Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling

Author(s): Yichao Fan, Boya Zhang, Xinhui Du, Bangmin Wang, Qiang Yan, Liangyu Guo and Weitao Yao*

Volume 24, Issue 3, 2024

Published on: 20 September, 2023

Page: [271 - 287] Pages: 17

DOI: 10.2174/1568009623666230904150957

Price: $65

conference banner
Abstract

Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.

Keywords: TRKA, TRKA overexpression, TRKA fusion, TRKA inhibitor, targeted therapies, tumorigenicity.

Graphical Abstract
[1]
Snider, W.D. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 1994, 77(5), 627-638.
[http://dx.doi.org/10.1016/0092-8674(94)90048-5] [PMID: 8205613]
[2]
Kaplan, D.R.; Martin-Zanca, D.; Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature, 1991, 350(6314), 158-160.
[http://dx.doi.org/10.1038/350158a0] [PMID: 1706478]
[3]
Soppet, D.; Escandon, E.; Maragos, J.; Middlemas, D.S.; Raid, S.W.; Blair, J.; Burton, L.E.; Stanton, B.R.; Kaplan, D.R.; Hunter, T.; Nikolics, K.; Parade, L.F. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell, 1991, 65(5), 895-903.
[http://dx.doi.org/10.1016/0092-8674(91)90396-G] [PMID: 1645620]
[4]
Davies, A.M.; Horton, A.; Burton, L.E.; Schmelzer, C.; Vandlen, R.; Rosenthal, A. Neurotrophin-4/5 is a mammalian-specific survival factor for distinct populations of sensory neurons. J. Neurosci., 1993, 13(11), 4961-4967.
[http://dx.doi.org/10.1523/JNEUROSCI.13-11-04961.1993] [PMID: 8229208]
[5]
Lamballe, F.; Klein, R.; Barbacid, M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell, 1991, 66(5), 967-979.
[http://dx.doi.org/10.1016/0092-8674(91)90442-2] [PMID: 1653651]
[6]
Ip, N.Y.; Stitt, T.N.; Tapley, P.; Klein, R.; Glass, D.J.; Fandl, J.; Greene, L.A.; Barbacid, M.; Yancopoulos, G.D. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron, 1993, 10(2), 137-149.
[http://dx.doi.org/10.1016/0896-6273(93)90306-C] [PMID: 7679912]
[7]
Yuan, Y.; Ye, H.Q.; Ren, Q.C. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int. J. Oncol., 2017, 52(2), 461-472.
[http://dx.doi.org/10.3892/ijo.2017.4230] [PMID: 29345295]
[8]
Khotskaya, Y.B.; Holla, V.R.; Farago, A.F.; Mills Shaw, K.R.; Meric-Bernstam, F.; Hong, D.S. Targeting TRK family proteins in cancer. Pharmacol. Ther., 2017, 173, 58-66.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.006] [PMID: 28174090]
[9]
Kim, M.S.; Jeong, J.; Seo, J.; Kim, H.S.; Kim, S.J.; Jin, W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci. Rep., 2016, 6(1), 33899.
[http://dx.doi.org/10.1038/srep33899] [PMID: 27654855]
[10]
Lin, C.; Ren, Z.; Yang, X.; Yang, R.; Chen, Y.; Liu, Z.; Dai, Z.; Zhang, Y.; He, Y.; Zhang, C.; Wang, X.; Cao, W.; Ji, T. Nerve growth factor (NGF)-TrkA axis in head and neck squamous cell carcinoma triggers EMT and confers resistance to the EGFR inhibitor erlotinib. Cancer Lett., 2020, 472, 81-96.
[http://dx.doi.org/10.1016/j.canlet.2019.12.015] [PMID: 31838083]
[11]
Huson, S.M.; Staab, T.; Pereira, M.; Ward, H.; Paredes, R.; Evans, D.G. Infantile fibrosarcoma with Tpm3-Ntrk1 fusion in a boy with bloom syndrome. Fam. Cancer, 2020.
[http://dx.doi.org/10.1007/s10689-020-00221-1] [PMID: 33219493]
[12]
Wiesner, T.; He, J.; Yelensky, R.; Esteve-Puig, R.; Botton, T.; Yeh, I.; Lipson, D.; Otto, G.; Brennan, K.; Murali, R.; Garrido, M.; Miller, V.A.; Ross, J.S.; Berger, M.F.; Sparatta, A.; Palmedo, G.; Cerroni, L.; Busam, K.J.; Kutzner, H.; Cronin, M.T.; Stephens, P.J.; Bastian, B.C. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun., 2014, 5(1), 3116.
[http://dx.doi.org/10.1038/ncomms4116] [PMID: 24445538]
[13]
Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol., 2019, 32(1), 147-153.
[http://dx.doi.org/10.1038/s41379-018-0118-3] [PMID: 30171197]
[14]
Brodeur, G.M.; Nakagawara, A.; Yamashiro, D.J.; Ikegaki, N.; Liu, X.G.; Azar, C.G.; Lee, C.P.; Evans, A.E. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J. Neurooncol., 1997, 31(1/2), 49-56.
[http://dx.doi.org/10.1023/A:1005729329526] [PMID: 9049830]
[15]
Kamiya, A.; Inokuchi, M.; Otsuki, S.; Sugita, H.; Kato, K.; Uetake, H.; Sugihara, K.; Takagi, Y.; Kojima, K. Prognostic value of tropomyosin-related kinases A, B, and C in gastric cancer. Clin. Transl. Oncol., 2016, 18(6), 599-607.
[http://dx.doi.org/10.1007/s12094-015-1407-7] [PMID: 26459250]
[16]
Lawn, S.; Krishna, N.; Pisklakova, A.; Qu, X.; Fenstermacher, D.A.; Fournier, M.; Vrionis, F.D.; Tran, N.; Chan, J.A.; Kenchappa, R.S.; Forsyth, P.A. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J. Biol. Chem., 2015, 290(6), 3814-3824.
[http://dx.doi.org/10.1074/jbc.M114.599373] [PMID: 25538243]
[17]
Ohta, T.; Watanabe, T.; Katayama, Y.; Kurihara, J.; Yoshino, A.; Nishimoto, H.; Kishimoto, H. TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathology, 2006, 26(3), 170-177.
[http://dx.doi.org/10.1111/j.1440-1789.2006.00678.x] [PMID: 16771171]
[18]
Tajima, Y.; Molina, R.P., Jr; Rorke, L.B.; Kaplan, D.R.; Radeke, M.; Feinstein, S.C.; Lee, V.M.Y.; Trojanowski, J.Q. Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathol., 1998, 95(4), 325-332.
[http://dx.doi.org/10.1007/s004010050806] [PMID: 9560008]
[19]
Regua, A.T.; Aguayo, N.R.; Jalboush, S.A.; Doheny, D.L.; Manore, S.G.; Zhu, D.; Wong, G.L.; Arrigo, A.; Wagner, C.J.; Yu, Y.; Thomas, A.; Chan, M.D.; Ruiz, J.; Jin, G.; Strowd, R.; Sun, P.; Lin, J.; Lo, H.W. TrkA interacts with and phosphorylates STAT3 to enhance gene transcription and promote breast cancer stem cells in triple-negative and HER2-enriched breast cancers. Cancers, 2021, 13(10), 2340.
[http://dx.doi.org/10.3390/cancers13102340] [PMID: 34066153]
[20]
Sakamoto, Y.; Kitajima, Y.; Edakuni, G.; Hamamoto, T.; Miyazaki, K. Combined evaluation of NGF and p75NGFR expression is a biomarker for predicting prognosis in human invasive ductal breast carcinoma. Oncol. Rep., 2001, 8(5), 973-980.
[http://dx.doi.org/10.3892/or.8.5.973] [PMID: 11496301]
[21]
Rasi, G.; Serafino, A.; Bellis, L.; Lonardo, M.T.; Andreola, F.; Zonfrillo, M.; Vennarecci, G.; Pierimarchi, P.; Sinibaldi Vallebona, P.; Ettorre, G.M.; Santoro, E.; Puoti, C. Nerve growth factor involvement in liver cirrhosis and hepatocellular carcinoma. World J. Gastroenterol., 2007, 13(37), 4986-4995.
[http://dx.doi.org/10.3748/wjg.v13.i37.4986] [PMID: 17854142]
[22]
Flørenes, V.A.; Mælandsmo, G.M.; Holm, R.; Reich, R.; Lazarovici, P.; Davidson, B. Expression of activated TrkA protein in melanocytic tumors: Relationship to cell proliferation and clinical outcome. Am. J. Clin. Pathol., 2004, 122(3), 412-420.
[http://dx.doi.org/10.1309/CHFHEYAT44WWP7J3] [PMID: 15362372]
[23]
Miknyoczki, S.J.; Lang, D.; Huang, L.; Klein-Szanto, A.J.P.; Dionne, C.A.; Ruggeri, B.A. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: Expression patterns and effects on in vitro invasive behavior. Int. J. Cancer, 1999, 81(3), 417-427.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990505)81:3<417:AID-IJC16>3.0.CO;2-6] [PMID: 10209957]
[24]
Dang, C.; Zhang, Y.; Ma, Q.; Shimahara, Y. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer. J. Gastroenterol. Hepatol., 2006, 21(5), 850-858.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04074.x] [PMID: 16704535]
[25]
Ricci, A.; Greco, S.; Mariotta, S.; Felici, L.; Bronzetti, E.; Cavazzana, A.; Cardillo, G.; Amenta, F.; Bisetti, A.; Barbolini, G. Neurotrophins and neurotrophin receptors in human lung cancer. Am. J. Respir. Cell Mol. Biol., 2001, 25(4), 439-446.
[http://dx.doi.org/10.1165/ajrcmb.25.4.4470] [PMID: 11694449]
[26]
Gao, F.; Griffin, N.; Faulkner, S.; Rowe, C.W.; Williams, L.; Roselli, S.; Thorne, R.F.; Ferdoushi, A.; Jobling, P.; Walker, M.M.; Hondermarck, H. The neurotrophic tyrosine kinase receptor TrkA and its ligand NGF are increased in squamous cell carcinomas of the lung. Sci. Rep., 2018, 8(1), 8135.
[http://dx.doi.org/10.1038/s41598-018-26408-2] [PMID: 29802376]
[27]
McGregor, L.M.; McCune, B.K.; Graff, J.R.; McDowell, P.R.; Romans, K.E.; Yancopoulos, G.D.; Ball, D.W.; Baylin, S.B.; Nelkin, B.D. Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4540-4545.
[http://dx.doi.org/10.1073/pnas.96.8.4540] [PMID: 10200298]
[28]
Mauri, G.; Valtorta, E.; Cerea, G.; Amatu, A.; Schirru, M.; Marrapese, G.; Fiorillo, V.; Recchimuzzo, P.; Cavenago, I.S.; Bonazzina, E.F.; Motta, V.; Lauricella, C.; Veronese, S.; Tosi, F.; Maiolani, M.; Rospo, G.; Truini, M.; Bonoldi, E.; Christiansen, J.; Potts, S.J.; Siena, S.; Sartore-Bianchi, A. TRKA expression and NTRK1 gene copy number across solid tumours. J. Clin. Pathol., 2018, 71(10), 926-931.
[http://dx.doi.org/10.1136/jclinpath-2018-205124] [PMID: 29802225]
[29]
Kim, M.S.; Kim, G.M.; Choi, Y.J.; Kim, H.J.; Kim, Y.J.; Jin, W. c-Src activation through a TrkA and c-Src interaction is essential for cell proliferation and hematological malignancies. Biochem. Biophys. Res. Commun., 2013, 441(2), 431-437.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.082] [PMID: 24369899]
[30]
Mei, L.C.; Zhuo, L.S.; Xu, H.C.; Huang, W.; Hao, G.F.; Yang, G.F. Conformational adjustment overcomes multiple drug-resistance mutants of tropomyosin receptor kinase. Eur. J. Med. Chem., 2022, 237, 114406.
[http://dx.doi.org/10.1016/j.ejmech.2022.114406] [PMID: 35486994]
[31]
Passiglia, F.; Caparica, R.; Giovannetti, E.; Giallombardo, M.; Listi, A.; Diana, P.; Cirrincione, G.; Caglevic, C.; Raez, L.E.; Russo, A.; Rolfo, C. The potential of neurotrophic tyrosine kinase (NTRK) inhibitors for treating lung cancer. Expert Opin. Investig. Drugs, 2016, 25(4), 385-392.
[http://dx.doi.org/10.1517/13543784.2016.1152261] [PMID: 26881293]
[32]
Vaishnavi, A.; Capelletti, M.; Le, A.T.; Kako, S.; Butaney, M.; Ercan, D.; Mahale, S.; Davies, K.D.; Aisner, D.L.; Pilling, A.B.; Berge, E.M.; Kim, J.; Sasaki, H.; Park, S.; Kryukov, G.; Garraway, L.A.; Hammerman, P.S.; Haas, J.; Andrews, S.W.; Lipson, D.; Stephens, P.J.; Miller, V.A.; Varella-Garcia, M.; Jänne, P.A.; Doebele, R.C. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med., 2013, 19(11), 1469-1472.
[http://dx.doi.org/10.1038/nm.3352] [PMID: 24162815]
[33]
Narayanan, R.; Yepuru, M.; Coss, C.C.; Wu, Z.; Bauler, M.N.; Barrett, C.M.; Mohler, M.L.; Wang, Y.; Kim, J.; Snyder, L.M.; He, Y.; Levy, N.; Miller, D.D.; Dalton, J.T. Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation. PLoS One, 2013, 8(12), e83380.
[http://dx.doi.org/10.1371/journal.pone.0083380] [PMID: 24386191]
[34]
Di Donato, M.; Cernera, G.; Migliaccio, A.; Castoria, G. Nerve growth factor induces proliferation and aggressiveness in prostate cancer cells. Cancers, 2019, 11(6), 784.
[http://dx.doi.org/10.3390/cancers11060784] [PMID: 31174415]
[35]
Stratton, M.R. Exploring the genomes of cancer cells: Progress and promise. Science, 2011, 331(6024), 1553-1558.
[http://dx.doi.org/10.1126/science.1204040] [PMID: 21436442]
[36]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[37]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[38]
Singh, R.; Karri, D.; Shen, H.; Shao, J.; Dasgupta, S.; Huang, S.; Edwards, D.P.; Ittmann, M.M.; O’Malley, B.W.; Yi, P. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J. Clin. Invest., 2018, 128(7), 3129-3143.
[http://dx.doi.org/10.1172/JCI96060] [PMID: 29715200]
[39]
Lagadec, C.; Meignan, S.; Adriaenssens, E.; Foveau, B.; Vanhecke, E.; Romon, R.; Toillon, R.A.; Oxombre, B.; Hondermarck, H.; Le Bourhis, X. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene, 2009, 28(18), 1960-1970.
[http://dx.doi.org/10.1038/onc.2009.61] [PMID: 19330021]
[40]
Bollig-Fischer, A.; Michelhaugh, S.K.; Wijesinghe, P.; Dyson, G.; Kruger, A.; Palanisamy, N.; Choi, L.; Alosh, B.; Ali-Fehmi, R.; Mittal, S. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics. Oncotarget, 2015, 6(16), 14614-14624.
[http://dx.doi.org/10.18632/oncotarget.3786] [PMID: 25970776]
[41]
Kyker-Snowman, K.; Hughes, R.M.; Yankaskas, C.L.; Cravero, K.; Karthikeyan, S.; Button, B.; Waters, I.; Rosen, D.M.; Dennison, L.; Hunter, N.; Donaldson, J.; Christenson, E.S.; Konstantopoulos, K.; Hurley, P.J.; Croessmann, S.; Park, B.H. TrkA overexpression in non-tumorigenic human breast cell lines confers oncogenic and metastatic properties. Breast Cancer Res. Treat., 2020, 179(3), 631-642.
[http://dx.doi.org/10.1007/s10549-019-05506-3] [PMID: 31823098]
[42]
Trouvilliez, S.; Cicero, J.; Lévêque, R.; Aubert, L.; Corbet, C.; Van Outryve, A.; Streule, K.; Angrand, P.O.; Völkel, P.; Magnez, R.; Brysbaert, G.; Mysiorek, C.; Gosselet, F.; Bourette, R.; Adriaenssens, E.; Thuru, X.; Lagadec, C.; de Ruyck, J.; Orian-Rousseau, V.; Le Bourhis, X.; Toillon, R.A. Direct interaction of TrkA/CD44v3 is essential for NGF-promoted aggressiveness of breast cancer cells. J. Exp. Clin. Cancer Res., 2022, 41(1), 110.
[http://dx.doi.org/10.1186/s13046-022-02314-4] [PMID: 35346305]
[43]
Garrido, M.P.; Vallejos, C.; Girardi, S.; Gabler, F.; Selman, A.; López, F.; Vega, M.; Romero, C. NGF/TRKA promotes ADAM17-dependent cleavage of P75 in ovarian cells: Elucidating a pro-tumoral mechanism. Int. J. Mol. Sci., 2022, 23(4), 2124.
[http://dx.doi.org/10.3390/ijms23042124] [PMID: 35216240]
[44]
Vizza, D.; Perri, A.; Toteda, G.; Lupinacci, S.; Leone, F.; Gigliotti, P.; Lofaro, D.; La Russa, A.; Bonofiglio, R. Nerve growth factor exposure promotes tubular epithelial–mesenchymal transition via TGF- β 1 signaling activation. Growth Factors, 2015, 33(3), 169-180.
[http://dx.doi.org/10.3109/08977194.2015.1054989] [PMID: 26066770]
[45]
Tripathi, V.; Sixt, K.M.; Gao, S.; Xu, X.; Huang, J.; Weigert, R.; Zhou, M.; Zhang, Y.E. Direct regulation of alternative splicing by SMAD3 through PCBP1 is essential to the tumor-promoting role of TGF-β. Mol. Cell, 2016, 64(3), 549-564.
[http://dx.doi.org/10.1016/j.molcel.2016.09.013] [PMID: 27746021]
[46]
Yang, X.; Shen, H.; Buckley, B.; Chen, Y.; Yang, N.; Mussell, A.L.; Chernov, M.; Kobzik, L.; Frangou, C.; Han, S.X.; Zhang, J. NTRK1 is a positive regulator of YAP oncogenic function. Oncogene, 2019, 38(15), 2778-2787.
[http://dx.doi.org/10.1038/s41388-018-0609-1] [PMID: 30542115]
[47]
Nakamura, K.; Tan, F.; Li, Z.; Thiele, C.J. NGF activation of TrkA induces vascular endothelial growth factor expression via induction of hypoxia-inducible factor-1α. Mol. Cell. Neurosci., 2011, 46(2), 498-506.
[http://dx.doi.org/10.1016/j.mcn.2010.12.002] [PMID: 21145972]
[48]
Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer. Cancer, 2009, 115(15), 3379-3391.
[http://dx.doi.org/10.1002/cncr.24396] [PMID: 19484787]
[49]
Renz, B.W. Takahashi, R.; Tanaka, T.; Macchini, M.; Hayakawa, Y.; Dantes, Z.; Maurer, H.C.; Chen, X.; Jiang, Z.; Westphalen, C.B.; Ilmer, M.; Valenti, G.; Mohanta, S.K.; Habenicht, A.J.R.; Middelhoff, M.; Chu, T.; Nagar, K.; Tailor, Y.; Casadei, R.; Di Marco, M.; Kleespies, A.; Friedman, R.A.; Remotti, H.; Reichert, M.; Worthley, D.L.; Neumann, J.; Werner, J.; Iuga, A.C.; Olive, K.P.; Wang, T.C. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell, 2018, 33(1), 75-90.e7.
[http://dx.doi.org/10.1016/j.ccell.2017.11.007] [PMID: 29249692]
[50]
Li, J.; Ma, J.; Han, L.; Xu, Q.; Lei, J.; Duan, W.; Li, W.; Wang, F.; Wu, E.; Ma, Q.; Huo, X. Hyperglycemic tumor microenvironment induces perineural invasion in pancreatic cancer. Cancer Biol. Ther., 2015, 16(6), 912-921.
[http://dx.doi.org/10.1080/15384047.2015.1040952] [PMID: 25946624]
[51]
Hayakawa, Y.; Sakitani, K.; Konishi, M.; Asfaha, S.; Niikura, R.; Tomita, H.; Renz, B.W.; Tailor, Y.; Macchini, M.; Middelhoff, M.; Jiang, Z.; Tanaka, T.; Dubeykovskaya, Z.A.; Kim, W.; Chen, X.; Urbanska, A.M.; Nagar, K.; Westphalen, C.B.; Quante, M.; Lin, C.S.; Gershon, M.D.; Hara, A.; Zhao, C.M.; Chen, D.; Worthley, D.L.; Koike, K.; Wang, T.C. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell, 2017, 31(1), 21-34.
[http://dx.doi.org/10.1016/j.ccell.2016.11.005] [PMID: 27989802]
[52]
Pundavela, J.; Demont, Y.; Jobling, P.; Lincz, L.F.; Roselli, S.; Thorne, R.F.; Bond, D.; Bradshaw, R.A.; Walker, M.M.; Hondermarck, H. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am. J. Pathol., 2014, 184(12), 3156-3162.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.009] [PMID: 25285721]
[53]
Liebl, F.; Demir, I.E.; Mayer, K.; Schuster, T.; D’Haese, J.G.; Becker, K.; Langer, R.; Bergmann, F.; Wang, K.; Rosenberg, R.; Novotny, A.R.; Feith, M.; Reim, D.; Friess, H.; Ceyhan, G.O. The impact of neural invasion severity in gastrointestinal malignancies: A clinicopathological study. Ann. Surg., 2014, 260(5), 900-908.
[http://dx.doi.org/10.1097/SLA.0000000000000968] [PMID: 25379860]
[54]
Yang, T.; Li, J.; Zhuo, Z.; Zeng, H.; Tan, T.; Miao, L.; Zheng, M.; Yang, J.; Pan, J.; Hu, C.; Zou, Y.; He, J.; Xia, H. TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis. iScience, 2022, 25(7), 104655.
[http://dx.doi.org/10.1016/j.isci.2022.104655] [PMID: 35811845]
[55]
Liu, D.; Xue, D.; Lu, W.; Yang, Z.; Li, L.; Xia, B.; Wei, J.; Chen, X.; Yang, Y.; Wang, X.; Lin, G. BDE-47 induced PC-12 cell differentiation via TrkA downstream pathways and caused the loss of hippocampal neurons in BALB/c mice. J. Hazard. Mater., 2022, 422, 126850.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126850] [PMID: 34419847]
[56]
Marsland, M.; Dowdell, A.; Jiang, C.C.; Wilmott, J.S.; Scolyer, R.A.; Zhang, X.D.; Hondermarck, H.; Faulkner, S. Expression of NGF/proNGF and their receptors TrkA, p75NTR and sortilin in melanoma. Int. J. Mol. Sci., 2022, 23(8), 4260.
[http://dx.doi.org/10.3390/ijms23084260] [PMID: 35457078]
[57]
Zhu, Z.W.; Friess, H.; Wang, L.; Di Mola, F.F.; Zimmermann, A.; Büchler, M.W. Down-regulation of nerve growth factor in poorly differentiated and advanced human esophageal cancer. Anticancer Res., 2000, 20(1A), 125-132.
[PMID: 10769644]
[58]
Griffin, N.; Gao, F.; Jobling, P.; Oldmeadow, C.; Wills, V.; Walker, M.M.; Faulkner, S.; Hondermarck, H. The neurotrophic tyrosine kinase receptor 1 (TrkA) is overexpressed in oesophageal squamous cell carcinoma. Pathology, 2021, 53(4), 470-477.
[http://dx.doi.org/10.1016/j.pathol.2020.08.009] [PMID: 33143904]
[59]
Faulkner, S.; Jobling, P.; Rowe, C.W.; Rodrigues Oliveira, S.M.; Roselli, S.; Thorne, R.F.; Oldmeadow, C.; Attia, J.; Jiang, C.C.; Zhang, X.D.; Walker, M.M.; Hondermarck, H. Neurotrophin Receptors TrkA, p75NTR, and sortilin are increased and targetable in thyroid cancer. Am. J. Pathol., 2018, 188(1), 229-241.
[http://dx.doi.org/10.1016/j.ajpath.2017.09.008] [PMID: 29037860]
[60]
Xu, J.; Wang, R.; Wang, T.; Wang, T.; Gu, D.; He, Y.; Shu, Y.; Chen, R.; Liu, L. Targeted DNA profiling and the prevalence of NTRK aberrations in Chinese patients with head and neck cancer. Oral Oncol., 2021, 119, 105369.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105369] [PMID: 34098386]
[61]
Yao, J.; Wang, A.; Wang, X.; Zhang, L.; Zhu, Y.; Ou, Y.; Wang, Z.; Yang, Y. Complete response to crizotinib in a metastatic adenocarcinoma of unknown primary harboring MET amplification and NTRK1 co-occurring mutation. OncoTargets Ther., 2019, 12, 4261-4267.
[http://dx.doi.org/10.2147/OTT.S202739] [PMID: 31213843]
[62]
Yang, K.; Xu, Y.C.; Hu, H.Y.; Li, Y.Z.; Li, Q.; Luan, Y.Y.; Liu, Y.; Sun, Y.Q.; Feng, Z.K.; Yan, Y.S.; Yin, C.H. Investigation of a novel NTRK1 variation causing congenital insensitivity to pain with anhidrosis. Front. Genet., 2021, 12, 763467.
[http://dx.doi.org/10.3389/fgene.2021.763467] [PMID: 34938316]
[63]
Shaikh, S.S.; Chen, Y.C.; Halsall, S.A.; Nahorski, M.S.; Omoto, K.; Young, G.T.; Phelan, A.; Woods, C.G. A comprehensive functional analysis of NTRK1 missense mutations causing hereditary sensory and autonomic neuropathy type IV (HSAN IV). Hum. Mutat., 2017, 38(1), 55-63.
[http://dx.doi.org/10.1002/humu.23123] [PMID: 27676246]
[64]
Tacconelli, A.; Farina, A.R.; Cappabianca, L.; Gulino, A.; Mackay, A.R. Alternative TrkAIII splicing: A potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol., 2005, 1(5), 689-698.
[http://dx.doi.org/10.2217/14796694.1.5.689] [PMID: 16556046]
[65]
Reuther, G.W.; Lambert, Q.T.; Caligiuri, M.A.; Der, C.J. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol. Cell. Biol., 2000, 20(23), 8655-8666.
[http://dx.doi.org/10.1128/MCB.20.23.8655-8666.2000] [PMID: 11073967]
[66]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[67]
Lee, S.J.; Kim, N.K.D.; Lee, S.H.; Kim, S.T.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kang, W.K.; Park, W.Y.; Bang, H.J.; Kim, K-M.; Park, K.; Lee, J. NTRK gene amplification in patients with metastatic cancer. Precis. Futur. Med., 2017, 1(3), 129-137.
[http://dx.doi.org/10.23838/pfm.2017.00142]
[68]
Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res., 2006, 12(20), 6243s-6249s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0931] [PMID: 17062708]
[69]
Fang, X.; Djouhri, L.; McMullan, S.; Berry, C.; Okuse, K.; Waxman, S.G.; Lawson, S.N. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J. Neurosci., 2005, 25(19), 4868-4878.
[http://dx.doi.org/10.1523/JNEUROSCI.0249-05.2005] [PMID: 15888662]
[70]
Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol., 2006, 68(1), 619-647.
[http://dx.doi.org/10.1146/annurev.physiol.68.040204.100431] [PMID: 16460286]
[71]
Franklin, S.L.; Davies, A.M.; Wyatt, S. Macrophage stimulating protein is a neurotrophic factor for a sub-population of adult nociceptive sensory neurons. Mol. Cell. Neurosci., 2009, 41(2), 175-185.
[http://dx.doi.org/10.1016/j.mcn.2009.02.009] [PMID: 19285136]
[72]
McKelvey, L.; Shorten, G.D.; O’Keeffe, G.W. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J. Neurochem., 2013, 124(3), 276-289.
[http://dx.doi.org/10.1111/jnc.12093] [PMID: 23157347]
[73]
Moraes, B.C.; Ribeiro-Filho, H.V.; Roldão, A.P.; Toniolo, E.F.; Carretero, G.P.B.; Sgro, G.G.; Batista, F.A.H.; Berardi, D.E.; Oliveira, V.R.S.; Tomasin, R.; Vieceli, F.M.; Pramio, D.T.; Cardoso, A.B.; Figueira, A.C.M.; Farah, S.C.; Devi, L.A.; Dale, C.S.; de Oliveira, P.S.L.; Schechtman, D. Structural analysis of TrkA mutations in patients with congenital insensitivity to pain reveals PLCγ as an analgesic drug target. Sci. Signal., 2022, 15(731), eabm6046.
[http://dx.doi.org/10.1126/scisignal.abm6046] [PMID: 35471943]
[74]
Cancer genome atlas research network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3), 676-690.
[http://dx.doi.org/10.1016/j.cell.2014.09.050] [PMID: 25417114]
[75]
Chu, Y.H.; Wirth, L.J.; Farahani, A.A.; Nosé, V.; Faquin, W.C.; Dias-Santagata, D.; Sadow, P.M. Clinicopathologic features of kinase fusion-related thyroid carcinomas: An integrative analysis with molecular characterization. Mod. Pathol., 2020, 33(12), 2458-2472.
[http://dx.doi.org/10.1038/s41379-020-0638-5] [PMID: 32737449]
[76]
Greco, A.; Miranda, C.; Pagliardini, S.; Fusetti, L.; Bongarzone, I.; Pierotti, M.A. Chromosome I rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer, 1997, 19(2), 112-123.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199706)19:2<112:AID-GCC7>3.0.CO;2-1] [PMID: 9172002]
[77]
Pfeifer, A. Rusinek, D.; Żebracka-Gala, J.; Czarniecka, A.; Chmielik, E.; Zembala-Nożyńska, E.; Wojtaś, B.; Gielniewski, B.; Szpak-Ulczok, S.; Oczko-Wojciechowska, M.; Krajewska, J.; Polańska, J.; Jarząb, B. Novel TG‐FGFR1 and TRIM33‐NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer, 2019, 58(8), 558-566.
[http://dx.doi.org/10.1002/gcc.22737] [PMID: 30664823]
[78]
Shimura, K.; Shibata, H.; Mizuno, Y.; Amano, N.; Hoshino, K.; Kuroda, T.; Kameyama, K.; Matsuse, M.; Mitsutake, N.; Sugino, K.; Yoshimura Noh, J.; Hasegawa, T.; Ishii, T. Rapid growth and early metastasis of papillary thyroid carcinoma in an adolescent girl with graves’ disease. Horm. Res. Paediatr., 2019, 91(3), 210-215.
[http://dx.doi.org/10.1159/000491102] [PMID: 30092570]
[79]
Zheng, Z.; Liebers, M.; Zhelyazkova, B.; Cao, Y.; Panditi, D.; Lynch, K.D.; Chen, J.; Robinson, H.E.; Shim, H.S.; Chmielecki, J.; Pao, W.; Engelman, J.A.; Iafrate, A.J.; Le, L.P. Anchored multiplex PCR for targeted next-generation sequencing. Nat. Med., 2014, 20(12), 1479-1484.
[http://dx.doi.org/10.1038/nm.3729] [PMID: 25384085]
[80]
Park, J.C.; Ashok, A.; Liu, C.; Kang, H. Real-world experience of NTRK fusion–positive thyroid cancer. JCO Precis. Oncol., 2022, 6(6), e2100442.
[http://dx.doi.org/10.1200/PO.21.00442] [PMID: 35171659]
[81]
Lu, R.; Qi, C.; Xiao, M.; Cai, S.; Zheng, M. STRN3-NTRK1: A novel NTRK1 oncogenic fusion in a patient with lung adenocarcinoma. J. Thorac. Oncol., 2020, 15(2), e23-e24.
[http://dx.doi.org/10.1016/j.jtho.2019.08.2508] [PMID: 32127185]
[82]
Yang, S.; Li, L.; Chen, D.; Xiao, M.; Xian, L. EPS15–NTRK1: A novel NTRK1 oncogenic fusion in patient with lung adenocarcinoma. J. Cancer Res. Clin. Oncol., 2020, 146(12), 3389-3392.
[http://dx.doi.org/10.1007/s00432-020-03416-2] [PMID: 33037466]
[83]
Drilon, A.; Siena, S.; Ou, S.H.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[84]
Song, Z.; Xu, C.; Pu, X.; Zhu, Y.; Wang, W.; Li, X.; Gao, Y.; Zhu, W.; He, Y.; Wu, L.; Mao, L.; Chen, L.; Chen, M. High‐throughput sequencing detection and ensartinib treatment of lung cancer harboring NTRK1 fusion. Cancer Commun., 2021, 41(2), 192-196.
[http://dx.doi.org/10.1002/cac2.12133] [PMID: 33452864]
[85]
Xia, H.; Xue, X.; Ding, H.; Ou, Q.; Wu, X.; Nagasaka, M.; Shao, Y.W.; Hu, X.; Ou, S.H.I. Evidence of NTRK1 fusion as resistance mechanism to EGFR TKI in EGFR+ NSCLC: Results from a large-scale survey of NTRK1 fusions in chinese patients with lung cancer. Clin. Lung Cancer, 2020, 21(3), 247-254.
[http://dx.doi.org/10.1016/j.cllc.2019.09.004] [PMID: 31761448]
[86]
Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; Hellmann, M.D.; Barron, D.A.; Schram, A.M.; Hameed, M.; Dogan, S.; Ross, D.S.; Hechtman, J.F.; DeLair, D.F.; Yao, J.; Mandelker, D.L.; Cheng, D.T.; Chandramohan, R.; Mohanty, A.S.; Ptashkin, R.N.; Jayakumaran, G.; Prasad, M.; Syed, M.H.; Rema, A.B.; Liu, Z.Y.; Nafa, K.; Borsu, L.; Sadowska, J.; Casanova, J.; Bacares, R.; Kiecka, I.J.; Razumova, A.; Son, J.B.; Stewart, L.; Baldi, T.; Mullaney, K.A.; Al-Ahmadie, H.; Vakiani, E.; Abeshouse, A.A.; Penson, A.V.; Jonsson, P.; Camacho, N.; Chang, M.T.; Won, H.H.; Gross, B.E.; Kundra, R.; Heins, Z.J.; Chen, H.W.; Phillips, S.; Zhang, H.; Wang, J.; Ochoa, A.; Wills, J.; Eubank, M.; Thomas, S.B.; Gardos, S.M.; Reales, D.N.; Galle, J.; Durany, R.; Cambria, R.; Abida, W.; Cercek, A.; Feldman, D.R.; Gounder, M.M.; Hakimi, A.A.; Harding, J.J.; Iyer, G.; Janjigian, Y.Y.; Jordan, E.J.; Kelly, C.M.; Lowery, M.A.; Morris, L.G.T.; Omuro, A.M.; Raj, N.; Razavi, P.; Shoushtari, A.N.; Shukla, N.; Soumerai, T.E.; Varghese, A.M.; Yaeger, R.; Coleman, J.; Bochner, B.; Riely, G.J.; Saltz, L.B.; Scher, H.I.; Sabbatini, P.J.; Robson, M.E.; Klimstra, D.S.; Taylor, B.S.; Baselga, J.; Schultz, N.; Hyman, D.M.; Arcila, M.E.; Solit, D.B.; Ladanyi, M.; Berger, M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23(6), 703-713.
[http://dx.doi.org/10.1038/nm.4333] [PMID: 28481359]
[87]
Cho, S.H.; Yoon, S.; Lee, D.H.; Kim, S.W.; Kim, K. Recurrence-associated gene signature in patients with stage I non-small-cell lung cancer. Sci. Rep., 2021, 11(1), 19596.
[http://dx.doi.org/10.1038/s41598-021-99197-w] [PMID: 34599262]
[88]
Ge, J.; Yao, B.; Huang, J.; Wu, X.; Bao, H.; Ou, Q.; Shao, Y.W.; Chen, J. Molecular genetic characterization reveals linear tumor evolution in a pulmonary sarcomatoid carcinomas patient with a novel PHF20-NTRK1 fusion: A case report. BMC Cancer, 2019, 19(1), 592.
[http://dx.doi.org/10.1186/s12885-019-5780-4] [PMID: 31208361]
[89]
Doebele, R.C.; Davis, L.E.; Vaishnavi, A.; Le, A.T.; Estrada-Bernal, A.; Keysar, S.; Jimeno, A.; Varella-Garcia, M.; Aisner, D.L.; Li, Y.; Stephens, P.J.; Morosini, D.; Tuch, B.B.; Fernandes, M.; Nanda, N.; Low, J.A. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov., 2015, 5(10), 1049-1057.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0443] [PMID: 26216294]
[90]
Recine, F.; De Vita, A.; Fausti, V.; Pieri, F.; Bongiovanni, A.; Franchini, E.; Casadei, R.; Falasconi, M.C.; Oboldi, D.; Matteucci, F.; Pallotti, M.C.; Mercatali, L.; Riva, N.; Gurrieri, L.; Vanni, S.; Liverani, C.; Miserocchi, G.; Spadazzi, C.; Cocchi, C.; Ibrahim, T. Case report: Adult NTRK-rearranged spindle cell neoplasm: Early tumor shrinkage in a case with bone and visceral metastases treated with targeted therapy. Front. Oncol., 2022, 11, 740676.
[http://dx.doi.org/10.3389/fonc.2021.740676] [PMID: 35070960]
[91]
Chiang, S.; Cotzia, P.; Hyman, D.M.; Drilon, A.; Tap, W.D.; Zhang, L.; Hechtman, J.F.; Frosina, D.; Jungbluth, A.A.; Murali, R.; Park, K.J.; Soslow, R.A.; Oliva, E.; Iafrate, A.J.; Benayed, R.; Ladanyi, M.; Antonescu, C.R. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am. J. Surg. Pathol., 2018, 42(6), 791-798.
[http://dx.doi.org/10.1097/PAS.0000000000001055] [PMID: 29553955]
[92]
Agaram, N.P.; Zhang, L.; Sung, Y.S.; Chen, C.L.; Chung, C.T.; Antonescu, C.R.; Fletcher, C.D.M. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am. J. Surg. Pathol., 2016, 40(10), 1407-1416.
[http://dx.doi.org/10.1097/PAS.0000000000000675] [PMID: 27259011]
[93]
Knezevich, S.R.; McFadden, D.E.; Tao, W.; Lim, J.F.; Sorensen, P.H.B. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet., 1998, 18(2), 184-187.
[http://dx.doi.org/10.1038/ng0298-184] [PMID: 9462753]
[94]
Martin-Zanca, D.; Hughes, S.H.; Barbacid, M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature, 1986, 319(6056), 743-748.
[http://dx.doi.org/10.1038/319743a0] [PMID: 2869410]
[95]
Créancier, L.; Vandenberghe, I.; Gomes, B.; Dejean, C.; Blanchet, J.C.; Meilleroux, J.; Guimbaud, R.; Selves, J.; Kruczynski, A. Chromosomal rearrangements involving the NTRK1 gene in colorectal carcinoma. Cancer Lett., 2015, 365(1), 107-111.
[http://dx.doi.org/10.1016/j.canlet.2015.05.013] [PMID: 26001971]
[96]
Pekova, B.; Sykorova, V.; Mastnikova, K.; Vaclavikova, E.; Moravcova, J.; Vlcek, P.; Lastuvka, P.; Taudy, M.; Katra, R.; Bavor, P.; Kodetova, D.; Chovanec, M.; Drozenova, J.; Astl, J.; Hrabal, P.; Vcelak, J.; Bendlova, B. NTRK fusion genes in thyroid carcinomas: Clinicopathological characteristics and their impacts on prognosis. Cancers, 2021, 13(8), 1932.
[http://dx.doi.org/10.3390/cancers13081932] [PMID: 33923728]
[97]
Prasad, M.L.; Vyas, M.; Horne, M.J.; Virk, R.K.; Morotti, R.; Liu, Z.; Tallini, G.; Nikiforova, M.N.; Christison-Lagay, E.R.; Udelsman, R.; Dinauer, C.A.; Nikiforov, Y.E. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer, 2016, 122(7), 1097-1107.
[http://dx.doi.org/10.1002/cncr.29887] [PMID: 26784937]
[98]
Frattini, V.; Trifonov, V.; Chan, J.M.; Castano, A.; Lia, M.; Abate, F.; Keir, S.T.; Ji, A.X.; Zoppoli, P.; Niola, F.; Danussi, C.; Dolgalev, I.; Porrati, P.; Pellegatta, S.; Heguy, A.; Gupta, G.; Pisapia, D.J.; Canoll, P.; Bruce, J.N.; McLendon, R.E.; Yan, H.; Aldape, K.; Finocchiaro, G.; Mikkelsen, T.; Privé, G.G.; Bigner, D.D.; Lasorella, A.; Rabadan, R.; Iavarone, A. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet., 2013, 45(10), 1141-1149.
[http://dx.doi.org/10.1038/ng.2734] [PMID: 23917401]
[99]
Kim, J.; Lee, Y.; Cho, H.J.; Lee, Y.E.; An, J.; Cho, G.H.; Ko, Y.H.; Joo, K.M.; Nam, D.H. NTRK1 fusion in glioblastoma multiforme. PLoS One, 2014, 9(3), e91940.
[http://dx.doi.org/10.1371/journal.pone.0091940] [PMID: 24647444]
[100]
Singh, D.; Chan, J.M.; Zoppoli, P.; Niola, F.; Sullivan, R.; Castano, A.; Liu, E.M.; Reichel, J.; Porrati, P.; Pellegatta, S.; Qiu, K.; Gao, Z.; Ceccarelli, M.; Riccardi, R.; Brat, D.J.; Guha, A.; Aldape, K.; Golfinos, J.G.; Zagzag, D.; Mikkelsen, T.; Finocchiaro, G.; Lasorella, A.; Rabadan, R.; Iavarone, A. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science, 2012, 337(6099), 1231-1235.
[http://dx.doi.org/10.1126/science.1220834] [PMID: 22837387]
[101]
Alvarez-Breckenridge, C.; Miller, J.J.; Nayyar, N.; Gill, C.M.; Kaneb, A.; D’Andrea, M.; Le, L.P.; Lee, J.; Cheng, J.; Zheng, Z.; Butler, W.E.; Multani, P.; Chow Maneval, E.; Ha Paek, S.; Toyota, B.D.; Dias-Santagata, D.; Santagata, S.; Romero, J.; Shaw, A.T.; Farago, A.F.; Yip, S.; Cahill, D.P.; Batchelor, T.T.; Iafrate, A.J.; Brastianos, P.K. Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor. NPJ Precis. Oncol., 2017, 1(1), 5.
[http://dx.doi.org/10.1038/s41698-017-0009-y] [PMID: 29872694]
[102]
Shinozaki-Ushiku, A.; Ishikawa, S.; Komura, D.; Seto, Y.; Aburatani, H.; Ushiku, T. The first case of gastric carcinoma with NTRK rearrangement: Identification of a novel ATP1B–NTRK1 fusion. Gastric Cancer, 2020, 23(5), 944-947.
[http://dx.doi.org/10.1007/s10120-020-01061-9] [PMID: 32189226]
[103]
Kohsaka, S.; Saito, T.; Akaike, K.; Suehara, Y.; Hayashi, T.; Takagi, T.; Kaneko, K.; Ueno, T.; Kojima, S.; Kohashi, K.; Mano, H.; Oda, Y.; Yao, T. Pediatric soft tissue tumor of the upper arm with LMNA-NTRK1 fusion. Hum. Pathol., 2018, 72, 167-173.
[http://dx.doi.org/10.1016/j.humpath.2017.08.017] [PMID: 28851664]
[104]
Yamashiro, Y.; Kurihara, T.; Hayashi, T.; Suehara, Y.; Yao, T.; Kato, S.; Saito, T. NTRK fusion in Japanese colorectal adenocarcinomas. Sci. Rep., 2021, 11(1), 5635.
[http://dx.doi.org/10.1038/s41598-021-85075-y] [PMID: 33707574]
[105]
Russo, M.; Misale, S.; Wei, G.; Siravegna, G.; Crisafulli, G.; Lazzari, L.; Corti, G.; Rospo, G.; Novara, L.; Mussolin, B.; Bartolini, A.; Cam, N.; Patel, R.; Yan, S.; Shoemaker, R.; Wild, R.; Di Nicolantonio, F.; Bianchi, A.S.; Li, G.; Siena, S.; Bardelli, A. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov., 2016, 6(1), 36-44.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0940] [PMID: 26546295]
[106]
Pietrantonio, F.; Di Nicolantonio, F.; Schrock, A.B.; Lee, J.; Tejpar, S.; Sartore-Bianchi, A.; Hechtman, J.F.; Christiansen, J.; Novara, L.; Tebbutt, N.; Fucà, G.; Antoniotti, C.; Kim, S.T.; Murphy, D.; Berenato, R.; Morano, F.; Sun, J.; Min, B.; Stephens, P.J.; Chen, M.; Lazzari, L.; Miller, V.A.; Shoemaker, R.; Amatu, A.; Milione, M.; Ross, J.S.; Siena, S.; Bardelli, A.; Ali, S.M.; Falcone, A.; de Braud, F.; Cremolini, C. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J. Natl. Cancer Inst., 2017, 109(12)
[http://dx.doi.org/10.1093/jnci/djx089] [PMID: 29370427]
[107]
Hechtman, J.F.; Benayed, R.; Hyman, D.M.; Drilon, A.; Zehir, A.; Frosina, D.; Arcila, M.E.; Dogan, S.; Klimstra, D.S.; Ladanyi, M.; Jungbluth, A.A. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am. J. Surg. Pathol., 2017, 41(11), 1547-1551.
[http://dx.doi.org/10.1097/PAS.0000000000000911] [PMID: 28719467]
[108]
Qaddoumi, I.; Orisme, W.; Wen, J.; Santiago, T.; Gupta, K.; Dalton, J.D.; Tang, B.; Haupfear, K.; Punchihewa, C.; Easton, J.; Mulder, H.; Boggs, K.; Shao, Y.; Rusch, M.; Becksfort, J.; Gupta, P.; Wang, S.; Lee, R.P.; Brat, D.; Peter Collins, V.; Dahiya, S.; George, D.; Konomos, W.; Kurian, K.M.; McFadden, K.; Serafini, L.N.; Nickols, H.; Perry, A.; Shurtleff, S.; Gajjar, A.; Boop, F.A.; Klimo, P.D., Jr; Mardis, E.R.; Wilson, R.K.; Baker, S.J.; Zhang, J.; Wu, G.; Downing, J.R.; Tatevossian, R.G.; Ellison, D.W. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol., 2016, 131(6), 833-845.
[http://dx.doi.org/10.1007/s00401-016-1539-z] [PMID: 26810070]
[109]
Stransky, N.; Cerami, E.; Schalm, S.; Kim, J.L.; Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun., 2014, 5(1), 4846.
[http://dx.doi.org/10.1038/ncomms5846] [PMID: 25204415]
[110]
López, G.Y.; Perry, A.; Harding, B.; Li, M.; Santi, M. CDKN2A/B loss is associated with anaplastic transformation in a case of NTRK2 fusion-positive pilocytic astrocytoma. Neuropathol. Appl. Neurobiol., 2019, 45(2), 174-178.
[http://dx.doi.org/10.1111/nan.12503] [PMID: 29804288]
[111]
Prabhakaran, N.; Guzman, M.A.; Navalkele, P.; Chow-Maneval, E.; Batanian, J.R. Novel TLE4-NTRK2 fusion in a ganglioglioma identified by array-CGH and confirmed by NGS: Potential for a gene targeted therapy. Neuropathology, 2018, 38(4), 380-386.
[http://dx.doi.org/10.1111/neup.12458] [PMID: 29502353]
[112]
Jones, D.T.W. Hutter, B.; Jäger, N.; Korshunov, A.; Kool, M.; Warnatz, H.J.; Zichner, T.; Lambert, S.R.; Ryzhova, M.; Quang, D.A.K.; Fontebasso, A.M.; Stütz, A.M.; Hutter, S.; Zuckermann, M.; Sturm, D.; Gronych, J.; Lasitschka, B.; Schmidt, S.; Şeker-Cin, H.; Witt, H.; Sultan, M.; Ralser, M.; Northcott, P.A.; Hovestadt, V.; Bender, S.; Pfaff, E.; Stark, S.; Faury, D.; Schwartzentruber, J.; Majewski, J.; Weber, U.D.; Zapatka, M.; Raeder, B.; Schlesner, M.; Worth, C.L.; Bartholomae, C.C.; von Kalle, C.; Imbusch, C.D.; Radomski, S.; Lawerenz, C.; van Sluis, P.; Koster, J.; Volckmann, R.; Versteeg, R.; Lehrach, H.; Monoranu, C.; Winkler, B.; Unterberg, A.; Herold-Mende, C.; Milde, T.; Kulozik, A.E.; Ebinger, M.; Schuhmann, M.U.; Cho, Y.J.; Pomeroy, S.L.; von Deimling, A.; Witt, O.; Taylor, M.D.; Wolf, S.; Karajannis, M.A.; Eberhart, C.G.; Scheurlen, W.; Hasselblatt, M.; Ligon, K.L.; Kieran, M.W.; Korbel, J.O.; Yaspo, M.L.; Brors, B.; Felsberg, J.; Reifenberger, G.; Collins, V.P.; Jabado, N.; Eils, R.; Lichter, P.; Pfister, S.M. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat. Genet., 2013, 45(8), 927-932.
[http://dx.doi.org/10.1038/ng.2682] [PMID: 23817572]
[113]
Michal, M.; Hájková, V.; Skálová, A.; Michal, M. STRN-NTRK3-rearranged mesenchymal tumor of the uterus. Am. J. Surg. Pathol., 2019, 43(8), 1152-1154.
[http://dx.doi.org/10.1097/PAS.0000000000001292] [PMID: 31107720]
[114]
Yeh, I.; Tee, M.K.; Botton, T.; Shain, A.H.; Sparatta, A.J.; Gagnon, A.; Vemula, S.S.; Garrido, M.C.; Nakamaru, K.; Isoyama, T.; McCalmont, T.H.; LeBoit, P.E.; Bastian, B.C. NTRK3 kinase fusions in Spitz tumours. J. Pathol., 2016, 240(3), 282-290.
[http://dx.doi.org/10.1002/path.4775] [PMID: 27477320]
[115]
Wu, G.; Diaz, A.K.; Paugh, B.S.; Rankin, S.L.; Ju, B.; Li, Y.; Zhu, X.; Qu, C.; Chen, X.; Zhang, J.; Easton, J.; Edmonson, M.; Ma, X.; Lu, C.; Nagahawatte, P.; Hedlund, E.; Rusch, M.; Pounds, S.; Lin, T.; Onar-Thomas, A.; Huether, R.; Kriwacki, R.; Parker, M.; Gupta, P.; Becksfort, J.; Wei, L.; Mulder, H.L.; Boggs, K.; Vadodaria, B.; Yergeau, D.; Russell, J.C.; Ochoa, K.; Fulton, R.S.; Fulton, L.L.; Jones, C.; Boop, F.A.; Broniscer, A.; Wetmore, C.; Gajjar, A.; Ding, L.; Mardis, E.R.; Wilson, R.K.; Taylor, M.R.; Downing, J.R.; Ellison, D.W.; Zhang, J.; Baker, S.J. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet., 2014, 46(5), 444-450.
[http://dx.doi.org/10.1038/ng.2938] [PMID: 24705251]
[116]
Seethala, R.R.; Chiosea, S.I.; Liu, C.Z.; Nikiforova, M.; Nikiforov, Y.E. Clinical and morphologic features of ETV6-NTRK3 translocated papillary thyroid carcinoma in an adult population without radiation exposure. Am. J. Surg. Pathol., 2017, 41(4), 446-457.
[http://dx.doi.org/10.1097/PAS.0000000000000814] [PMID: 28125451]
[117]
Iyama, K.; Matsuse, M.; Mitsutake, N.; Rogounovitch, T.; Saenko, V.; Suzuki, K. Identification of three novel fusion oncogenes, Sqstm1/Ntrk3, Afap1l2/Ret, and Ppfibp2/Ret, in thyroid cancers of young patients in Fukushima. Thyroid, 2017, 27(6), 811-818.
[http://dx.doi.org/10.1089/thy.2016.0673]
[118]
Tallegas, M.; Fraitag, S.; Binet, A.; Orbach, D.; Jourdain, A. Reynaud, S Novel Khdrbs1-Ntrk3 rearrangement in a congenital pediatric Cd34-positive skin tumor: A case report. Int. J. Pathol., 2019, 474(1), 111-115.
[http://dx.doi.org/10.1007/s00428-018-2415-0]
[119]
Farago, A.F.; Taylor, M.S.; Doebele, R.C.; Zhu, V.W.; Kummar, S.; Spira, A.I.; Boyle, T.A.; Haura, E.B.; Arcila, M.E.; Benayed, R.; Aisner, D.L.; Horick, N.K.; Lennerz, J.K.; Le, L.P.; Iafrate, A.J.; Ou, S.H.I.; Shaw, A.T.; Mino-Kenudson, M.; Drilon, A. Clinicopathologic features of non–small-cell lung cancer harboring an NTRK gene fusion. JCO Precis. Oncol., 2018, 2018(2), 1-12.
[http://dx.doi.org/10.1200/PO.18.00037] [PMID: 30215037]
[120]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[121]
Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: Implications for NTRK-targeted therapeutics. JCO Precis. Oncol., 2018, 2018(2), 1-20.
[http://dx.doi.org/10.1200/PO.18.00183] [PMID: 30637364]
[122]
Brenca, M.; Rossi, S.; Polano, M.; Gasparotto, D.; Zanatta, L.; Racanelli, D.; Valori, L.; Lamon, S.; Dei Tos, A.P.; Maestro, R. Transcriptome sequencing identifies ETV6-NTRK3 as a gene fusion involved in GIST. J. Pathol., 2016, 238(4), 543-549.
[http://dx.doi.org/10.1002/path.4677] [PMID: 26606880]
[123]
Taylor, J.; Pavlick, D.; Yoshimi, A.; Marcelus, C.; Chung, S.S.; Hechtman, J.F.; Benayed, R.; Cocco, E.; Durham, B.H.; Bitner, L.; Inoue, D.; Chung, Y.R.; Mullaney, K.; Watts, J.M.; Diamond, E.L.; Albacker, L.A.; Mughal, T.I.; Ebata, K.; Tuch, B.B.; Ku, N.; Scaltriti, M.; Roshal, M.; Arcila, M.; Ali, S.; Hyman, D.M.; Park, J.H.; Abdel-Wahab, O. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J. Clin. Invest., 2018, 128(9), 3819-3825.
[http://dx.doi.org/10.1172/JCI120787] [PMID: 29920189]
[124]
Laé, M.; Fréneaux, P.; Sastre-Garau, X.; Chouchane, O.; Sigal-Zafrani, B.; Vincent-Salomon, A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod. Pathol., 2009, 22(2), 291-298.
[http://dx.doi.org/10.1038/modpathol.2008.184] [PMID: 19011601]
[125]
Lezcano, C.; Shoushtari, A.N.; Ariyan, C.; Hollmann, T.J.; Busam, K.J. Primary and metastatic melanoma with NTRK fusions. Am. J. Surg. Pathol., 2018, 42(8), 1052-1058.
[http://dx.doi.org/10.1097/PAS.0000000000001070] [PMID: 29683819]
[126]
Bagal, S.K.; Andrews, M.; Bechle, B.M.; Bian, J.; Bilsland, J.; Blakemore, D.C.; Braganza, J.F.; Bungay, P.J.; Corbett, M.S.; Cronin, C.N.; Cui, J.J.; Dias, R.; Flanagan, N.J.; Greasley, S.E.; Grimley, R.; James, K.; Johnson, E.; Kitching, L.; Kraus, M.L.; McAlpine, I.; Nagata, A.; Ninkovic, S.; Omoto, K.; Scales, S.; Skerratt, S.E.; Sun, J.; Tran-Dubé, M.; Waldron, G.J.; Wang, F.; Warmus, J.S. Discovery of potent, selective, and peripherally restricted pan-Trk kinase inhibitors for the treatment of pain. J. Med. Chem., 2018, 61(15), 6779-6800.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00633] [PMID: 29944371]
[127]
Larotrectinib, O K’d for Cancers with TRK Fusions. Cancer Discov., 2019, 9(1), 8-9.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2018-163] [PMID: 30510115]
[128]
Scott, L.J. Larotrectinib: First global approval. Drugs, 2019, 79(2), 201-206.
[http://dx.doi.org/10.1007/s40265-018-1044-x] [PMID: 30635837]
[129]
Davies, K.D.; Mahale, S.; Astling, D.P.; Aisner, D.L.; Le, A.T.; Hinz, T.K.; Vaishnavi, A.; Bunn, P.A., Jr; Heasley, L.E.; Tan, A.C.; Camidge, D.R.; Varella-Garcia, M.; Doebele, R.C. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One, 2013, 8(12), e82236.
[http://dx.doi.org/10.1371/journal.pone.0082236] [PMID: 24349229]
[130]
Taipale, M.; Krykbaeva, I.; Whitesell, L.; Santagata, S.; Zhang, J.; Liu, Q.; Gray, N.S.; Lindquist, S. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat. Biotechnol., 2013, 31(7), 630-637.
[http://dx.doi.org/10.1038/nbt.2620] [PMID: 23811600]
[131]
Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; Tuch, B.B.; Ebata, K.T.; Reynolds, M.; Smith, S.; Cruickshank, S.; Cox, M.C.; Pappo, A.S.; Hawkins, D.S. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol., 2018, 19(5), 705-714.
[http://dx.doi.org/10.1016/S1470-2045(18)30119-0] [PMID: 29606586]
[132]
DuBois, S.G.; Laetsch, T.W.; Federman, N.; Turpin, B.K.; Albert, C.M.; Nagasubramanian, R.; Anderson, M.E.; Davis, J.L.; Qamoos, H.E.; Reynolds, M.E.; Cruickshank, S.; Cox, M.C.; Hawkins, D.S.; Mascarenhas, L.; Pappo, A.S. The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer, 2018, 124(21), 4241-4247.
[http://dx.doi.org/10.1002/cncr.31701] [PMID: 30204247]
[133]
Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; Mascarenhas, L.; Geoerger, B.; Dowlati, A.; Pappo, A.S.; Bielack, S.; Doz, F.; McDermott, R.; Patel, J.D.; Schilder, R.J.; Tahara, M.; Pfister, S.M.; Witt, O.; Ladanyi, M.; Rudzinski, E.R.; Nanda, S.; Childs, B.H.; Laetsch, T.W.; Hyman, D.M.; Drilon, A. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol., 2020, 21(4), 531-540.
[http://dx.doi.org/10.1016/S1470-2045(19)30856-3] [PMID: 32105622]
[134]
Al-Salama, Z.T.; Keam, S.J. Entrectinib: First global approval. Drugs, 2019, 79(13), 1477-1483.
[http://dx.doi.org/10.1007/s40265-019-01177-y] [PMID: 31372957]
[135]
Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.J.; Wolf, J.; Seto, T.; Cho, B.C.; Patel, M.R.; Chiu, C.H.; John, T.; Goto, K.; Karapetis, C.S.; Arkenau, H.T.; Kim, S.W.; Ohe, Y.; Li, Y.C.; Chae, Y.K.; Chung, C.H.; Otterson, G.A.; Murakami, H.; Lin, C.C.; Tan, D.S.W.; Prenen, H.; Riehl, T.; Chow-Maneval, E.; Simmons, B.; Cui, N.; Johnson, A.; Eng, S.; Wilson, T.R.; Doebele, R.C. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1–2 trials. Lancet Oncol., 2020, 21(2), 261-270.
[http://dx.doi.org/10.1016/S1470-2045(19)30690-4] [PMID: 31838015]
[136]
Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; Besse, B.; Chawla, S.P.; Bazhenova, L.; Krauss, J.C.; Chae, Y.K.; Barve, M.; Garrido-Laguna, I.; Liu, S.V.; Conkling, P.; John, T.; Fakih, M.; Sigal, D.; Loong, H.H.; Buchschacher, G.L., Jr; Garrido, P.; Nieva, J.; Steuer, C.; Overbeck, T.R.; Bowles, D.W.; Fox, E.; Riehl, T.; Chow-Maneval, E.; Simmons, B.; Cui, N.; Johnson, A.; Eng, S.; Wilson, T.R.; Demetri, G.D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol., 2020, 21(2), 271-282.
[http://dx.doi.org/10.1016/S1470-2045(19)30691-6] [PMID: 31838007]
[137]
Shaw, A.T.; Riely, G.J.; Bang, Y.J.; Kim, D.W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.; Shapiro, G.I.; Usari, T.; Wang, S.C.; Wilner, K.D.; Clark, J.W.; Ou, S.H.I. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): Updated results, including overall survival, from PROFILE 1001. Ann. Oncol., 2019, 30(7), 1121-1126.
[http://dx.doi.org/10.1093/annonc/mdz131] [PMID: 30980071]
[138]
Wang, B.; Gao, Y.; Huang, Y.; Ou, Q.; Fang, T.; Tang, C.; Wu, X.; Shao, Y.W. Durable clinical response to crizotinib in IRF2BP2-NTRK1 non–small-cell lung cancer. Clin. Lung Cancer, 2019, 20(3), e233-e237.
[http://dx.doi.org/10.1016/j.cllc.2018.12.017] [PMID: 30691963]
[139]
Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D.M.; Hechtman, J.; Wei, G.; Cam, N.R.; Christiansen, J.; Luo, D.; Maneval, E.C.; Bauer, T.; Patel, M.; Liu, S.V.; Ou, S.H.I.; Farago, A.; Shaw, A.; Shoemaker, R.F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A.L. What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol., 2016, 27(5), 920-926.
[http://dx.doi.org/10.1093/annonc/mdw042] [PMID: 26884591]
[140]
Duan, Y.; Wang, J.; Zhu, S.; Tu, Z.C.; Zhang, Z.; Chan, S.; Ding, K. Design, synthesis, and Structure–Activity Relationships (SAR) of 3-vinylindazole derivatives as new selective tropomyosin receptor kinases (Trk) inhibitors. Eur. J. Med. Chem., 2020, 203, 112552.
[http://dx.doi.org/10.1016/j.ejmech.2020.112552] [PMID: 32702585]
[141]
Drilon, A. Trk inhibitors in trk fusion-positive cancers. ESMO, 2019, 203, 112552.
[http://dx.doi.org/10.1093/annonc/mdz282]
[142]
Cocco, E.; Schram, A.M.; Kulick, A.; Misale, S.; Won, H.H.; Yaeger, R.; Razavi, P.; Ptashkin, R.; Hechtman, J.F.; Toska, E.; Cownie, J.; Somwar, R.; Shifman, S.; Mattar, M.; Selçuklu, S.D.; Samoila, A.; Guzman, S.; Tuch, B.B.; Ebata, K.; de Stanchina, E.; Nagy, R.J.; Lanman, R.B.; Houck-Loomis, B.; Patel, J.A.; Berger, M.F.; Ladanyi, M.; Hyman, D.M.; Drilon, A.; Scaltriti, M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med., 2019, 25(9), 1422-1427.
[http://dx.doi.org/10.1038/s41591-019-0542-z] [PMID: 31406350]
[143]
Wu, L.W.; Pavlock, T.; Patterson, A.; Post, A.; Ambrose, C.; Rajaram, V.; Pavlick, D.C.; Cooke, M.; Miller, V.A.; Albacker, L.A.; Ali, S.M.; Smith, S.; Cox, M.C.; Martin, A.; Megison, S.; Laetsch, T.W. Durable clinical response to larotrectinib in an adolescent patient with an undifferentiated sarcoma harboring an STRN-NTRK2 fusion. JCO Precis. Oncol., 2018, 2(2), 1-8.
[http://dx.doi.org/10.1200/PO.18.00101] [PMID: 32913990]
[144]
Ziegler, D.S.; Wong, M.; Mayoh, C.; Kumar, A.; Tsoli, M.; Mould, E.; Tyrrell, V.; Khuong-Quang, D.A.; Pinese, M.; Gayevskiy, V.; Cohn, R.J.; Lau, L.M.S.; Reynolds, M.; Cox, M.C.; Gifford, A.; Rodriguez, M.; Cowley, M.J.; Ekert, P.G.; Marshall, G.M.; Haber, M. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br. J. Cancer, 2018, 119(6), 693-696.
[http://dx.doi.org/10.1038/s41416-018-0251-2] [PMID: 30220707]
[145]
Laetsch, T.W.; Hong, D.S. Tropomyosin receptor kinase inhibitors for the treatment of TRK fusion cancer. Clin. Cancer Res., 2021, 27(18), 4974-4982.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0465] [PMID: 33893159]
[146]
Drilon, A.; Ou, S.H.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; Zhai, D.; Deng, W.; Huang, Z.; Rogers, E.; Liu, J.; Whitten, J.; Lim, J.K.; Stopatschinskaja, S.; Hyman, D.M.; Doebele, R.C.; Cui, J.J.; Shaw, A.T. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent- front mutations. Cancer Discov., 2018, 8(10), 1227-1236.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0484] [PMID: 30093503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy