Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Pegylated Nanoparticles for Brain Targeting- Opportunities and Challenges

Author(s): Utsav Gupta* and Shaheen Sultana

Volume 13, Issue 3, 2023

Published on: 06 September, 2023

Page: [199 - 209] Pages: 11

DOI: 10.2174/2468187313666230904150849

Price: $65

Abstract

As the blood-brain barrier (BBB) stops hazardous substances from entering the brain, creating treatment strategies to treat central nervous system (CNS) conditions is difficult. By circumventing the BBB, nanotechnology has emerged as a viable method for targeted medicine delivery to the brain. PEGylated nanoparticles (PEGNPs) have shown the ability to encapsulate a range of drugs and deliver them to the deepest regions of the brain. PEGNPs are a helpful tool in preclinical research for CNS diseases because of their extreme flexibility. Before PEGNPs can be employed in clinical practise, however, issues with their design and optimization for efficient brain targeting, as well as their long-term safety, must be resolved. Moreover, it is crucial to comprehend the basic principles of PEGNP trafficking through the BBB and how they affect CNS cells. Despite these difficulties, PEGNPs have the potential to completely alter the way CNS diseases are treated by allowing for precise medication delivery to the brain. This review emphasizes the potential and difficulties in using PEGNPs for brain targeting and describes current breakthroughs in PEGNP research for CNS diseases.

Keywords: PEGylated nanoparticles, Liposomes, BBB, Brain disorders, Alzheimer’s, targeted delivery.

Graphical Abstract
[1]
Gajbhiye KR, Pawar A, Mahadik KR, Gajbhiye V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids Surf B Biointerfaces 2020; 187: 110770.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110770] [PMID: 31926790]
[2]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: A review. J Pharm Pharm Sci 2003; 6(2): 252-73.
[PMID: 12935438]
[3]
Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517-24.
[http://dx.doi.org/10.1172/JCI118699] [PMID: 8647944]
[4]
Pardridge WM. Blood-brain barrier drug targeting: The future of brain drug development. Mol Interv 2003; 3(2): 90-51.
[http://dx.doi.org/10.1124/mi.3.2.90] [PMID: 14993430]
[5]
Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2(1): 86-98.
[http://dx.doi.org/10.1602/neurorx.2.1.86] [PMID: 15717060]
[6]
Moses MA, Brem H, Langer R. Advancing the field of drug delivery. Cancer Cell 2003; 4(5): 337-41.
[http://dx.doi.org/10.1016/S1535-6108(03)00276-9] [PMID: 14667500]
[7]
Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci 2010; 40(5): 385-403.
[http://dx.doi.org/10.1016/j.ejps.2010.05.003] [PMID: 20497904]
[8]
de Boer AG, Breimer DD. Chapter 20 Cytokines and blood-brain barrier permeability. In: Progress in Brain Research Elsevier. 1998; 115: pp. 425-51.
[9]
Petty MA, Lo EH. Junctional complexes of the blood–brain barrier: Permeability changes in neuroinflammation. Prog Neurobiol 2002; 68(5): 311-23.
[http://dx.doi.org/10.1016/S0301-0082(02)00128-4] [PMID: 12531232]
[10]
Wahl M, Unterberg A, Baethmann A, Schilling L. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 1988; 8(5): 621-34.
[http://dx.doi.org/10.1038/jcbfm.1988.109] [PMID: 2843554]
[11]
Kastin AJ, Pan W, Maness LM, Banks WA. Peptides crossing the blood–brain barrier: Some unusual observations. Brain Res 1999; 848(1-2): 96-100.
[http://dx.doi.org/10.1016/S0006-8993(99)01961-7] [PMID: 10612701]
[12]
Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor. J Neurochem 1985; 44(6): 1771-8.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb07167.x] [PMID: 2859355]
[13]
Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res 2001; 889(1-2): 49-56.
[http://dx.doi.org/10.1016/S0006-8993(00)03108-5] [PMID: 11166685]
[14]
Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: A permeability study. Brain Res 2006; 1109(1): 1-13.
[http://dx.doi.org/10.1016/j.brainres.2006.06.027] [PMID: 16857178]
[15]
Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr Med Chem 2012; 19(19): 3070-102.
[http://dx.doi.org/10.2174/092986712800784702] [PMID: 22612696]
[16]
Bellavance MA, Blanchette M, Fortin D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 2008; 10(1): 166-77.
[http://dx.doi.org/10.1208/s12248-008-9018-7] [PMID: 18446517]
[17]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[18]
Minn A, Leclerc S, Heydel JM, et al. Drug transport into the mammalian brain: The nasal pathway and its specific metabolic barrier. J Drug Target 2002; 10(4): 285-96.
[http://dx.doi.org/10.1080/713714452] [PMID: 12164377]
[19]
Holmes D. The next big things are tiny. Lancet Neurol 2013; 12(1): 31-2.
[http://dx.doi.org/10.1016/S1474-4422(12)70313-7] [PMID: 23237899]
[20]
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas 2012; 73(1): 45-51.
[http://dx.doi.org/10.1016/j.maturitas.2011.12.015] [PMID: 22261367]
[21]
Youns M, Hoheisel JD, Efferth T. Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 2011; 12(3): 357-65.
[http://dx.doi.org/10.2174/138945011794815257] [PMID: 20955146]
[22]
Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant KK. Nanostructured materials in drug and gene delivery: A review of the state of the art. Crit Rev Ther Drug Carrier Syst 2011; 28(2): 101-64.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i2.10]
[23]
Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L. Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 2006; 49(20): 6087-93.
[http://dx.doi.org/10.1021/jm060515m] [PMID: 17004722]
[24]
Provenzale JM, Silva GA. Uses of nanoparticles for central nervous system imaging and therapy. AJNR Am J Neuroradiol 2009; 30(7): 1293-301.
[http://dx.doi.org/10.3174/ajnr.A1590] [PMID: 19617446]
[25]
Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[26]
Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 2012; 38(4): 387-411.
[http://dx.doi.org/10.3109/03639045.2011.608191] [PMID: 21954902]
[27]
Martin-Banderas L, Holgado MA. Nanostructures for drug delivery to the brain. Curr Chem 2011; 148(34): 5303-21.
[http://dx.doi.org/10.2174/092986711798184262]
[28]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013: 1-18.
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[29]
Damodaran VBFC. Protein PEGylation: An overview of chemistry and process considerations. Eur Pharm Rev 2010; 15(1): 18-26.
[30]
Pasut G, Veronese FM. PEGylation of proteins as tailored chemistry for optimized bioconjugates. In: Satchi-Fainaro R, Duncan R, Eds. Polymer Therapeutics I. Berlin, Heidelberg: Springer 2005; pp. 95-134.
[31]
Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM. A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug Chem 1995; 6(1): 62-9.
[http://dx.doi.org/10.1021/bc00031a006] [PMID: 7711105]
[32]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[33]
Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 1999; 190(1): 49-56.
[http://dx.doi.org/10.1016/S0378-5173(99)00256-2] [PMID: 10528096]
[34]
Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 2008; 105(5): 1410-5.
[http://dx.doi.org/10.1073/pnas.0707654105] [PMID: 18230737]
[35]
Hong YC, Shin DH, Cho SC, Uhm HS. Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability. Chem Phys Lett 2006; 427(4-6): 390-3.
[http://dx.doi.org/10.1016/j.cplett.2006.06.033]
[36]
Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 2000; 6(5): 1949-57.
[PMID: 10815920]
[37]
Hoarau D, Delmas P, David S, Roux E, Leroux JC. Novel long-circulating lipid nanocapsules. Pharm Res 2004; 21(10): 1783-9.
[http://dx.doi.org/10.1023/B:PHAM.0000045229.87844.21] [PMID: 15553223]
[38]
Bockstaller MR, Mickiewicz RA, Thomas EL. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv Mater 2005; 17(11): 1331-49.
[http://dx.doi.org/10.1002/adma.200500167] [PMID: 34412432]
[39]
Grubbs RB. Hybrid metal-polymer composites from functional block copolymers. J Polym Sci A Polym Chem 2005; 43(19): 4323-36.
[http://dx.doi.org/10.1002/pola.20946]
[40]
Pozzo DC, Walker LM. Macroscopic alignment of nanoparticle arrays in soft crystals of cubic and cylindrical polymer micelles. Eur Phys J E 2008; 26(1-2): 183-9.
[http://dx.doi.org/10.1140/epje/i2007-10303-4] [PMID: 18415041]
[41]
Davis SS, Illum L. Polymeric microspheres as drug carriers. Biomaterials 1988; 9(1): 111-5.
[http://dx.doi.org/10.1016/0142-9612(88)90081-6] [PMID: 3280037]
[42]
Yang Z, Galloway JA, Yu H. Protein Interactions with Poly(ethylene glycol) Self-Assembled Monolayers on Glass Substrates: Diffusion and Adsorption. Langmuir 1999; 15(24): 8405-11.
[http://dx.doi.org/10.1021/la990260y]
[43]
Shin H-S, Park K. Biocompatible PEG grafting on DLC-coated nitinol alloy for vascular stents. J Bioact Compat Polym 2009; 24(4): 316-28.
[44]
Cao L, Sukavaneshvar S, Ratner BD, Horbett TA. Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion. J Biomed Mater Res A 2006; 79A(4): 788-803.
[http://dx.doi.org/10.1002/jbm.a.30908] [PMID: 16883583]
[45]
Manju S, Sreenivasan K. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: Blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir 2011; 27(23): 14489-96.
[http://dx.doi.org/10.1021/la202470k] [PMID: 21988497]
[46]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[47]
Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 2013; 30(10): 2512-22.
[http://dx.doi.org/10.1007/s11095-012-0958-3] [PMID: 23314933]
[48]
Wei Y, Quan L, Zhou C, Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 2018; 13(12): 1495-512.
[http://dx.doi.org/10.2217/nnm-2018-0040] [PMID: 29972677]
[49]
Donkor DA, Tang XS. Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube. Biomaterials 2014; 35(9): 3121-31.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.075] [PMID: 24411334]
[50]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[51]
Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci 2013; 110(43): 17247-52.
[http://dx.doi.org/10.1073/pnas.1305000110] [PMID: 24101456]
[52]
Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 2015; 39(8): 881-90.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]
[53]
Nowak M, Brown TD, Graham A, Helgeson ME, Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med 2019; 5(2): e10153.
[PMID: 32440560]
[54]
Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine 2012; 7(8): 1225-33.
[http://dx.doi.org/10.2217/nnm.12.86] [PMID: 22931448]
[55]
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical labels to brain tumors. Front Oncol 2020; 10: 739.
[http://dx.doi.org/10.3389/fonc.2020.00739] [PMID: 32582530]
[56]
Cano A, Sánchez-López E, Ettcheto M, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine 2020; 15(12): 1239-61.
[http://dx.doi.org/10.2217/nnm-2019-0443] [PMID: 32370600]
[57]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[58]
Shakeri S, Ashrafizadeh M, Zarrabi A, et al. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 2020; 8(1): 13.
[http://dx.doi.org/10.3390/biomedicines8010013] [PMID: 31941057]
[59]
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today 2014; 9(2): 223-43.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[60]
Paul A, Yadav KS. Parkinson’s disease: Current drug therapy and unraveling the prospects of nanoparticles. J Drug Deliv Sci Technol 2020; 58: 101790.
[http://dx.doi.org/10.1016/j.jddst.2020.101790]
[61]
Gan L, Li Z, Lv Q, Huang W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int J Pharm 2019; 567: 118449.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[62]
Zhao Y, Xiong S, Liu P, et al. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide b in parkinson’s disease. Int J Nanomedicine 2020; 15: 10453-67.
[http://dx.doi.org/10.2147/IJN.S272831] [PMID: 33380795]
[63]
You L, Wang J, Liu T, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian Mice. ACS Nano 2018; 12(5): 4123-39.
[http://dx.doi.org/10.1021/acsnano.7b08172] [PMID: 29617109]
[64]
Annu RS, Rehman S, Md S, Baboota S, Ali J. Analyzing nanotheraputics-based approaches for the management of psychotic disorders. J Pharm Sci 2019; 108(12): 3757-68.
[http://dx.doi.org/10.1016/j.xphs.2019.08.027] [PMID: 31499066]
[65]
Grover A, Hirani A, Pathak Y, Sutariya V. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer. AAPS PharmSciTech 2014; 15(6): 1562-8.
[http://dx.doi.org/10.1208/s12249-014-0165-0] [PMID: 25134466]
[66]
Querfurth HW, LaFerla FM. Alzheimer’s Disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[67]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[68]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[69]
From the centers for disease control and prevention. public health and aging: trends in aging--United States and worldwide. JAMA 2003; 289(11): 1371-3.
[http://dx.doi.org/10.1001/jama.289.11.1371] [PMID: 12636453]
[70]
Nations U. Department of economic and social affairs World Population Ageing, 1950-2050. 2002. Available from :https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2021/Nov/undesa_pd_2002_wpa_1950-2050_web.pdf
[71]
Xu R, Wang J, Xu J, et al. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with tween-80 for preliminary study in Alzheimer’s Disease. Int J Nanomedicine 2020; 15: 1149-60.
[http://dx.doi.org/10.2147/IJN.S236922] [PMID: 32110013]
[72]
Yang M, Jin L, Wu Z, et al. PLGA-PEG nanoparticles facilitate in vivo anti-alzheimer’s effects of fucoxanthin, a marine carotenoid derived from edible brown algae. J Agric Food Chem 2021; 69(34): 9764-77.
[http://dx.doi.org/10.1021/acs.jafc.1c00569] [PMID: 34404210]
[73]
Wadhwa G, Krishna KV, Dubey SK, Taliyan R. PEGylated polymer–lipid hybrid nanoparticles to enhance in vivo exposure and uptake of repaglinide in brain cells to treat diabetes-linked neurodegenerative disorders. ACS Appl Nano Mater 2023; 6(5): 3497-512.
[http://dx.doi.org/10.1021/acsanm.2c05272]
[74]
Thomas RG, Kim J, Kim J, Yoon J, Choi K-H, Jeong Y-Y. Treatment of ischemic stroke by atorvastatin-loaded PEGylated liposome. Transl Stroke Res 2023.
[http://dx.doi.org/10.1007/s12975-023-01125-9]
[75]
Ghaferi M, Raza A, Koohi M, et al. Impact of pegylated liposomal doxorubicin and carboplatin combination on glioblastoma. Pharmaceutics 2022; 14(10): 2183.
[http://dx.doi.org/10.3390/pharmaceutics14102183] [PMID: 36297618]
[76]
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon 2022; 8(6): e09575.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09575] [PMID: 35706935]
[77]
Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine 2018; 14(8): 2609-18.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[78]
Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 2018; 25(1): 1091-102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[79]
Annu SA. An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor. Front Bioeng Biotechnol 2022.
[80]
Kuang G, Zhang Q, He S, Liu Y. Curcumin-loaded PEGylated mesoporous silica nanoparticles for effective photodynamic therapy. RSC Advances 2020; 10(41): 24624-30.
[http://dx.doi.org/10.1039/D0RA04778C] [PMID: 35516169]
[81]
Gallego L, Ceña V. Nanoparticle-mediated therapeutic compounds delivery to glioblastoma. Expert Opin Drug Deliv 2020; 17(11): 1541-54.
[http://dx.doi.org/10.1080/17425247.2020.1810015] [PMID: 32791861]
[82]
Shaji J, Menon I. PEGylated liposomes of meloxicam: optimization by quality by design, in vitro characterization and cytotoxicity evaluation. Pharm Nanotechnol 2017; 5(2): 119-37.
[http://dx.doi.org/10.2174/2211738505666170428152129] [PMID: 28462699]
[83]
Qushawy M, Prabahar K, Abd-Alhaseeb M, Swidan S, Nasr A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled Mice. Molecules 2019; 24(21): 3971.
[http://dx.doi.org/10.3390/molecules24213971] [PMID: 31684021]
[84]
Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood–brain barrier. J Biomater Appl 2013; 27(7): 909-22.
[http://dx.doi.org/10.1177/0885328211429495] [PMID: 22207601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy