Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson’s Disease

Author(s): Ahsas Goyal*, Anant Agrawal, Nandini Dubey and Aanchal Verma

Volume 25, Issue 8, 2024

Published on: 07 September, 2023

Page: [937 - 943] Pages: 7

DOI: 10.2174/1389201025666230905092218

Price: $65

Abstract

Parkinson’s disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people’s health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.

Keywords: HMGB1, Parkinson’s disease, neurodegeneration, neuroinflammation, α-synuclein, apoptosis.

Graphical Abstract
[1]
Agrawal, N.; Mishra, R.; Pathak, S.; Goyal, A.; Shah, K. Hydrazides and hydrazones: Robust scaffolds in neurological and neurodegenerative disorders. Lett. Org. Chem., 2023, 20(2), 123-136.
[http://dx.doi.org/10.2174/1570178619666220831122614]
[2]
Varshney, K.K.; Gupta, J.K.; Mujwar, S. Homocysteine induced neurological dysfunctions: A link to neurodegenerative disorders. IJMRHS, 2019, 8(4), 135-146.
[3]
Garabadu, D.; Agrawal, N.; Sharma, A.; Sharma, S. Mitochondrial metabolism: A common link between neuroinflammation and neurodegeneration. Behav. Pharmacol., 2019, 30(8), 641-651.
[http://dx.doi.org/10.1097/FBP.0000000000000505] [PMID: 31625975]
[4]
Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574.
[http://dx.doi.org/10.1007/s43450-022-00277-3]
[5]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415] [PMID: 36106706]
[6]
Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330.
[http://dx.doi.org/10.1007/s12017-019-08590-2] [PMID: 31916219]
[7]
Goyal, A.; Agrawal, A.; Verma, A.; Dubey, N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease. Exp. Mol. Pathol., 2023, 129, 104846.
[http://dx.doi.org/10.1016/j.yexmp.2022.104846] [PMID: 36436571]
[8]
Sasaki, T.; Liu, K.; Agari, T.; Yasuhara, T.; Morimoto, J.; Okazaki, M.; Takeuchi, H.; Toyoshima, A.; Sasada, S.; Shinko, A.; Kondo, A.; Kameda, M.; Miyazaki, I.; Asanuma, M.; Borlongan, C.V.; Nishibori, M.; Date, I. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp. Neurol., 2016, 275(Pt 1), 220-231.
[http://dx.doi.org/10.1016/j.expneurol.2015.11.003] [PMID: 26555088]
[9]
Gao, H.M.; Zhou, H.; Zhang, F.; Wilson, B.C.; Kam, W.; Hong, J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci., 2011, 31(3), 1081-1092.
[http://dx.doi.org/10.1523/JNEUROSCI.3732-10.2011] [PMID: 21248133]
[10]
Huang, J.; Yang, J.; Shen, Y.; Jiang, H.; Han, C.; Zhang, G.; Liu, L.; Xu, X.; Li, J.; Lin, Z.; Xiong, N.; Zhang, Z.; Xiong, J.; Wang, T. HMGB1 mediates autophagy dysfunction via perturbing beclin1-Vps34 complex in dopaminergic cell model. Front. Mol. Neurosci., 2017, 10, 13.
[http://dx.doi.org/10.3389/fnmol.2017.00013] [PMID: 28197072]
[11]
Lotze, M.T.; Tracey, K.J. High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nat. Rev. Immunol., 2005, 5(4), 331-342.
[http://dx.doi.org/10.1038/nri1594] [PMID: 15803152]
[12]
Goodwin, G.H.; Johns, E.W. Isolation and characterisation of two calf-thymus chromatin non-histone proteins with high contents of acidic and basic amino acids. Eur. J. Biochem., 1973, 40(1), 215-219.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb03188.x] [PMID: 4772679]
[13]
Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell. Physiol., 2021, 236(5), 3406-3419.
[http://dx.doi.org/10.1002/jcp.30125] [PMID: 33107103]
[14]
Bianchi, M.E.; Beltrame, M. Flexing DNA: HMG-box proteins and their partners. Am. J. Hum. Genet., 1998, 63(6), 1573-1577.
[http://dx.doi.org/10.1086/302170] [PMID: 9837808]
[15]
Bustin, M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci., 2001, 26(3), 152-153.
[http://dx.doi.org/10.1016/S0968-0004(00)01777-1] [PMID: 11246012]
[16]
Kang, R.; Chen, R.; Zhang, Q.; Hou, W.; Wu, S.; Cao, L.; Huang, J.; Yu, Y.; Fan, X.; Yan, Z.; Sun, X.; Wang, H.; Wang, Q.; Tsung, A.; Billiar, T.R.; Zeh, H.J., III; Lotze, M.T.; Tang, D. HMGB1 in health and disease. Mol. Aspects Med., 2014, 40, 1-116.
[http://dx.doi.org/10.1016/j.mam.2014.05.001] [PMID: 25010388]
[17]
Bianchi, M.E.; Beltrame, M. Upwardly mobile proteins. EMBO Rep., 2000, 1(2), 109-114.
[http://dx.doi.org/10.1093/embo-reports/kvd030] [PMID: 11265747]
[18]
Müller, S.; Scaffidi, P.; Degryse, B.; Bonaldi, T.; Ronfani, L.; Agresti, A.; Beltrame, M.; Bianchi, M.E. NEW EMBO MEMBERS’ REVIEW: The double life of HMGB1 chromatin protein: Architectural factor and extracellular signal. EMBO J., 2001, 20(16), 4337-4340.
[http://dx.doi.org/10.1093/emboj/20.16.4337] [PMID: 11500360]
[19]
Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; Manogue, K.R.; Faist, E.; Abraham, E.; Andersson, J.; Andersson, U.; Molina, P.E.; Abumrad, N.N.; Sama, A.; Tracey, K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999, 285(5425), 248-251.
[http://dx.doi.org/10.1126/science.285.5425.248] [PMID: 10398600]
[20]
Andersson, U.; Wang, H.; Palmblad, K.; Aveberger, A.C.; Bloom, O.; Erlandsson-Harris, H.; Janson, A.; Kokkola, R.; Zhang, M.; Yang, H.; Tracey, K.J. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med., 2000, 192(4), 565-570.
[http://dx.doi.org/10.1084/jem.192.4.565] [PMID: 10952726]
[21]
Enokido, Y.; Yoshitake, A.; Ito, H.; Okazawa, H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun., 2008, 376(1), 128-133.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.108] [PMID: 18762169]
[22]
Daston, M.M.; Ratner, N. Expression of P30, a protein with adhesive properties, in Schwann cells and neurons of the developing and regenerating peripheral nerve. J. Cell Biol., 1991, 112(6), 1229-1239.
[http://dx.doi.org/10.1083/jcb.112.6.1229] [PMID: 1999471]
[23]
Huang, Q.; Liu, J.; Shi, Z.; Zhu, X. Correlation of MMP-9 and HMGB1 expression with the cognitive function in patients with epilepsy and factors affecting the prognosis. Cell. Mol. Biol., 2020, 66(3), 39-47.
[http://dx.doi.org/10.14715/cmb/2020.66.3.6] [PMID: 32538745]
[24]
Makris, G.; Chouliaras, G.; Apostolakou, F.; Papageorgiou, C.; Chrousos, G.P.; Papassotiriou, I.; Pervanidou, P. Increased serum concentrations of high mobility group box 1 (HMGB1) protein in children with autism spectrum disorder. Children, 2021, 8(6), 478.
[http://dx.doi.org/10.3390/children8060478] [PMID: 34198762]
[25]
Bucova, M.; Majernikova, B.; Durmanova, V.; Cudrakova, D.; Gmitterova, K.; Lisa, I.; Klimova, E.; Kluckova, K.; Buc, M. HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis. Neurol. Sci., 2020, 41(3), 599-604.
[http://dx.doi.org/10.1007/s10072-019-04136-3] [PMID: 31728855]
[26]
Lian, Y.J.; Gong, H.; Wu, T.Y.; Su, W.J.; Zhang, Y.; Yang, Y.Y.; Peng, W.; Zhang, T.; Zhou, J.R.; Jiang, C.L.; Wang, Y.X. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav. Immun., 2017, 59, 322-332.
[http://dx.doi.org/10.1016/j.bbi.2016.09.017] [PMID: 27647532]
[27]
Le, K.; Mo, S.; Lu, X.; Idriss Ali, A.; Yu, D.; Guo, Y. Association of circulating blood HMGB1 levels with ischemic stroke: A systematic review and meta-analysis. Neurol. Res., 2018, 40(11), 907-916.
[http://dx.doi.org/10.1080/01616412.2018.1497254] [PMID: 30015578]
[28]
Webster, K.M.; Shultz, S.R.; Ozturk, E.; Dill, L.K.; Sun, M.; Casillas-Espinosa, P.; Jones, N.C.; Crack, P.J.; O’Brien, T.J.; Semple, B.D. Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp. Neurol., 2019, 320, 112979.
[http://dx.doi.org/10.1016/j.expneurol.2019.112979] [PMID: 31229637]
[29]
Hwang, C.S.; Liu, G.T.; Chang, M.D.T.; Liao, I.L.; Chang, H.T. Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 58, 13-18.
[http://dx.doi.org/10.1016/j.nbd.2013.04.013] [PMID: 23639787]
[30]
Gendy, A.M.; El-Sadek, H.M.; Amin, M.M.; Ahmed, K.A.; El-Sayed, M.K.; El-Haddad, A.E.; Soubh, A. Glycyrrhizin prevents 3-nitropropionic acid-induced neurotoxicity by downregulating HMGB1/TLR4/NF-κB p65 signaling, and attenuating oxidative stress, inflammation, and apoptosis in rats. Life Sci., 2023, 314, 121317.
[http://dx.doi.org/10.1016/j.lfs.2022.121317] [PMID: 36566881]
[31]
Gaikwad, S.; Puangmalai, N.; Bittar, A.; Montalbano, M.; Garcia, S.; McAllen, S.; Bhatt, N.; Sonawane, M.; Sengupta, U.; Kayed, R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep., 2021, 36(3), 109419.
[http://dx.doi.org/10.1016/j.celrep.2021.109419] [PMID: 34289368]
[32]
Gao, J.; Zhang, X.; Shu, G.; Chen, N.; Zhang, J.; Xu, F.; Li, F.; Liu, Y.; Wei, Y.; He, Y.; Shi, J.; Gong, Q. Trilobatin rescues cognitive impairment of Alzheimer’s disease by targeting HMGB1 through mediating SIRT3/SOD2 signaling pathway. Acta Pharmacol. Sin., 2022, 43(10), 2482-2494.
[http://dx.doi.org/10.1038/s41401-022-00888-5] [PMID: 35292770]
[33]
Kwak, M.S.; Kim, H.S.; Lee, B.; Kim, Y.H.; Son, M.; Shin, J.S. Immunological significance of HMGB1 post-translational modification and redox biology. Front. Immunol., 2020, 11, 1189.
[http://dx.doi.org/10.3389/fimmu.2020.01189] [PMID: 32587593]
[34]
Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42.
[http://dx.doi.org/10.1007/s43440-020-00163-6] [PMID: 33015736]
[35]
Gong, W.; Li, Y.; Chao, F.; Huang, G.; He, F. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J. Biomed. Sci., 2009, 16(1), 83.
[http://dx.doi.org/10.1186/1423-0127-16-83] [PMID: 19751520]
[36]
Yang, H.; Wang, H.; Czura, C.J.; Tracey, K.J. HMGB1 as a cytokine and therapeutic target. J. Endotoxin Res., 2002, 8(6), 469-472.
[http://dx.doi.org/10.1179/096805102125001091] [PMID: 12697092]
[37]
Gong, W.; Zheng, Y.; Chao, F.; Li, Y.; Xu, Z.; Huang, G.; Gao, X.; Li, S.; He, F. The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J. Biomed. Biotechnol., 2010, 2010, 1-6.
[http://dx.doi.org/10.1155/2010/915234] [PMID: 20379370]
[38]
Gao, H.M.; Hong, J.S. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol., 2008, 29(8), 357-365.
[http://dx.doi.org/10.1016/j.it.2008.05.002] [PMID: 18599350]
[39]
VanPatten, S.; Al-Abed, Y. High mobility group box-1 (HMGb1): Current wisdom and advancement as a potential drug target. J. Med. Chem., 2018, 61(12), 5093-5107.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01136] [PMID: 29268019]
[40]
Meneghini, V.; Bortolotto, V.; Francese, M.T.; Dellarole, A.; Carraro, L.; Terzieva, S.; Grilli, M. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: Relevance for Alzheimer’s disease. J. Neurosci., 2013, 33(14), 6047-6059.
[http://dx.doi.org/10.1523/JNEUROSCI.2052-12.2013] [PMID: 23554486]
[41]
Grilli, M.; Bortolotto, V. Not only a bad guy: Potential proneurogenic role of the RAGE/NF-κB axis in Alzheimer’s disease brain. Neural Regen. Res., 2016, 11(12), 1924-1925.
[http://dx.doi.org/10.4103/1673-5374.197130] [PMID: 28197185]
[42]
Kalathur, R.K.R.; Giner-Lamia, J.; Machado, S.; Ayasolla, K.R.S.; Futschik, M.E. The unfolded protein response and its potential role in Huntington ́s disease elucidated by a systems biology approach. F1000 Res., 2015, 4, 103.
[http://dx.doi.org/10.12688/f1000research.6358.1]
[43]
Son, S.; Bowie, L.E.; Maiuri, T.; Hung, C.L.K.; Desmond, C.R.; Xia, J.; Truant, R. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry. J. Biol. Chem., 2019, 294(6), 1915-1923.
[http://dx.doi.org/10.1074/jbc.RA117.001440] [PMID: 30538129]
[44]
Min, H.J.; Ko, E.A.; Wu, J.; Kim, E.S.; Kwon, M.K.; Kwak, M.S.; Choi, J.E.; Lee, J.E.; Shin, J.S. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J. Immunol., 2013, 190(4), 1797-1806.
[http://dx.doi.org/10.4049/jimmunol.1202472] [PMID: 23303669]
[45]
Brambilla, L.; Martorana, F.; Guidotti, G.; Rossi, D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front. Neurosci., 2018, 12, 622.
[http://dx.doi.org/10.3389/fnins.2018.00622] [PMID: 30210286]
[46]
Gerhard, A.; Pavese, N.; Hotton, G.; Turkheimer, F.; Es, M.; Hammers, A.; Eggert, K.; Oertel, W.; Banati, R.B.; Brooks, D.J. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis., 2006, 21(2), 404-412.
[http://dx.doi.org/10.1016/j.nbd.2005.08.002] [PMID: 16182554]
[47]
Theodore, S.; Cao, S.; McLean, P.J.; Standaert, D.G. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol., 2008, 67(12), 1149-1158.
[http://dx.doi.org/10.1097/NEN.0b013e31818e5e99] [PMID: 19018246]
[48]
Williams-Gray, C.H.; Wijeyekoon, R.; Yarnall, A.J.; Lawson, R.A.; Breen, D.P.; Evans, J.R.; Cummins, G.A.; Duncan, G.W.; Khoo, T.K.; Burn, D.J.; Barker, R.A. S erum immune markers and disease progression in an incident P arkinson’s disease cohort (ICICLE‐PD). Mov. Disord., 2016, 31(7), 995-1003.
[http://dx.doi.org/10.1002/mds.26563] [PMID: 26999434]
[49]
Imamura, K.; Hishikawa, N.; Sawada, M.; Nagatsu, T.; Yoshida, M.; Hashizume, Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol., 2003, 106(6), 518-526.
[http://dx.doi.org/10.1007/s00401-003-0766-2] [PMID: 14513261]
[50]
Santoro, M.; Maetzler, W.; Stathakos, P.; Martin, H.L.; Hobert, M.A.; Rattay, T.W.; Gasser, T.; Forrester, J.V.; Berg, D.; Tracey, K.J.; Riedel, G.; Teismann, P. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol. Dis., 2016, 91, 59-68.
[http://dx.doi.org/10.1016/j.nbd.2016.02.018] [PMID: 26921471]
[51]
Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sci., 2019, 223, 158-165.
[http://dx.doi.org/10.1016/j.lfs.2019.03.030] [PMID: 30880023]
[52]
Ren, Q.; Jiang, X.; Paudel, Y.N.; Gao, X.; Gao, D.; Zhang, P.; Sheng, W.; Shang, X.; Liu, K.; Zhang, X.; Jin, M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson’s disease like pathology in Zebrafish. J. Ethnopharmacol., 2022, 292, 115234.
[http://dx.doi.org/10.1016/j.jep.2022.115234] [PMID: 35358621]
[53]
Gan, P.; Ding, L.; Hang, G.; Xia, Q.; Huang, Z.; Ye, X.; Qian, X. Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through Cathepsin D-dependent HMGB1/TLR4/NF-KB pathway in Parkinson’s disease. Front. Pharmacol., 2020, 11, 776.
[http://dx.doi.org/10.3389/fphar.2020.00776] [PMID: 32528295]
[54]
Tian, Y.; Cao, Y.; Chen, R.; Jing, Y.; Xia, L.; Zhang, S.; Xu, H.; Su, Z. HMGB1 A box protects neurons by potently inhibiting both microglia and T cell-mediated inflammation in a mouse Parkinson’s disease model. Clin. Sci., 2020, 134(15), 2075-2090.
[http://dx.doi.org/10.1042/CS20200553] [PMID: 32706028]
[55]
More, S.V.; Kumar, H.; Kim, I.S.; Song, S.Y.; Choi, D.K. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm., 2013, 2013, 952375.
[http://dx.doi.org/10.1155/2013/952375]
[56]
Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X] [PMID: 26050140]
[57]
Bennett, M.C. The role of α-synuclein in neurodegenerative diseases. Pharmacol. Ther., 2005, 105(3), 311-331.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.010] [PMID: 15737408]
[58]
Lindersson, E.K.; Højrup, P.; Gai, W.P.; Locker, D.; Martin, D.; Jensen, P.H. alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport, 2004, 15(18), 2735-2739.
[PMID: 15597044]
[59]
Song, J.X.; Lu, J.H.; Liu, L.F.; Chen, L.L.; Durairajan, S.S.K.; Yue, Z.; Zhang, H.Q.; Li, M. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression. Autophagy, 2014, 10(1), 144-154.
[http://dx.doi.org/10.4161/auto.26751] [PMID: 24178442]
[60]
Yan, D.; Ma, Z.; Liu, C.; Wang, C.; Deng, Y.; Liu, W.; Xu, B. Corynoxine B ameliorates HMGB1-dependent autophagy dysfunction during manganese exposure in SH-SY5Y human neuroblastoma cells. Food Chem. Toxicol., 2019, 124, 336-348.
[http://dx.doi.org/10.1016/j.fct.2018.12.027] [PMID: 30578841]
[61]
Liu, J.; Liu, W.; Yang, H. Balancing apoptosis and autophagy for Parkinson’s disease therapy: Targeting BCL-2. ACS Chem. Neurosci., 2019, 10(2), 792-802.
[http://dx.doi.org/10.1021/acschemneuro.8b00356] [PMID: 30400738]
[62]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[63]
Angelopoulou, E.; Piperi, C.; Papavassiliou, A.G. High-mobility group box 1 in Parkinson’s disease: From pathogenesis to therapeutic approaches. J. Neurochem., 2018, 146(3), 211-218.
[http://dx.doi.org/10.1111/jnc.14450] [PMID: 29676481]
[64]
Wang, K.; Zhang, B.; Zhang, B.; Wu, K.; Tian, T.; Yan, W.; Huang, M. Paraquat inhibits autophagy via intensifying the interaction between HMGB1 and α-synuclein. Neurotox. Res., 2022, 40(2), 520-529.
[http://dx.doi.org/10.1007/s12640-022-00490-x] [PMID: 35316522]
[65]
Guan, Y.; Li, Y.; Zhao, G.; Li, Y. HMGB1 promotes the starvation-induced autophagic degradation of α-synuclein in SH-SY5Y cells Atg 5-dependently. Life Sci., 2018, 202, 1-10.
[http://dx.doi.org/10.1016/j.lfs.2018.03.031] [PMID: 29551576]
[66]
Wang, K.; Huang, J.; Xie, W.; Huang, L.; Zhong, C.; Chen, Z. Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol., 2016, 11(1), 15.
[http://dx.doi.org/10.1186/s13000-016-0459-5] [PMID: 26822891]
[67]
Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[68]
Burns, R.S.; LeWitt, P.A.; Ebert, M.H.; Pakkenberg, H.; Kopin, I.J. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med., 1985, 312(22), 1418-1421.
[http://dx.doi.org/10.1056/NEJM198505303122203] [PMID: 2581135]
[69]
Chaturvedi, R.K.; Beal, M.F. Mitochondrial approaches for neuroprotection. Ann. N. Y. Acad. Sci., 2008, 1147(1), 395-412.
[http://dx.doi.org/10.1196/annals.1427.027] [PMID: 19076459]
[70]
Panov, A.; Dikalov, S.; Shalbuyeva, N.; Taylor, G.; Sherer, T.; Greenamyre, J.T. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem., 2005, 280(51), 42026-42035.
[http://dx.doi.org/10.1074/jbc.M508628200] [PMID: 16243845]
[71]
Borland, M.K.; Trimmer, P.A.; Rubinstein, J.D.; Keeney, P.M.; Mohanakumar, K.P.; Liu, L.; Bennett, J.P. Jr Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol. Neurodegener., 2008, 3(1), 21.
[http://dx.doi.org/10.1186/1750-1326-3-21] [PMID: 19114014]
[72]
Qi, L.; Sun, X.; Li, F.E.; Zhu, B.S.; Braun, F.K.; Liu, Z.Q.; Tang, J.L.; Wu, C.; Xu, F.; Wang, H.H.; Velasquez, L.A.; Zhao, K.; Lei, F.R.; Zhang, J.G.; Shen, Y.T.; Zou, J.X.; Meng, H.M.; An, G.L.; Yang, L.; Zhang, X.D. HMGB1 promotes mitochondrial dysfunction-triggered striatal neurodegeneration via autophagy and apoptosis activation. PLoS One, 2015, 10(11), e0142901.
[http://dx.doi.org/10.1371/journal.pone.0142901] [PMID: 26565401]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy