Review Article

神经退行性疾病:新的希望和前景

卷 24, 期 8, 2024

发表于: 09 September, 2023

页: [1004 - 1032] 页: 29

弟呕挨: 10.2174/1566524023666230907093451

价格: $65

conference banner
摘要

阿尔茨海默病、帕金森氏病、肌萎缩性侧索硬化症、亨廷顿氏病和弗里德里希共济失调都是无法治愈的神经退行性疾病,其特征是不同的神经元亚型的持续进行性丧失。尽管它们在世界老龄化人口中越来越普遍,但在开发新药的同时,取得的进展却很少。最近,研究的重点已经转向发现新的治疗神经退行性疾病的药物。在这篇综述中,我们总结了最近发展的治疗方法及其在神经退行性疾病管理中的地位。

关键词: 阿尔茨海默病,帕金森病,肌萎缩侧索硬化症,亨廷顿氏病,弗里德里希共济失调,脊髓性肌萎缩症。

Next »
[1]
Tanner CM. Epidemiology of Parkinson’s disease. Neurol Clin 1992; 10(2): 317-29.
[http://dx.doi.org/10.1016/S0733-8619(18)30212-3] [PMID: 1584176]
[2]
Armstrong R. What causes neurodegenerative disease? Folia Neuropathol 2020; 58(2): 93-112.
[http://dx.doi.org/10.5114/fn.2020.96707] [PMID: 32729289]
[3]
Sales TA, Prandi IG, Castro AA, et al. Recent developments in metal-based drugs and chelating agents for neurodegenerative disease treatments. Int J Mol Sci 2019; 20(8): 1829.
[http://dx.doi.org/10.3390/ijms20081829] [PMID: 31013856]
[4]
Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005; 115(6): 1449-57.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[5]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[6]
Helder DI, Kaptein AA, Kempen GMJ, Weinman J, Houwelingen JC, Roos RAC. Living with huntington’s disease: Illness perceptions, coping mechanisms, and spouses’ quality of life. Int J Behav Med 2002; 9(1): 37-52.
[http://dx.doi.org/10.1207/S15327558IJBM0901_03] [PMID: 12112995]
[7]
Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol 2018; 9: 400.
[http://dx.doi.org/10.3389/fendo.2018.00400] [PMID: 30072954]
[8]
Hainfellner JA, Wanschitz J, Jellinger K, Liberski PP, Gullotta F, Budka H. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol 1998; 96(2): 116-22.
[http://dx.doi.org/10.1007/s004010050870] [PMID: 9705125]
[9]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[10]
Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2(7): a006338.
[http://dx.doi.org/10.1101/cshperspect.a006338] [PMID: 22762015]
[11]
Castello MA, Soriano S. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev 2014; 13: 10-2.
[http://dx.doi.org/10.1016/j.arr.2013.10.001] [PMID: 24252390]
[12]
Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 2014; 10(3): 372-80.
[http://dx.doi.org/10.1016/j.jalz.2013.11.003] [PMID: 24589433]
[13]
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014; 76(Pt A): 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[14]
Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ 2001; 322(7300): 1447-51.
[http://dx.doi.org/10.1136/bmj.322.7300.1447] [PMID: 11408299]
[15]
Abate G, Marziano M, Rungratanawanich W, Memo M, Uberti D. Nutrition and AGE-ing: Focusing on Alzheimer’s Disease. Oxid Med Cell Longev 2017; 2017: 7039816.
[16]
Kevadiya BD, Ottemann BM, Thomas MB, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148: 252-89.
[http://dx.doi.org/10.1016/j.addr.2018.10.011] [PMID: 30421721]
[17]
Harilal S, Jose J, Parambi DGT, et al. Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. J Pharm Pharmacol 2019; 71(9): 1370-83.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[18]
Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med 2012; 366(10): 893-903.
[http://dx.doi.org/10.1056/NEJMoa1106668] [PMID: 22397651]
[19]
Grossberg GT, Manes F, Allegri RF, et al. The safety, tolerability, and efficacy of once-daily memantine (28 mg): A multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs 2013; 27(6): 469-78.
[http://dx.doi.org/10.1007/s40263-013-0077-7] [PMID: 23733403]
[20]
Beshir SA, Aadithsoorya AM, Parveen A, Goh SS, Hussain N, Menon VB. ADU Therapy to Treat Alzheimer’s Disease: A Narrative Review. Int J Alzheimers Dis 2022; 2022: 9343514.
[21]
Behl T, Kaur I, Sehgal A, et al. “Aducanumab” making a comeback in Alzheimer’s disease: An old wine in a new bottle. Biomed Pharmacother 2022; 148: 112746.
[http://dx.doi.org/10.1016/j.biopha.2022.112746] [PMID: 35231697]
[22]
Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 2021; 17(4): 696-701.
[http://dx.doi.org/10.1002/alz.12213] [PMID: 33135381]
[23]
Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-&#946. Sci Rep 2018; 8(1): 6412.
[http://dx.doi.org/10.1038/s41598-018-24501-0] [PMID: 29686315]
[24]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[25]
Gunawardena IPC, Retinasamy T, Shaikh MF. Is ADU for LMICs? promises and challenges. Brain Sci 2021; 11(11): 1547.
[http://dx.doi.org/10.3390/brainsci11111547] [PMID: 34827546]
[26]
Cummings J, Aisen P, Lemere C, Atri A, Sabbagh M, Salloway S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res Ther 2021; 13(1): 98.
[http://dx.doi.org/10.1186/s13195-021-00838-z] [PMID: 33397495]
[27]
Crehan H, Lemere CA. Anti-amyloid-β immunotherapy for Alzheimer’s disease. In: Developing Therapeutics for Alzheimer’s Disease Progress and Challenges. Academic Press 2016; pp. 193-226.
[28]
Ferrero J, Williams L, Stella H, et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement 2016; 2(3): 169-76.
[http://dx.doi.org/10.1016/j.trci.2016.06.002] [PMID: 29067304]
[29]
Porsteinsson AP, Antonsdottir IM. An update on the advancements in the treatment of agitation in Alzheimer’s disease. Expert Opin Pharmacother 2017; 18(6): 611-20.
[http://dx.doi.org/10.1080/14656566.2017.1307340] [PMID: 28300462]
[30]
Minger SL, Esiri MM, McDonald B, et al. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology 2000; 55(10): 1460-7.
[http://dx.doi.org/10.1212/WNL.55.10.1460] [PMID: 11094098]
[31]
Siddique H, Hynan LS, Weiner MF. Effect of a serotonin reuptake inhibitor on irritability, apathy, and psychotic symptoms in patients with Alzheimer’s disease. J Clin Psychiatry 2009; 70(6): 915-8.
[http://dx.doi.org/10.4088/JCP.08m04828] [PMID: 19422762]
[32]
Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis 2014; 41(3): 819-33.
[http://dx.doi.org/10.3233/JAD-140309] [PMID: 24685637]
[33]
Maeda K, Sugino H, Akazawa H, et al. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 2014; 350(3): 589-604.
[http://dx.doi.org/10.1124/jpet.114.213793] [PMID: 24947465]
[34]
Cha DS, Luo X, Ahmed J, Becirovic L, Cha RH, McIntyre RS. Brexpiprazole as an augmentation agent to antidepressants in treatment resistant major depressive disorder. Expert Rev Neurother 2019; 19(9): 777-83.
[http://dx.doi.org/10.1080/14737175.2019.1653759] [PMID: 31389279]
[35]
Grossberg GT, Kohegyi E, Mergel V, et al. Efficacy and safety of Brexipiprazole for the treatment of agitation in Alzheimer’s dementia: Two 12-week, randomized, double-blind, placebo-controlled trials. Am J Geriatr Psychiatry 2020; 28(4): 383-400.
[http://dx.doi.org/10.1016/j.jagp.2019.09.009] [PMID: 31708380]
[36]
Cummings J, Ballard C, Tariot P, et al. Pimavanserin: A potential treatment for dementia-related psychosis. J Prev Alzheimers Dis 2018; 5(4): 253-8.
[PMID: 30298184]
[37]
Vanover KE, Weiner DM, Makhay M, et al. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 2006; 317(2): 910-8.
[http://dx.doi.org/10.1124/jpet.105.097006] [PMID: 16469866]
[38]
Nutt D, Stahl S, Blier P, Drago F, Zohar J, Wilson S. Inverse agonists – What do they mean for psychiatry? Eur Neuropsychopharmacol 2017; 27(1): 87-90.
[http://dx.doi.org/10.1016/j.euroneuro.2016.11.013] [PMID: 27955830]
[39]
Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: An international Delphi consensus. Int Psychogeriatr 2019; 31(1): 83-90.
[http://dx.doi.org/10.1017/S1041610218000534] [PMID: 30068400]
[40]
Cummings J, Isaacson S, Mills R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: A randomised, placebo-controlled phase 3 trial. Lancet 2014; 383(9916): 533-40.
[http://dx.doi.org/10.1016/S0140-6736(13)62106-6] [PMID: 24183563]
[41]
Ballard C, Banister C, Khan Z, et al. Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s disease psychosis: A phase 2, randomised, placebo-controlled, double-blind study. Lancet Neurol 2018; 17(3): 213-22.
[http://dx.doi.org/10.1016/S1474-4422(18)30039-5] [PMID: 29452684]
[42]
Ballard C, Youakim JM, Coate B, Stankovic S. Pimavanserin in Alzheimer’s disease psychosis: Efficacy in patients with more pronounced psychotic symptoms. J Prev Alzheimers Dis 2019; 6(1): 27-33.
[PMID: 30569083]
[43]
Ballard C, Howard R. Neuroleptic drugs in dementia: Benefits and harm. Nat Rev Neurosci 2006; 7(6): 492-500.
[http://dx.doi.org/10.1038/nrn1926] [PMID: 16715057]
[44]
Maher AR, Maglione M, Bagley S, et al. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis. JAMA 2011; 306(12): 1359-69.
[http://dx.doi.org/10.1001/jama.2011.1360] [PMID: 21954480]
[45]
Maust DT, Kim HM, Seyfried LS, et al. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: Number needed to harm. JAMA Psychiatry 2015; 72(5): 438-45.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.3018] [PMID: 25786075]
[46]
Webster P. Pimavanserin evaluated by the FDA. Lancet 2018; 391(10132): 1762.
[http://dx.doi.org/10.1016/S0140-6736(18)31002-X] [PMID: 29739555]
[47]
Caraci F, Santagati M, Caruso G, et al. New antipsychotic drugs for the treatment of agitation and psychosis in Alzheimer’s disease: Focus on brexpiprazole and pimavanserin. F1000 Res 2020; 9: 686.
[http://dx.doi.org/10.12688/f1000research.22662.1] [PMID: 32695312]
[48]
Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009; 72(5): 432-8.
[http://dx.doi.org/10.1212/01.wnl.0000341769.50075.bb] [PMID: 19188574]
[49]
Tripathi KD. Essentials of Medical Pharmacology. 8th ed.. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. 2019; pp. 426-7.
[50]
Hachinski V, Iadecola C, Petersen RC, et al. National institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006; 37(9): 2220-41.
[http://dx.doi.org/10.1161/01.STR.0000237236.88823.47] [PMID: 16917086]
[51]
Rewar S. A systematic review on Parkinson’s disease (PD). IJRPB 2015; 3(2): 176.
[52]
Halperin JM, Healey DM. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neurosci Biobehav Rev 2011; 35(3): 621-34.
[http://dx.doi.org/10.1016/j.neubiorev.2010.07.006] [PMID: 20691725]
[53]
Goldman SM, Tanner C. Etiology of Parkinson’s disease Parkinson’s Disease and Movement Disorders. London, UK: Williams and Wilkins 1998; pp. 133-58.
[54]
Schrag A, Schott JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 2006; 5(4): 355-63.
[http://dx.doi.org/10.1016/S1474-4422(06)70411-2] [PMID: 16545752]
[55]
Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s Disease. F1000 Res 2020; 9: 862.
[http://dx.doi.org/10.12688/f1000research.25634.1] [PMID: 32789002]
[56]
Der Birkmayer WZ. L-3, 4-Dioxyphenylanine (= DOPA)-Effect bei der Parkinson-Akinese. Wien Klin Wochenschr 1961; 45: 787-8.
[57]
Trenkwalder C, Kuoppamäki M, Vahteristo M, Müller T, Ellmén J. Increased dose of carbidopa with levodopa and entacapone improves “off” time in a randomized trial. Neurology 2019; 92(13): e1487-96.
[http://dx.doi.org/10.1212/WNL.0000000000007173] [PMID: 30824559]
[58]
Abu-Raya S, Tabakman R, Blaugrund E, Trembovler V, Lazarovici P. Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 2002; 434(3): 109-16.
[http://dx.doi.org/10.1016/S0014-2999(01)01548-5] [PMID: 11779573]
[59]
Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2020; 91(8): 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[60]
Hwang JY, Won JS, Nam H, Lee HW, Joo KM. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precision and Future Medicine 2018; 2(2): 53-65.
[http://dx.doi.org/10.23838/pfm.2018.00037]
[61]
Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science 2017; 357(6354): 891-8.
[http://dx.doi.org/10.1126/science.aaf3934] [PMID: 28860381]
[62]
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep 2014; 4(1): 4874.
[http://dx.doi.org/10.1038/srep04874] [PMID: 24786396]
[63]
Cai R, Zhang Y, Simmering JE, et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 2019; 129(10): 4539-49.
[http://dx.doi.org/10.1172/JCI129987] [PMID: 31524631]
[64]
Coles LD, Tuite PJ, Öz G, et al. Repeatedí dose oral Ní acetylcysteine in Parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 2018; 58(2): 158-67.
[http://dx.doi.org/10.1002/jcph.1008] [PMID: 28940353]
[65]
Jucaite A, Svenningsson P, Rinne JO, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease. Brain 2015; 138(9): 2687-700.
[http://dx.doi.org/10.1093/brain/awv184] [PMID: 26137956]
[66]
Garea-Rodríguez E, Eesmaa A, Lindholm P, et al. Comparative analysis of the effects of neurotrophic factors CDNF and GDNF in a nonhuman primate model of Parkinson’s disease. PLoS One 2016; 11(2): e0149776.
[http://dx.doi.org/10.1371/journal.pone.0149776] [PMID: 26901822]
[67]
Borgohain R, Szasz J, Stanzione P, et al. Randomized trial of safinamide addí on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord 2014; 29(2): 229-37.
[http://dx.doi.org/10.1002/mds.25751] [PMID: 24323641]
[68]
Kim SD, Allen NE, Canning CG, Fung VSC. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 2013; 27(2): 97-112.
[http://dx.doi.org/10.1007/s40263-012-0012-3] [PMID: 23076544]
[69]
(a) Kumakura Y, Danielsen EH, Gjedde A, et al. Elevated [18F] FDOPA utilization in the periaqueductal grey and medial nucleus accumbens of patients with early Parkinson’s disease. Neuroimage 2010; 49(4): 2933-9.;
(b) Gross LA. Occupational therapy involvement in interdisciplinary palliative care for individuals with dementia Doctoral dissertation, Boston University 2019.
[70]
Sellnow RC, Newman JH, Chambers N, et al. Regulation of dopamine neurotransmission from serotonergic neurons by ectopic expression of the dopamine D2 autoreceptor blocks levodopa-induced dyskinesia. Acta Neuropathol Commun 2019; 7(1): 8.
[http://dx.doi.org/10.1186/s40478-018-0653-7] [PMID: 30646956]
[71]
Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338(6109): 949-53.
[http://dx.doi.org/10.1126/science.1227157] [PMID: 23161999]
[72]
Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting alpha-Synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci 2019; 12: 299.
[http://dx.doi.org/10.3389/fnmol.2019.00299] [PMID: 31866823]
[73]
McCormack AL, Mak SK, Henderson JM, Bumcrot D, Farrer MJ, Di Monte DA. α-synuclein suppression by targeted small interfering RNA in the primate substantia nigra. PLoS One 2010; 5(8): e12122.
[http://dx.doi.org/10.1371/journal.pone.0012122] [PMID: 20711464]
[74]
Weihofen A, Liu Y, Arndt JW, et al. Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol Dis 2019; 124: 276-88.
[http://dx.doi.org/10.1016/j.nbd.2018.10.016] [PMID: 30381260]
[75]
Brys M, Fanning L, Hung S, et al. Randomized phase I clinical trial of anti–αí synuclein antibody BIIB054. Mov Disord 2019; 34(8): 1154-63.
[http://dx.doi.org/10.1002/mds.27738] [PMID: 31211448]
[76]
Bergstrand A, Hansson FS, Trifunovic A, et al. Oxidative stress induces nuclear translocation of C-terminus of alpha-synuclein in dopaminergic cells. Biochem Biophys Res Commun 2006; 342(1): 330-5.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.148] [PMID: 16480958]
[77]
Barker RA, Parmar M, Studer L, Takahashi J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: Dawn of a new era. Cell Stem Cell 2017; 21(5): 569-73.
[http://dx.doi.org/10.1016/j.stem.2017.09.014] [PMID: 29100010]
[78]
Christine CW, Bankiewicz KS, Van Laar AD, et al. Magnetic resonance imaging–guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol 2019; 85(5): 704-14.
[http://dx.doi.org/10.1002/ana.25450] [PMID: 30802998]
[79]
Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial. Lancet 2014; 383(9923): 1138-46.
[http://dx.doi.org/10.1016/S0140-6736(13)61939-X] [PMID: 24412048]
[80]
Zheng Z, Chen J, Chopp M. Mechanisms of plasticity remodeling and recovery. In: Stroke. 2021; pp. 129-137.e.
[81]
Ross CA, Aylward EH, Wild EJ, et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 2014; 10(4): 204-16.
[http://dx.doi.org/10.1038/nrneurol.2014.24] [PMID: 24614516]
[82]
Lee JK, Conrad A, Epping E, et al. Effect of trinucleotide repeats in the Huntington’s gene on intelligence. EBioMedicine 2018; 31: 47-53.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.031] [PMID: 29685790]
[83]
Sun YM, Zhang YB, Wu ZY. Huntington’s disease: The relationship between phenotype and genotype. Mol Neurobiol 2017; 54(1): 342-8.
[http://dx.doi.org/10.1007/s12035-015-9662-8] [PMID: 26742514]
[84]
Telenius H, Kremer B, Goldberg YP, et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 1994; 6(4): 409-14.
[http://dx.doi.org/10.1038/ng0494-409] [PMID: 8054984]
[85]
Bright LJN, Akila R. Huntington’s disease: Current advances and future prospects. Int J Pharma Sci 2021; 13(12)
[86]
Arning L, Nguyen HP. Huntington disease update: New insights into the role of repeat instability in disease pathogenesis. Med Genetik 2022; 33(4): 293-300.
[http://dx.doi.org/10.1515/medgen-2021-2101]
[87]
Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198: 252-73.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.052] [PMID: 21907762]
[88]
Krishnendu PR, Arjun B, Vibina K. Review on evaluating the role of nsaids for the treatment of alzheimer’s disease. Int J Appl Pharm 2021; 13(1): 91-4.
[89]
Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers 2015; 1(1): 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[90]
Frank S. Tetrabenazine as anti-chorea therapy in Huntington Disease: An open-label continuation study. BMC Neurol 2009; 9(1): 62-72.
[http://dx.doi.org/10.1186/1471-2377-9-62] [PMID: 20021666]
[91]
Paleacu D. Tetrabenazine in the treatment of Huntington’s disease. Neuropsychiatr Dis Treat 2007; 3(5): 545-51.
[PMID: 19381278]
[92]
Mehvar R, Jamali F. Concentration-effect relationships of tetrabenazine and dihydrotetrabenazine in the rat. J Pharm Sci 1987; 76(6): 461-5.
[http://dx.doi.org/10.1002/jps.2600760610] [PMID: 3625491]
[93]
Thibaut F, Faucheux BA, Marquez J, et al. Regional distribution of monoamine vesicular uptake sites in the mesencephalon of control subjects and patients with Parkinson’s disease: A postmortem study using tritiated tetrabenazine. Brain Res 1995; 692(1-2): 233-43.
[http://dx.doi.org/10.1016/0006-8993(95)00674-F] [PMID: 8548309]
[94]
Kenney C, Hunter C, Davidson A, Jankovic J. Short-term effects of tetrabenazine on chorea associated with Huntington’s disease. Mov Disord 2007; 22(1): 10-3.
[http://dx.doi.org/10.1002/mds.21161] [PMID: 17078062]
[95]
Scherman D, Henry JP. Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison with dihydrotetrabenazine binding. Mol Pharmacol 1984; 25(1): 113-22.
[PMID: 6708929]
[96]
Quinn N, Marsden CD. A double blind trial of sulpiride in Huntington’s disease and tardive dyskinesia. J Neurol Neurosurg Psychiatry 1984; 47(8): 844-7.
[http://dx.doi.org/10.1136/jnnp.47.8.844] [PMID: 6236286]
[97]
Deroover J, Baro F, Bourguignon RP, Smets P. Tiapride versus placebo: A double-blind comparative study in the management of Huntington’s chorea. Curr Med Res Opin 1984; 9(5): 329-38.
[http://dx.doi.org/10.1185/03007998409109601] [PMID: 6241563]
[98]
Leonard DP, Kidson MA, Brown JGE, Shannon PJ, Taryan S. A double blind trial of lithium carbonate and haloperidol in Huntington’s chorea. Aust N Z J Psychiatry 1975; 9(2): 115-8.
[http://dx.doi.org/10.3109/00048677509159834] [PMID: 125578]
[99]
Barr AN, Fischer JH, Roller WC, Spunt AL, Singhal A. Serum haloperidol concentration and choreiform movements in Huntington’s disease. Neurology 1988; 38(1): 84-8.
[http://dx.doi.org/10.1212/WNL.38.1.84] [PMID: 2962009]
[100]
Bonelli RM, Mahnert FA, Niederwieser G. Olanzapine for Huntington’s disease: An open label study. Clinical neuropharmacology. 2002 Sep 1;25(5):263-5. Squitieri F, Cannella M, Porcellini A, Brusa L, Simonelli M, Ruggieri S. Short-term effects of olanzapine in Huntington disease. Cogn Behav Neurol 2001; 14(1): 69-72.
[101]
Peiris JB, Boralessa H, Lionel ND. Clonazepam in the treatment of choreiform activity. Med J Aust 1976; 1(8): 225-7.
[http://dx.doi.org/10.5694/j.1326-5377.1976.tb140550.x] [PMID: 131236]
[102]
Eddy CM, Parkinson EG, Rickards HE. Changes in mental state and behaviour in Huntington’s disease. Lancet Psychiatry 2016; 3(11): 1079-86.
[http://dx.doi.org/10.1016/S2215-0366(16)30144-4] [PMID: 27663851]
[103]
Li Y, Hai S, Zhou Y, Dong BR. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev 2015; 3(3): CD009444.
[http://dx.doi.org/10.1002/14651858.CD009444.pub3]
[104]
Beglinger LJ, Adams WH, Langbehn D, et al. Results of the citalopram to enhance cognition in Huntington disease trial. Mov Disord 2014; 29(3): 401-5.
[http://dx.doi.org/10.1002/mds.25750] [PMID: 24375941]
[105]
Kumar A, Kumar V, Singh K, et al. Therapeutic advances for Huntington’s disease. Brain Sci 2020; 10(1): 43.
[http://dx.doi.org/10.3390/brainsci10010043] [PMID: 31940909]
[106]
Moreno-Delgado D, Puigdellívol M, Moreno E, et al. Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for Huntington’s disease. eLife 2020; 9: e51093.
[http://dx.doi.org/10.7554/eLife.51093] [PMID: 32513388]
[107]
Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective effect of natural products against Huntington’s disease: An overview of scientific evidence and understanding their mechanism of action. ACS Chem Neurosci 2021; 12(3): 391-418.
[http://dx.doi.org/10.1021/acschemneuro.0c00824] [PMID: 33475334]
[108]
Sharma A, Behl T, Sharma L, Aelya L, Bungau S. Mitochondrial dysfunction in huntington’s disease: Pathogenesis and therapeutic opportunities. Curr Drug Targets 2021; 22(14): 1637-67.
[http://dx.doi.org/10.2174/1389450122666210224105945] [PMID: 33655829]
[109]
Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000; 6(7): 797-801.
[http://dx.doi.org/10.1038/77528] [PMID: 10888929]
[110]
Bonelli RM, Hödl AK, Hofmann P, Kapfhammer HP. Neuroprotection in Huntington’s disease: A 2-year study on minocycline. Int Clin Psychopharmacol 2004; 19(6): 337-42.
[http://dx.doi.org/10.1097/00004850-200411000-00004] [PMID: 15486519]
[111]
Thomas M, Ashizawa T, Jankovic J. Minocycline in Huntington’s disease: A pilot study. Mov Disord 2004; 19(6): 692-5.
[http://dx.doi.org/10.1002/mds.20018] [PMID: 15197710]
[112]
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6): 585-95.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[113]
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960-76.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[114]
Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421(6921): 373-9.
[http://dx.doi.org/10.1038/nature01301] [PMID: 12540902]
[115]
Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10(2): 148-54.
[http://dx.doi.org/10.1038/nm985] [PMID: 14730359]
[116]
Chopra V, Fox JH, Lieberman G, et al. A small-molecule therapeutic lead for Huntington’s disease: Preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. Proc Natl Acad Sci 2007; 104(42): 16685-9.
[http://dx.doi.org/10.1073/pnas.0707842104] [PMID: 17925440]
[117]
Mao Z, Choo YS, Lesort M. Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock-in striatal cells. Eur J Neurosci 2006; 23(7): 1701-10.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04686.x] [PMID: 16623826]
[118]
Gohil VM, Offner N, Walker JA, et al. Meclizine is neuroprotective in models of Huntington’s disease. Hum Mol Genet 2011; 20(2): 294-300.
[http://dx.doi.org/10.1093/hmg/ddq464] [PMID: 20977989]
[119]
Ferreira JJ, Rosser A, Craufurd D, Squitieri F, Mallard N, Landwehrmeyer B. Ethyl-eicosapentaenoic acid treatment in Huntington’s disease: A placebo-controlled clinical trial. Mov Disord 2015; 30(10): 1426-9.
[http://dx.doi.org/10.1002/mds.26308] [PMID: 26175332]
[120]
Hersch SM, Schifitto G, Oakes D, et al. The CREST-E study of creatine for Huntington disease. Neurology 2017; 89(6): 594-601.
[http://dx.doi.org/10.1212/WNL.0000000000004209] [PMID: 28701493]
[121]
Ryu H, Lee J, Hagerty SW, et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci 2006; 103(50): 19176-81.
[http://dx.doi.org/10.1073/pnas.0606373103] [PMID: 17142323]
[122]
Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 2003; 100(4): 2041-6.
[http://dx.doi.org/10.1073/pnas.0437870100] [PMID: 12576549]
[123]
Gardian G, Browne SE, Choi DK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem 2005; 280(1): 556-63.
[http://dx.doi.org/10.1074/jbc.M410210200] [PMID: 15494404]
[124]
Thomas EA, Coppola G, Desplats PA, et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci 2008; 105(40): 15564-9.
[http://dx.doi.org/10.1073/pnas.0804249105] [PMID: 18829438]
[125]
Harper SQ, Staber PD, He X, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci 2005; 102(16): 5820-5.
[http://dx.doi.org/10.1073/pnas.0501507102] [PMID: 15811941]
[126]
Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 2014; 25(5): 461-74.
[http://dx.doi.org/10.1089/hum.2013.200] [PMID: 24484067]
[127]
Samaranch L, Blits B, San Sebastian W, et al. MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain. Gene Ther 2017; 24(4): 253-61.
[http://dx.doi.org/10.1038/gt.2017.14] [PMID: 28300083]
[128]
Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 2008; 16(5): 947-56.
[http://dx.doi.org/10.1038/mt.2008.50] [PMID: 18388917]
[129]
Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 2012; 74(6): 1031-44.
[http://dx.doi.org/10.1016/j.neuron.2012.05.009] [PMID: 22726834]
[130]
Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010; 50(1): 259-93.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654] [PMID: 20055705]
[131]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[132]
Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 2017; 127(7): 2719-24.
[http://dx.doi.org/10.1172/JCI92087] [PMID: 28628038]
[133]
Garriga-Canut M, Agustín-Pavón C, Herrmann F, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci USA 2012; 109(45): E3136-45.
[http://dx.doi.org/10.1073/pnas.1206506109] [PMID: 23054839]
[134]
Graham RK, Deng Y, Slow EJ, et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006; 125(6): 1179-91.
[http://dx.doi.org/10.1016/j.cell.2006.04.026] [PMID: 16777606]
[135]
Wellington CL, Ellerby LM, Hackam AS, et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 1998; 273(15): 9158-67.
[http://dx.doi.org/10.1074/jbc.273.15.9158] [PMID: 9535906]
[136]
Reilmann R, Rouzade-Dominguez ML, Saft C, et al. A randomized, placeboí controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord 2015; 30(3): 427-31.
[http://dx.doi.org/10.1002/mds.26174] [PMID: 25689146]
[137]
Klivenyi P, Ferrante RJ, Gardian G, Browne S, Chabrier PE, Beal MF. Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington’s disease. J Neurochem 2003; 86(1): 267-72.
[http://dx.doi.org/10.1046/j.1471-4159.2003.t01-1-01868.x] [PMID: 12807446]
[138]
Chabrier PE, Auguet M. Pharmacological properties of BN82451: A novel multitargeting neuroprotective agent. CNS Drug Rev 2007; 13(3): 317-32.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00018.x] [PMID: 17894648]
[139]
Thulasiraman V, Yang CF, Frydman J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 1999; 18(1): 85-95.
[http://dx.doi.org/10.1093/emboj/18.1.85] [PMID: 9878053]
[140]
Kalisman N, Adams CM, Levitt M. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci USA 2012; 109(8): 2884-9.
[http://dx.doi.org/10.1073/pnas.1119472109] [PMID: 22308438]
[141]
Safren N, El Ayadi A, Chang L, et al. Ubiquilin-1 overexpression increases the lifespan and delays accumulation of Huntingtin aggregates in the R6/2 mouse model of Huntington’s disease. PLoS One 2014; 9(1): e87513.
[http://dx.doi.org/10.1371/journal.pone.0087513] [PMID: 24475300]
[142]
Marder K, Gu Y, Eberly S, et al. Relationship of Mediterranean diet and caloric intake to phenoconversion in Huntington disease. JAMA Neurol 2013; 70(11): 1382-8.
[http://dx.doi.org/10.1001/jamaneurol.2013.3487] [PMID: 24000094]
[143]
Beister A, Kraus P, Kuhn W, Dose M, Weindl A, Gerlach M. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington’s disease. In: Focus on extrapyramidal dysfunction. Vienna: Springer 2004; pp. 117-22.
[144]
Lee ST, Chu K, Park JE, et al. Memantine reduces striatal cell death with decreasing calpain level in 3-nitropropionic model of Huntington’s disease. Brain Res 2006; 1118(1): 199-207.
[http://dx.doi.org/10.1016/j.brainres.2006.08.035] [PMID: 16959224]
[145]
Cankurtaran ES, Ozalp E, Soygur H, Cakir A. Clinical experience with risperidone and memantine in the treatment of Huntington’s disease. J Natl Med Assoc 2006; 98(8): 1353-5.
[PMID: 16916137]
[146]
Dau A, Gladding CM, Sepers MD, Raymond LA. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 2014; 62: 533-42.
[http://dx.doi.org/10.1016/j.nbd.2013.11.013] [PMID: 24269729]
[147]
Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 2009; 15(12): 1407-13.
[http://dx.doi.org/10.1038/nm.2056] [PMID: 19915593]
[148]
Milnerwood AJ, Gladding CM, Pouladi MA, et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 2010; 65(2): 178-90.
[http://dx.doi.org/10.1016/j.neuron.2010.01.008] [PMID: 20152125]
[149]
Palfi S, Riche D, Brouillet E, et al. Riluzole reduces incidence of abnormal movements but not striatal cell death in a primate model of progressive striatal degeneration. Exp Neurol 1997; 146(1): 135-41.
[http://dx.doi.org/10.1006/exnr.1997.6520] [PMID: 9225746]
[150]
Landwehrmeyer GB, Dubois B, de Yébenes JG, et al. Riluzole in Huntington’s disease: A 3-year, randomized controlled study. Ann Neurol 2007; 62(3): 262-72.
[http://dx.doi.org/10.1002/ana.21181] [PMID: 17702031]
[151]
Wang H, Chen X, Li Y, Tang TS, Bezprozvanny I. Tetrabenazine is neuroprotective in Huntington’s disease mice. Mol Neurodegener 2010; 5(1): 18.
[http://dx.doi.org/10.1186/1750-1326-5-18] [PMID: 20420689]
[152]
Coppen EM, Roos RAC. Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs 2017; 77(1): 29-46.
[http://dx.doi.org/10.1007/s40265-016-0670-4] [PMID: 27988871]
[153]
de Tommaso M, Serpino C, Sciruicchio V. Management of Huntington’s disease: Role of tetrabenazine. Ther Clin Risk Manag 2011; 7: 123-9.
[http://dx.doi.org/10.2147/TCRM.S17152] [PMID: 21479143]
[154]
Claassen DO, Carroll B, De Boer LM, et al. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J Clin Mov Disord 2017; 4(1): 3.
[http://dx.doi.org/10.1186/s40734-017-0051-5] [PMID: 28265459]
[155]
Bonelli RM, Heuberger C, Reisecker F. Minocycline for Huntington’s disease: An open label study. Neurology 2003; 60(5): 883-4.
[http://dx.doi.org/10.1212/01.WNL.0000049936.85487.7A] [PMID: 12629257]
[156]
Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Brain Res Rev 2007; 53(1): 135-60.
[http://dx.doi.org/10.1016/j.brainresrev.2006.08.001] [PMID: 16959325]
[157]
McGowan DP, van Roon-Mom W, Holloway H, et al. Amyloid-like inclusions in Huntington’s disease. Neuroscience 2000; 100(4): 677-80.
[http://dx.doi.org/10.1016/S0306-4522(00)00391-2] [PMID: 11036200]
[158]
Lee HJ, Yoon YS, Lee SJ. Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction. Cell Death Dis 2018; 9(7): 712.
[http://dx.doi.org/10.1038/s41419-018-0749-9] [PMID: 29907758]
[159]
Fernandez-Estevez MA, Casarejos MJ, López Sendon J, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 2014; 9(2): e90202.
[http://dx.doi.org/10.1371/journal.pone.0090202] [PMID: 24587280]
[160]
Wang N, Lu XH, Sandoval SV, Yang XW. An independent study of the preclinical efficacy of C2-8 in the R6/2 transgenic mouse model of Huntington’s disease. J Huntingtons Dis 2013; 2(4): 443-51.
[http://dx.doi.org/10.3233/JHD-130074] [PMID: 25062731]
[161]
Pryor WM, Biagioli M, Shahani N, et al. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal 2014; 7(349): ra103.
[http://dx.doi.org/10.1126/scisignal.2005633] [PMID: 25351248]
[162]
Ryu H, Rosas HD, Hersch SM, Ferrante RJ. The therapeutic role of creatine in Huntington’s disease. Pharmacol Ther 2005; 108(2): 193-207.
[http://dx.doi.org/10.1016/j.pharmthera.2005.04.008] [PMID: 16055197]
[163]
Hersch SM, Gevorkian S, Marder K, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 2006; 66(2): 250-2.
[http://dx.doi.org/10.1212/01.wnl.0000194318.74946.b6] [PMID: 16434666]
[164]
Verbessem P, Lemiere J, Eijnde BO, et al. Creatine supplementation in Huntington’s disease: A placebo-controlled pilot trial. Neurology 2003; 61(7): 925-30.
[http://dx.doi.org/10.1212/01.WNL.0000090629.40891.4B] [PMID: 14557561]
[165]
Andrich J, Saft C, Gerlach M, et al. Coenzyme Q 10 serum levels in Huntington’s disease. In: Focus on Extrapyramidal Dysfunction. Vienna: Springer 2004; pp. 111-6.
[166]
Ferrante RJ, Andreassen OA, Dedeoglu A, et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci 2002; 22(5): 1592-9.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01592.2002] [PMID: 11880489]
[167]
Yang L, Calingasan NY, Wille EJ, et al. Combination therapy with Coenzyme Q 10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s Diseases. J Neurochem 2009; 109(5): 1427-39.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06074.x] [PMID: 19476553]
[168]
Jump DB. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 2002; 277(11): 8755-8.
[http://dx.doi.org/10.1074/jbc.R100062200] [PMID: 11748246]
[169]
Lonergan PE, Martin DSD, Horrobin DF, Lynch MA. Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to γ-irradiation. J Biol Chem 2002; 277(23): 20804-11.
[http://dx.doi.org/10.1074/jbc.M202387200] [PMID: 11912218]
[170]
Martin DSD, Lonergan PE, Boland B, et al. Apoptotic changes in the aged brain are triggered by interleukin-1β-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 2002; 277(37): 34239-46.
[http://dx.doi.org/10.1074/jbc.M205289200] [PMID: 12091394]
[171]
Puri BK, Leavitt BR, Hayden MR, et al. Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology 2005; 65(2): 286-92.
[http://dx.doi.org/10.1212/01.wnl.0000169025.09670.6d] [PMID: 16043801]
[172]
Huntington Study Group TREND-HD Investigators. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: The TREND-HD study. Arch Neurol 2008; 65(12): 1582-9.
[PMID: 19064745]
[173]
Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington’s disease: A dose-finding study. Mov Disord 2007; 22(13): 1962-4.
[http://dx.doi.org/10.1002/mds.21632] [PMID: 17702032]
[174]
Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci 2003; 100(4): 2041-6.
[http://dx.doi.org/10.1073/pnas.0437870100] [PMID: 12576549]
[175]
Sah DWY, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 2011; 121(2): 500-7.
[http://dx.doi.org/10.1172/JCI45130] [PMID: 21285523]
[176]
Miniarikova J, Evers MM, Konstantinova P. Translation of microRNA-based huntingtin-lowering therapies from preclinical studies to the clinic. Mol Ther 2018; 26(4): 947-62.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.002] [PMID: 29503201]
[177]
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 2017; 16(10): 837-47.
[http://dx.doi.org/10.1016/S1474-4422(17)30280-6] [PMID: 28920889]
[178]
Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 2009; 17(6): 1053-63.
[http://dx.doi.org/10.1038/mt.2009.17] [PMID: 19240687]
[179]
Marelli C, Maschat F. The P42 peptide and Peptide-based therapies for Huntington’s disease. Orphanet J Rare Dis 2016; 11(1): 24.
[http://dx.doi.org/10.1186/s13023-016-0405-3] [PMID: 26984770]
[180]
Malankhanova TB, Malakhova AA, Medvedev SP, Zakian SM. Modern genome editing technologies in Huntington’s disease research. J Huntingtons Dis 2017; 6(1): 19-31.
[http://dx.doi.org/10.3233/JHD-160222] [PMID: 28128770]
[181]
Dabrowska M, Olejniczak M. Gene therapy for Huntington’s disease using targeted endonucleases. In: Trinucleotide Repeats. New York, NY: Humana 2020; pp. 269-84.
[182]
Ekman FK, Ojala DS, Adil MM, Lopez PA, Schaffer DV, Gaj T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids 2019; 17: 829-39.
[http://dx.doi.org/10.1016/j.omtn.2019.07.009] [PMID: 31465962]
[183]
Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: From the bench to the clinic. Nat Rev Drug Discov 2018; 17(10): 729-50.
[http://dx.doi.org/10.1038/nrd.2018.133] [PMID: 30237454]
[184]
Pattison LR, Kotter MR, Fraga D, Bonelli RM. Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease. J Neurol 2006; 253(9): 1137-42.
[http://dx.doi.org/10.1007/s00415-006-0198-8] [PMID: 16998646]
[185]
Sofi F, Macchi C, Casini A. Mediterranean diet and minimizing neurodegeneration. Curr Nutr Rep 2013; 2(2): 75-80.
[http://dx.doi.org/10.1007/s13668-013-0041-7]
[186]
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015; 11(9): 1007-14.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[187]
Ehrnhoefer DE, Martin DD, Schmidt ME, et al. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol Commun 2018; 6(1): 16.
[http://dx.doi.org/10.1186/s40478-018-0518-0]
[188]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 1-9.
[189]
Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med 2017; 377(172): 2.
[190]
Wijesekera LC, Nigel LP. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4(1): 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[191]
Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 2007; 6(11): 994-1003.
[http://dx.doi.org/10.1016/S1474-4422(07)70265-X] [PMID: 17945153]
[192]
Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998; 51(6): 1546-54.
[http://dx.doi.org/10.1212/WNL.51.6.1546] [PMID: 9855500]
[193]
Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor Neuron dysfunction in frontotemporal dementia. Brain 2011; 134(9): 2582-94.
[http://dx.doi.org/10.1093/brain/awr195] [PMID: 21840887]
[194]
Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314(5796): 130-3.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[195]
Ryan M, Heverin M, McLaughlin RL, Hardiman O. Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol 2019; 76(11): 1367-74.
[http://dx.doi.org/10.1001/jamaneurol.2019.2044] [PMID: 31329211]
[196]
Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 2010; 81(12): 1324-6.
[http://dx.doi.org/10.1136/jnnp.2010.207464] [PMID: 20861059]
[197]
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362(6415): 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[198]
Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319(5870): 1668-72.
[http://dx.doi.org/10.1126/science.1154584] [PMID: 18309045]
[199]
Kabashi E, Valdmanis PN, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008; 40(5): 572-4.
[http://dx.doi.org/10.1038/ng.132] [PMID: 18372902]
[200]
Kwiatkowski TJ Jr, Bosco DA, LeClerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323(5918): 1205-8.
[http://dx.doi.org/10.1126/science.1166066] [PMID: 19251627]
[201]
Cirulli ET, Lasseigne BN, Petrovski S, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015; 347(6229): 1436-41.
[http://dx.doi.org/10.1126/science.aaa3650] [PMID: 25700176]
[202]
Freischmidt A, Wieland T, Richter B, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 2015; 18(5): 631-6.
[http://dx.doi.org/10.1038/nn.4000] [PMID: 25803835]
[203]
Le Ber I, De Septenville A, Millecamps S, et al. TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 2015; 36(11): 3116.e5-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.009] [PMID: 26476236]
[204]
Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330(9): 585-91.
[http://dx.doi.org/10.1056/NEJM199403033300901] [PMID: 8302340]
[205]
Doble A. The pharmacology and mechanism of action of riluzole. Neurology 1996; 47(6) (Suppl. 4): 233S-41S.
[http://dx.doi.org/10.1212/WNL.47.6_Suppl_4.233S] [PMID: 8959995]
[206]
Grant P, Song JY, Swedo SE. Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2010; 20(4): 309-15.
[http://dx.doi.org/10.1089/cap.2010.0009] [PMID: 20807069]
[207]
Schultz J. Disease-modifying treatment of amyotrophic lateral sclerosis. Am J Manag Care 2018; 24(S15): S327-35.
[PMID: 30207671]
[208]
Lacomblez L, Bensimon G, Meininger V, Leigh PN, Guillet P. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 1996; 347(9013): 1425-31.
[http://dx.doi.org/10.1016/S0140-6736(96)91680-3] [PMID: 8676624]
[209]
Hinchcliffe M, Smith A. Riluzole: Real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degener Neurol Neuromuscul Dis 2017; 7: 61-70.
[http://dx.doi.org/10.2147/DNND.S135748] [PMID: 30050378]
[210]
Cruz MP. Edaravone (Radicava): A novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T 2018; 43(1): 25-8.
[PMID: 29290672]
[211]
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2018; 62(1): 20-38.
[http://dx.doi.org/10.3164/jcbn.17-62] [PMID: 29371752]
[212]
Abe K, Aoki M, Tsuji S, et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol 2017; 16(7): 505-12.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[213]
Cho H, Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals (Basel) 2020; 14(1): 29.
[http://dx.doi.org/10.3390/ph14010029] [PMID: 33396271]
[214]
Oh Y, Jun HS. Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling. Int J Mol Sci 2017; 19(1): 26.
[http://dx.doi.org/10.3390/ijms19010026] [PMID: 29271910]
[215]
Pan Y, Li W, Feng Y, Xu J, Cao H. Edaravone attenuates experimental asthma in mice through induction of HO-1 and the Keap1/Nrf2 pathway. Exp Ther Med 2020; 19(2): 1407-16.
[PMID: 32010316]
[216]
Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863(2): 585-97.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[217]
Liu J, Jiang Y, Zhang G, Lin Z, Du S. Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med 2019; 18(4): 2437-42.
[http://dx.doi.org/10.3892/etm.2019.7859] [PMID: 31555355]
[218]
Liu Z, Yang C, Meng X, Li Z, Lv C, Cao P. Neuroprotection of edaravone on the hippocampus of kainate-induced epilepsy rats through Nrf2/HO-1 pathway. Neurochem Int 2018; 112: 159-65.
[http://dx.doi.org/10.1016/j.neuint.2017.07.001] [PMID: 28697972]
[219]
Ikeda K, Iwasaki Y. Edaravone, a free radical scavenger, delayed symptomatic and pathological progression of motor neuron disease in the wobbler mouse. PLoS One 2015; 10(10): e0140316.
[http://dx.doi.org/10.1371/journal.pone.0140316] [PMID: 26469273]
[220]
Cho H, Shukla S. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis. Pharmaceuticals 2020; 14(1): 29.
[http://dx.doi.org/10.3390/ph14010029] [PMID: 33396271]
[221]
Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271(5254): 1423-7.
[http://dx.doi.org/10.1126/science.271.5254.1423] [PMID: 8596916]
[222]
Andermann F. Nicolaus Friedreich and degenerative atrophy of the posterior columns of the spinal cord. Can J Neurol Sci 1976; 3(4): 275-7.
[http://dx.doi.org/10.1017/S0317167100025452] [PMID: 793699]
[223]
Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet 1983; 321(8334): 1151-5.
[http://dx.doi.org/10.1016/S0140-6736(83)92879-9] [PMID: 6133167]
[224]
Pandolfo M. Molecular pathogenesis of Friedreich ataxia. Arch Neurol 1999; 56(10): 1201-8.
[http://dx.doi.org/10.1001/archneur.56.10.1201] [PMID: 10520935]
[225]
Metz G, Coppard N, Cooper JM, et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: Analysis of a 603-patient database. Brain 2013; 136(1): 259-68.
[http://dx.doi.org/10.1093/brain/aws309] [PMID: 23365101]
[226]
Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: A cross-sectional analysis of baseline data. Lancet Neurol 2015; 14(2): 174-82.
[http://dx.doi.org/10.1016/S1474-4422(14)70321-7] [PMID: 25566998]
[227]
Chiang S, Kovacevic Z, Sahni S, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci 2016; 130(11): 853-70.
[http://dx.doi.org/10.1042/CS20160072] [PMID: 27129098]
[228]
González-Cabo P, Palau F. Mitochondrial pathophysiology in Friedreich’s ataxia. J Neurochem 2013; 126 (Suppl. 1): 53-64.
[http://dx.doi.org/10.1111/jnc.12303] [PMID: 23859341]
[229]
Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335(16): 1169-75.
[http://dx.doi.org/10.1056/NEJM199610173351601] [PMID: 8815938]
[230]
Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981; 104(3): 589-620.
[http://dx.doi.org/10.1093/brain/104.3.589] [PMID: 7272714]
[231]
Vankan P. Prevalence gradients of Friedreich’s Ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem 2013; 126(S1): 11-20.
[http://dx.doi.org/10.1111/jnc.12215] [PMID: 23859338]
[232]
Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 2000; 9(2): 275-82.
[http://dx.doi.org/10.1093/hmg/9.2.275] [PMID: 10607838]
[233]
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: Molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13(5): 651-90.
[http://dx.doi.org/10.1089/ars.2009.3015] [PMID: 20156111]
[234]
Lodi R, Tonon C, Calabrese V, Schapira AHV. Friedreich’s ataxia: From disease mechanisms to therapeutic interventions. Antioxid Redox Signal 2006; 8(3-4): 438-43.
[http://dx.doi.org/10.1089/ars.2006.8.438] [PMID: 16677089]
[235]
Boddaert N, Le Quan Sang KH, Rötig A, et al. Selective iron chelation in Friedreich ataxia: Biologic and clinical implications. Blood 2007; 110(1): 401-8.
[http://dx.doi.org/10.1182/blood-2006-12-065433] [PMID: 17379741]
[236]
Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA. Iron-dependent regulation of frataxin expression: Implications for treatment of Friedreich ataxia. Hum Mol Genet 2008; 17(15): 2265-73.
[http://dx.doi.org/10.1093/hmg/ddn127] [PMID: 18424449]
[237]
Kakhlon O, Manning H, Breuer W, et al. Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood 2008; 112(13): 5219-27.
[http://dx.doi.org/10.1182/blood-2008-06-161919] [PMID: 18796625]
[238]
Goncalves S, Paupe V, Dassa EP, Rustin P. Deferiprone targets aconitase: Implication for Friedreich’s ataxia treatment. BMC Neurol 2008; 8(1): 20.
[http://dx.doi.org/10.1186/1471-2377-8-20] [PMID: 18558000]
[239]
Schulz JB, Dehmer T, Schöls L, et al. Oxidative stress in patients with Friedreich ataxia. Neurology 2000; 55(11): 1719-21.
[http://dx.doi.org/10.1212/WNL.55.11.1719] [PMID: 11113228]
[240]
Pandolfo M. Frataxin deficiency and mitochondrial dysfunction. Mitochondrion 2002; 2(1-2): 87-93.
[http://dx.doi.org/10.1016/S1567-7249(02)00039-9] [PMID: 16120311]
[241]
Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K, Sidi D, Munnich A, Rötig A. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: A preliminary study. Lancet 1999; 354(9177): 477-9.
[http://dx.doi.org/10.1016/S0140-6736(99)01341-0] [PMID: 10465173]
[242]
Seznec H, Simon D, Monassier L, et al. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 2004; 13(10): 1017-24.
[http://dx.doi.org/10.1093/hmg/ddh114] [PMID: 15028670]
[243]
Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: A randomised, placebo-controlled trial. Lancet Neurol 2007; 6(10): 878-86.
[http://dx.doi.org/10.1016/S1474-4422(07)70220-X] [PMID: 17826341]
[244]
Lagedrost SJ, Sutton MSJ, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J 2011; 161(3): 639-645.e1.
[http://dx.doi.org/10.1016/j.ahj.2010.10.038] [PMID: 21392622]
[245]
Sturm B, Stupphann D, Kaun C, et al. Recombinant human erythropoietin: Effects on frataxin expression in vitro. Eur J Clin Invest 2005; 35(11): 711-7.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01568.x] [PMID: 16269021]
[246]
Acquaviva F, Castaldo I, Filla A, et al. Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 2008; 7(3): 360-5.
[http://dx.doi.org/10.1007/s12311-008-0036-x] [PMID: 18581197]
[247]
Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2006; 2(10): 551-8.
[http://dx.doi.org/10.1038/nchembio815] [PMID: 16921367]
[248]
Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 2008; 3(4): e1958.
[http://dx.doi.org/10.1371/journal.pone.0001958] [PMID: 18463734]
[249]
Behl C, Skutella T, Lezoualc’H F, et al. Neuroprotection against oxidative stress by estrogens: Structure-activity relationship. Mol Pharmacol 1997; 51(4): 535-41.
[http://dx.doi.org/10.1124/mol.51.4.535] [PMID: 9106616]
[250]
Richardson TE, Yang SH, Wen Y, Simpkins JW. Estrogen protection in Friedreich’s ataxia skin fibroblasts. Endocrinology 2011; 152(7): 2742-9.
[http://dx.doi.org/10.1210/en.2011-0184] [PMID: 21540287]
[251]
Prokai-Tatrai K, Perjesi P, Rivera-Portalatin NM, Simpkins JW, Prokai L. Mechanistic investigations on the antioxidant action of a neuroprotective estrogen derivative. Steroids 2008; 73(3): 280-8.
[http://dx.doi.org/10.1016/j.steroids.2007.10.011] [PMID: 18068745]
[252]
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria—Physiological and pathological implications. Mol Cell Endocrinol 2008; 290(1-2): 51-9.
[http://dx.doi.org/10.1016/j.mce.2008.04.013] [PMID: 18571833]
[253]
Wen Y, Li W, Poteet EC, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 2011; 286(18): 16504-15.
[http://dx.doi.org/10.1074/jbc.M110.208447] [PMID: 21454572]
[254]
Oskoui MB, Darras BT, De Vivo DC. Spinal muscular atrophy: 125 years later and on the verge of a cure. In: Spinal muscular atrophy. Academic Press 2017; pp. 3-19.
[255]
Sucato DJ. Spine deformity in spinal muscular atrophy. J Bone Joint Surg Am 2007; 89(S1)
[PMID: 17272431]
[256]
Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997; 146(1): 67-72.
[http://dx.doi.org/10.1016/S0022-510X(96)00284-5] [PMID: 9077498]
[257]
Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80(1): 155-65.
[http://dx.doi.org/10.1016/0092-8674(95)90460-3] [PMID: 7813012]
[258]
Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995; 80(1): 167-78.
[http://dx.doi.org/10.1016/0092-8674(95)90461-1] [PMID: 7813013]
[259]
Burghes AHM, Beattie CE. Spinal muscular atrophy: Why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10(8): 597-609.
[http://dx.doi.org/10.1038/nrn2670] [PMID: 19584893]
[260]
Eggert C, Chari A, Laggerbauer B, Fischer U. Spinal muscular atrophy: The RNP connection. Trends Mol Med 2006; 12(3): 113-21.
[http://dx.doi.org/10.1016/j.molmed.2006.01.005] [PMID: 16473550]
[261]
Chen TH, Chang JG, Yang YH, et al. Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy. Neurology 2010; 75(24): 2190-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182020332] [PMID: 21172842]
[262]
Messina S, Pane M, Sansone V, et al. Expanded access program with Nusinersen in SMA type I in Italy: Strengths and pitfalls of a successful experience. Neuromuscul Disord 2017; 27(12): 1084-6.
[http://dx.doi.org/10.1016/j.nmd.2017.09.006] [PMID: 29132728]
[263]
Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 2017; 24(9): 520-6.
[http://dx.doi.org/10.1038/gt.2017.34] [PMID: 28485722]
[264]
Hua Y, Sahashi K, Hung G, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010; 24(15): 1634-44.
[http://dx.doi.org/10.1101/gad.1941310] [PMID: 20624852]
[265]
Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN Rx) in children with spinal muscular atrophy. Neurology 2016; 86(10): 890-7.
[http://dx.doi.org/10.1212/WNL.0000000000002445] [PMID: 26865511]
[266]
Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study. Lancet 2016; 388(10063): 3017-26.
[http://dx.doi.org/10.1016/S0140-6736(16)31408-8] [PMID: 27939059]
[267]
Kuntz N, Farwell W, Zhong ZJ, et al. Nusinersen in infants diagnosed with spinal muscular atrophy (SMA): Study design and initial interim efficacy and safety findings from the phase 3 international ENDEAR study (CCI. 002). Neurology 2017; 88(S16)
[268]
Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017; 377(18): 1723-32.
[http://dx.doi.org/10.1056/NEJMoa1702752] [PMID: 29091570]
[269]
Haché M, Swoboda KJ, Sethna N, et al. Intrathecal injections in children with spinal muscular atrophy: Nusinersen clinical trial experience. J Child Neurol 2016; 31(7): 899-906.
[http://dx.doi.org/10.1177/0883073815627882] [PMID: 26823478]
[270]
Poirier A, Weetall M, Heinig K, et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 2018; 6(6): e00447.
[http://dx.doi.org/10.1002/prp2.447] [PMID: 30519476]
[271]
Sturm S, Günther A, Jaber B, et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol 2019; 85(1): 181-93.
[http://dx.doi.org/10.1111/bcp.13786] [PMID: 30302786]
[272]
Dhillon S. Risdiplam: First Approval. Drugs 2020; 80(17): 1853-8.
[http://dx.doi.org/10.1007/s40265-020-01410-z] [PMID: 33044711]
[273]
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27(1): 59-65.
[http://dx.doi.org/10.1038/nbt.1515] [PMID: 19098898]
[274]
Valori CF, Ning K, Wyles M, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010; 2(35): 35ra42.
[http://dx.doi.org/10.1126/scitranslmed.3000830] [PMID: 20538619]
[275]
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377(18): 1713-22.
[http://dx.doi.org/10.1056/NEJMoa1706198] [PMID: 29091557]
[276]
Al-Zaidy S, Pickard AS, Kotha K, et al. Health outcomes in spinal muscular atrophy type 1 following AVXSí 101 gene replacement therapy. Pediatr Pulmonol 2019; 54(2): 179-85.
[http://dx.doi.org/10.1002/ppul.24203] [PMID: 30548438]
[277]
Mendell JR, Lehman KJ, McColly M, et al. AVXS-101 gene-replacement therapy (GRT) in spinal muscular atrophy type 1 (SMA1): Long-term follow-up from the phase 1 clinical trial (S25.006). Neurology 2019; 92(S15)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy