[9]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[15]
Abate G, Marziano M, Rungratanawanich W, Memo M, Uberti D. Nutrition and AGE-ing: Focusing on Alzheimer’s Disease. Oxid Med Cell Longev 2017; 2017: 7039816.
[20]
Beshir SA, Aadithsoorya AM, Parveen A, Goh SS, Hussain N, Menon VB. ADU Therapy to Treat Alzheimer’s Disease: A Narrative Review. Int J Alzheimers Dis 2022; 2022: 9343514.
[27]
Crehan H, Lemere CA. Anti-amyloid-β immunotherapy for Alzheimer’s disease. In: Developing Therapeutics for Alzheimer’s Disease Progress and Challenges. Academic Press 2016; pp. 193-226.
[49]
Tripathi KD. Essentials of Medical Pharmacology. 8th ed.. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. 2019; pp. 426-7.
[51]
Rewar S. A systematic review on Parkinson’s disease (PD). IJRPB 2015; 3(2): 176.
[53]
Goldman SM, Tanner C. Etiology of Parkinson’s disease Parkinson’s Disease and Movement Disorders. London, UK: Williams and Wilkins 1998; pp. 133-58.
[56]
Der Birkmayer WZ. L-3, 4-Dioxyphenylanine (= DOPA)-Effect bei der Parkinson-Akinese. Wien Klin Wochenschr 1961; 45: 787-8.
[69]
(a) Kumakura Y, Danielsen EH, Gjedde A, et al. Elevated [18F] FDOPA utilization in the periaqueductal grey and medial nucleus accumbens of patients with early Parkinson’s disease. Neuroimage 2010; 49(4): 2933-9.;
(b) Gross LA. Occupational therapy involvement in interdisciplinary palliative care for individuals with dementia Doctoral dissertation, Boston University 2019.
[80]
Zheng Z, Chen J, Chopp M. Mechanisms of plasticity remodeling and recovery. In: Stroke. 2021; pp. 129-137.e.
[85]
Bright LJN, Akila R. Huntington’s disease: Current advances and future prospects. Int J Pharma Sci 2021; 13(12)
[88]
Krishnendu PR, Arjun B, Vibina K. Review on evaluating the role of nsaids for the treatment of alzheimer’s disease. Int J Appl Pharm 2021; 13(1): 91-4.
[100]
Bonelli RM, Mahnert FA, Niederwieser G. Olanzapine for Huntington’s disease: An open label study. Clinical neuropharmacology. 2002 Sep 1;25(5):263-5. Squitieri F, Cannella M, Porcellini A, Brusa L, Simonelli M, Ruggieri S. Short-term effects of olanzapine in Huntington disease. Cogn Behav Neurol 2001; 14(1): 69-72.
[143]
Beister A, Kraus P, Kuhn W, Dose M, Weindl A, Gerlach M. The N-methyl-D-aspartate antagonist memantine retards progression of Huntington’s disease. In: Focus on extrapyramidal dysfunction. Vienna: Springer 2004; pp. 117-22.
[165]
Andrich J, Saft C, Gerlach M, et al. Coenzyme Q 10 serum levels in Huntington’s disease. In: Focus on Extrapyramidal Dysfunction. Vienna: Springer 2004; pp. 111-6.
[181]
Dabrowska M, Olejniczak M. Gene therapy for Huntington’s disease using targeted endonucleases. In: Trinucleotide Repeats. New York, NY: Humana 2020; pp. 269-84.
[188]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3(1): 1-9.
[189]
Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med 2017; 377(172): 2.
[254]
Oskoui MB, Darras BT, De Vivo DC. Spinal muscular atrophy: 125 years later and on the verge of a cure. In: Spinal muscular atrophy. Academic Press 2017; pp. 3-19.
[267]
Kuntz N, Farwell W, Zhong ZJ, et al. Nusinersen in infants diagnosed with spinal muscular atrophy (SMA): Study design and initial interim efficacy and safety findings from the phase 3 international ENDEAR study (CCI. 002). Neurology 2017; 88(S16)
[277]
Mendell JR, Lehman KJ, McColly M, et al. AVXS-101 gene-replacement therapy (GRT) in spinal muscular atrophy type 1 (SMA1): Long-term follow-up from the phase 1 clinical trial (S25.006). Neurology 2019; 92(S15)