthera.2008.12.001] [PMID: 19281914]
[6]
Tan, B.E.X.; Wong, P.Y.; Baibhav, B.; Thakkar, S.; Azhar, A.Z.; Rao, M.; Cheung, J.W. Clopidogrel vs aspirin monotherapy following dual antiplatelet therapy after percutaneous coronary intervention: A systematic review and meta-analysis. Curr. Probl. Cardiol., 2023, 48(8), 101174.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101174] [PMID: 35341798]
[7]
Guo, M.; Wang, T.; Yang, J.; Chang, H.; Ji, S.; Tang, D. Interaction of clopidogrel and fufang danshen dripping pills assay in coronary heart disease based on non-target metabolomics. J. Ethnopharmacol., 2019, 234, 189-196.
[http://dx.doi.org/10.1016/j.jep.2019.01.030] [PMID: 30703494]
[8]
Shaik, B.B.; Katari, N.K.; Jonnalagadda, S.B. Role of natural products in developing novel anticancer agents: A Perspective. Chem. Biodivers., 2022, 19(11), e202200535.
[http://dx.doi.org/10.1002/cbdv.202200535] [PMID: 36347633]
[9]
Potenza, M.A.; Montagnani, M.; Santacroce, L.; Charitos, I.A.; Bottalico, L. Ancient herbal therapy: A brief history of Panax ginseng. J. Ginseng Res., 2023, 47(3), 359-365.
[http://dx.doi.org/10.1016/j.jgr.2022.03.004] [PMID: 37252279]
[10]
Bhandari, M.; Raj, S.; Manchanda, R.; Alam, M.S. Review on natural bioactive products as radioprotective therapeutics: Present and Past Perspective. Curr. Pharm. Biotechnol., 2022, 23(14), 1721-1738.
[http://dx.doi.org/10.2174/1389201023666220110104645] [PMID: 35016594]
[11]
Chen, X.; Jin, J.; Chen, Y.; Peng, L.; Zhong, G.; Li, J.; Bi, H.; Cai, Y.; Huang, M. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm. Drug Dispos., 2015, 36(1), 64-68.
[http://dx.doi.org/10.1002/bdd.1918] [PMID: 25256597]
[12]
Barriuso, I.; Worner, F.; Vilahur, G. Novel antithrombotic agents in ischemic cardiovascular disease: Progress in the search for the optimal treatment. J. Cardiovasc. Dev. Dis., 2022, 9(11), 397.
[http://dx.doi.org/10.3390/jcdd9110397] [PMID: 36421932]
[13]
Zhang, Z.; Wang, Y.; Tan, W.; Wang, S.; Liu, J.; Liu, X.; Wang, X.; Gao, X. A review of danshen combined with clopidogrel in the treatment of coronary heart disease. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-17.
[http://dx.doi.org/10.1155/2019/2721413] [PMID: 30911318]
[14]
Yin, Q.; Zhang, X.; Liao, S.; Huang, X.; Wan, C.C.; Wang, Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. Phytomedicine, 2023, 116, 154880.
[http://dx.doi.org/10.1016/j.phymed.2023.154880] [PMID: 37267694]
[15]
Ma, S.; Dai, G.; Bi, X.; Gong, M.; Miao, C.; Chen, H.; Gao, L.; Zhao, W.; Liu, T.; Zhang, N. The herb-drug interaction of clopidogrel and xuesaitong dispersible tablet by modulation of the pharmacodynamics and liver carboxylesterase 1A metabolism. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/5651989] [PMID: 30498515]
[16]
Ma, S.; Ju, W.; Dai, G.; Zhao, W.; Cheng, X.; Fang, Z.; Tan, H.; Wang, X. Synergistic effects of clopidogrel and fufang danshen dripping pills by modulation of the metabolism target and pharmacokinetics. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/789142] [PMID: 25530790]
[17]
Ma, S.T.; Dai, G.L.; Bi, X.L.; Gong, M.R.; Xiong, Y.Y.; Ju, W.Z.; Tan, H.S. [Synergistic effects of clopidogrel and xuesaitong dispersible tablet by modulating plasma protein Binding]. Zhong Yao Cai, 2016, 39(4), 872-875.
[PMID: 30132623]
[18]
Ma, S.T.; Dai, G.L.; Cheng, X.G.; Zhao, W.Z.; Sun, B.T.; Ju, W.Z.; Tan, H.S. [Synergistic action of compound danshen dripping pill (CDDP) on clopidogrel bisulfate (CPG) counteracting platelet aggregation]. Zhong Yao Cai, 2014, 37(10), 1820-1825.
[PMID: 25895391]
[19]
Ma, S.; Zhang, N.; Hong, G.; Feng, C.T.; Hong, S.W.; Dai, G.L. Unraveling the action mechanism of buyang huanwu tang (BYHWT) for cerebral ischemia by systematic pharmacological methodology. Comb. Chem. High Throughput Screen., 2021, 24(7), 1114-1125.
[http://dx.doi.org/10.2174/1386207323666200901100529] [PMID: 32875974]
[20]
Ma, S-T.; Dal, G.L.; Cheng, X.G.; Zhao, W.Z.; Sun, B.T.; Ju, W.Z.; Tan, H.S. [Effect of clopidogrel on plasma protein binding rates of ginsenoside Rg1]. Zhongguo Zhong Xi Yi Jie He Za Zhi., 2017, 37(4), 480-484.
[21]
Sia, C.H.; Tan, S.H.; Chan, S.P.; Marchesseau, S.; Sim, H.W.; Carvalho, L.; Chen, R.; Amin, N.H.M.; Fong, A.Y.Y.; Richards, A.M.; Yip, C.; Chan, M.Y. Enhanced thrombin generation is associated with worse left ventricular scarring after ST-segment elevation myocardial infarction: A Cohort Study. Pharmaceuticals (Basel), 2022, 15(6), 718.
[http://dx.doi.org/10.3390/ph15060718] [PMID: 35745638]
[22]
Zakaria, Z.; Fong, A.; Badhan, R. Clopidogrel pharmacokinetics in malaysian population groups: The impact of inter-ethnic variability. Pharmaceuticals (Basel), 2018, 11(3), 74.
[http://dx.doi.org/10.3390/ph11030074] [PMID: 30049953]
[23]
Qian, Y.; Markowitz, J.S. Natural products as modulators of CES1 activity. Drug Metab. Dispos., 2020, 48(10), 993-1007.
[http://dx.doi.org/10.1124/dmd.120.000065] [PMID: 32591414]
[24]
Zhou, C.; Xu, M.; Yu, H.; Zheng, X.T.; Zhong, Z.F.; Zhang, L. Effects of Danshen capsules on the pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. Food Chem. Toxicol., 2018, 119, 302-308.
[http://dx.doi.org/10.1016/j.fct.2018.02.051] [PMID: 29496531]
[25]
Lee, J.H.; Shin, Y.J.; Kim, H.J.; Oh, J.H.; Jang, Y.P.; Lee, Y.J. Danshen extract does not alter pharmacokinetics of docetaxel and clopidogrel, reflecting its negligible potential in P-glycoprotein- and cytochrome P4503A-mediated herb–drug interactions. Int. J. Pharm., 2011, 410(1-2), 68-74.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.031] [PMID: 21421030]
[26]
Deng, Y.; Mo, Y.; Chen, X.; Zhang, L.; Liao, C.; Song, Y.; Xu, C. Effect of Ginkgo Biloba extract on the pharmacokinetics and metabolism of clopidogrel in rats. Phytother. Res., 2016, 30(11), 1886-1892.
[http://dx.doi.org/10.1002/ptr.5691] [PMID: 27487816]
[27]
Chen, X.; Zhao, Z.; Chen, Y.; Gou, X.; Zhou, Z.; Zhong, G.; Cai, Y.; Huang, M.; Jin, J. Mechanistic understanding of the effect of Dengzhan Shengmai capsule on the pharmacokinetics of clopidogrel in rats. J. Ethnopharmacol., 2016, 192, 362-369.
[http://dx.doi.org/10.1016/j.jep.2016.07.066] [PMID: 27459888]
[28]
Xiao, M.; Qian, C.; Luo, X.; Yang, M.; Zhang, Y.; Wu, C.; Mok, C.; Lee, P.; Zuo, Z. Impact of the Chinese herbal medicines on dual antiplatelet therapy with clopidogrel and aspirin: Pharmacokinetics and pharmacodynamics outcomes and related mechanisms in rats. J. Ethnopharmacol., 2019, 235, 100-110.
[http://dx.doi.org/10.1016/j.jep.2019.01.040] [PMID: 30710735]
[29]
Gong, E.; Chea, S.; Balupuri, A.; Kang, N.; Chin, Y.W.; Choi, Y. Enzyme kinetics and molecular docking studies on cytochrome 2B6, 2C19, 2E1, and 3A4 activities by sauchinone. Molecules, 2018, 23(3), 555.
[http://dx.doi.org/10.3390/molecules23030555] [PMID: 29498658]
[30]
Liu, A.C.; Zhao, L.X.; Lou, H.X. Curcumin alters the pharmacokinetics of warfarin and clopidogrel in Wistar rats but has no effect on anticoagulation or antiplatelet aggregation. Planta Med., 2013, 79(11), 971-977.
[http://dx.doi.org/10.1055/s-0032-1328652] [PMID: 23807811]
[31]
Li, Y.; Liu, C.; Zhang, Y.; Mi, S.; Wang, N. Pharmacokinetics of ferulic acid and potential interactions with Honghua and clopidogrel in rats. J. Ethnopharmacol., 2011, 137(1), 562-567.
[http://dx.doi.org/10.1016/j.jep.2011.06.011] [PMID: 21704146]
[32]
Alkharfy, K.; Jan, B.; Alotaibi, K.; Alotaibi, A.; Alqahtani, S.; Raish, M.; Ahmad, A. Clopidogrel-herb interactions: A pharmacokinetic and pharmacodynamic assessment in a rat model. Curr. Drug Metab., 2021, 22(12), 969-977.
[http://dx.doi.org/10.2174/1389200222666211029152151] [PMID: 34719359]
[33]
Tian, X. Effects of Rong Shuan capsule, Xue Zhi Kang capsule, Xin Yuan capsule and Songling Xue Mai Kang capsule on the pharmacokinetics of clopidogrel active metabolite in rats. J. Chin. Pharm. Sci., 2017, 26(3), 187-195.
[34]
Ji, S.; Shao, X.; Su, Z.; Ji, L.; Wang, Y.; Ma, Y.; Zhao, L.; Du, Y.; Guo, M.; Tang, D. Segmented scan modes and polarity-based LC-MS for pharmacokinetic interaction study between Fufang Danshen Dripping Pill and Clopidogrel Bisulfate Tablet. J. Pharm. Biomed. Anal., 2019, 174, 367-375.
[http://dx.doi.org/10.1016/j.jpba.2019.05.055] [PMID: 31202879]
[35]
Meng, K.; Zhu, H.; Song, X. Effects of panax notoginseng combinating with dual antiplatelet drugs on the major adverse cardiovascular events in pafients undergoing percutaneous coronary intervention procedure. Chin. Med., 2013, 8, 445-447.
[36]
Zhao, J.; Geng, W.J.; Zhai, B.Z. Clinical observation on Xueshuantong Injection in treatment of acute cerebral infarction patients with Clopidogrel resistance. 2015. Available From:
[http://dx.doi.org/10.7501/j.issn.0253-2670.2015.14.018]
[37]
Lau, W.C.; Welch, T.D.; Shields, T.; Rubenfire, M.; Tantry, U.S.; Gurbel, P.A. The effect of St John’s Wort on the pharmacodynamic response of clopidogrel in hyporesponsive volunteers and patients: Increased platelet inhibition by enhancement of CYP3A4 metabolic activity. J. Cardiovasc. Pharmacol., 2011, 57(1), 86-93.
[http://dx.doi.org/10.1097/FJC.0b013e3181ffe8d0] [PMID: 20980920]
[38]
Trana, C.; Toth, G.; Wijns, W.; Barbato, E.St. John’s Wort in patients non-responders to clopidogrel undergoing percutaneous coronary intervention: A single-center randomized open-label trial (St. John’s Trial). J. Cardiovasc. Transl. Res., 2013, 6(3), 411-414.
[http://dx.doi.org/10.1007/s12265-013-9455-2] [PMID: 23463297]
[39]
Chung, J.W.; Kim, S.J.; Hwang, J.; Lee, M.J.; Lee, J.; Lee, K.Y.; Park, M.S.; Sung, S.M.; Kim, K.H.; Jeon, P.; Bang, O.Y. Comparison of clopidogrel and ticlopidine/Ginkgo biloba in patients with clopidogrel resistance and carotid stenting. Front. Neurol., 2019, 10, 44.
[http://dx.doi.org/10.3389/fneur.2019.00044] [PMID: 30761076]
[40]
Li, Y.; Wang, N. Antithrombotic effects of Danggui, Honghua and potential drug interaction with clopidogrel. J. Ethnopharmacol., 2010, 128(3), 623-628.
[http://dx.doi.org/10.1016/j.jep.2010.02.003] [PMID: 20176099]
[41]
Gao, B.; Huang, L.; Liu, H.; Wu, H.; Zhang, E.; Yang, L.; Wu, X.; Wang, Z. Platelet P2Y 12 receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng. Br. J. Pharmacol., 2014, 171(1), 214-223.
[http://dx.doi.org/10.1111/bph.12435] [PMID: 24117220]
[42]
Liu, Y.; Liu, T.; Zhao, J.; He, T.; Chen, H.; Wang, J.; Zhang, W.; Ma, W.; Fan, Y.; Song, X. Phospholipase Cγ2 signalling contributes to the haemostatic effect of Notoginsenoside Ft1. J. Pharm. Pharmacol., 2019, 71(5), 878-886.
[http://dx.doi.org/10.1111/jphp.13057] [PMID: 30549041]
[43]
Hu, S.; Belcaro, G.; Dugall, M.; Peterzan, P.; Hosoi, M.; Ledda, A.; Riva, A.; Giacomelli, L.; Togni, S.; Eggenhoffner, R.; Cotellese, R. Interaction study between antiplatelet agents, anticoagulants, thyroid replacement therapy and a bioavailable formulation of curcumin (Meriva®). Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 5042-5046.
[PMID: 30070343]
[44]
Ducci, K.; Liistro, F.; Porto, I.; Ventoruzzo, G.; Angioli, P.; Falsini, G.; Vergallo, R.; Bolognese, L. Ticagrelor versus clopidogrel in patients undergoing implantation of paclitaxel-eluting stent in the femoropopliteal district: A randomized pilot study using frequency-domain optical coherence tomography. Int. J. Cardiol., 2020, 304, 192-197.
[http://dx.doi.org/10.1016/j.ijcard.2020.01.024] [PMID: 32007230]
[45]
Matsuo, M.; Ito, H.; Takemura, Y.; Hattori, M.; Kawakami, M.; Takahashi, N.; Yamazaki, M. Increased risk of paclitaxel-induced peripheral neuropathy in patients using clopidogrel: A retrospective pilot study. J. Anesth., 2017, 31(4), 631-635.
[http://dx.doi.org/10.1007/s00540-017-2362-y] [PMID: 28451807]
[46]
Zhang, L.; Liu, N.; Zhang, J.; Zhang, H. Effect of Shexiang baoxin pills on clopidogrel resistance in patients with acute coronary syndrome. Pak. J. Pharm. Sci., 2016, 29(6)(Suppl.), 2303-2306.
[PMID: 28167470]
[47]
Li, J.; Ju, J.; Chen, Z.; Liu, J.; Lu, F.; Gao, R.; Xu, H. Guanxinning tablet for patients who switch from dual antiplatelet therapy to aspirin alone after percutaneous coronary intervention: Study protocol for a cluster randomized controlled trial. Trials, 2018, 19(1), 93.
[http://dx.doi.org/10.1186/s13063-017-2373-x] [PMID: 29415754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy