Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Interferon-gamma Treatment of Human Umbilical Cord Mesenchymal Stem Cells can Significantly Reduce Damage Associated with Diabetic Peripheral Neuropathy in Mice

Author(s): Li-Fen Yang, Jun-Dong He, Wei-Qi Jiang, Xiao-Dan Wang, Xiao-Chun Yang*, Zhi Liang* and Yi-Kun Zhou*

Volume 19, Issue 8, 2024

Published on: 11 September, 2023

Page: [1129 - 1141] Pages: 13

DOI: 10.2174/1574888X19666230829155046

Price: $65

Abstract

Background: Diabetic peripheral neuropathy causes significant pain to patients. Umbilical cord mesenchymal stem cells have been shown to be useful in the treatment of diabetes and its complications. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cells treated with interferon-gamma can ameliorate nerve injury associated with diabetes better than human umbilical cord mesenchymal stem cells without interferon-gamma treatment.

Methods: Human umbilical cord mesenchymal stem cells were assessed for adipogenic differentiation, osteogenic differentiation, and proliferation ability. Vonfry and a hot disc pain tester were used to evaluate tactile sensation and thermal pain sensation in mice. Hematoxylin-eosin and TUNEL staining were performed to visualize sciatic nerve fiber lesions and Schwann cell apoptosis in diabetic mice. Western blotting was used to detect expression of the apoptosis-related proteins Bax, B-cell lymphoma-2, and caspase-3 in mouse sciatic nerve fibers and Schwann cells. Real-Time Quantitative PCR was used to detect mRNA levels of the C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10 in mouse sciatic nerve fibers and Schwann cells. Enzyme-linked immunosorbent assay was used to detect levels of the inflammatory cytokines, interleukin- 1β, interleukin-6, and tumor necrosis factor-α in serum and Schwann cells.

Results: The adipogenic differentiation capacity, osteogenic differentiation capacity, and proliferation ability of human umbilical cord mesenchymal stem cells were enhanced after interferon-gamma treatment. Real-Time Quantitative PCR revealed that interferon-gamma promoted expression of the adipogenic markers, PPAR-γ and CEBP-α, as well as of the osteogenic markers secreted phosphoprotein 1, bone gamma-carboxyglutamate protein, collagen type I alpha1 chain, and Runt-related transcription factor 2. The results of hematoxylin-eosin and TUNEL staining showed that pathological nerve fiber damage and Schwann cell apoptosis were reduced after the injection of interferon-gamma-treated human umbilical cord mesenchymal stem cells. Expression of the apoptosis-related proteins, caspase-3 and Bax, was significantly reduced, while expression of the anti-apoptotic protein B-cell lymphoma-2 was significantly increased. mRNA levels of the cell chemokines, C-X-C motif chemokine ligand 1, C-X-C motif chemokine ligand 2, C-X-C motif chemokine ligand 9, and C-X-C motif chemokine ligand 10, were significantly reduced, and levels of the inflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, were decreased. Tactile and thermal pain sensations were improved in diabetic mice.

Conclusion: Interferon-gamma treatment of umbilical cord mesenchymal stem cells enhanced osteogenic differentiation, adipogenic differentiation, and proliferative potential. It can enhance the ability of human umbilical cord mesenchymal stem cells to alleviate damage to diabetic nerve fibers and Schwann cells, in addition to improving the neurological function of diabetic mice.

Keywords: Human umbilical cord mesenchymal stem cells (HUC-MSCs), diabetic peripheral neuropathy(DPN), interferongamma (IFN-γ), cell chemokines, inflammatory cytokines, neurological function.

Graphical Abstract
[1]
Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013; 310(9): 948-59.
[http://dx.doi.org/10.1001/jama.2013.168118] [PMID: 24002281]
[2]
Shiferaw WS, Akalu TY, Work Y, Aynalem YA. Prevalence of diabetic peripheral neuropathy in Africa: A systematic review and meta-analysis. BMC Endocr Disord 2020; 20(1): 49.
[http://dx.doi.org/10.1186/s12902-020-0534-5] [PMID: 32293400]
[3]
Li C, Wang W, Ji Q, et al. Prevalence of painful diabetic peripheral neuropathy in type 2 diabetes mellitus and diabetic peripheral neuropathy: A nationwide cross-sectional study in mainland China. Diabetes Res Clin Pract 2023; 198: 110602.
[http://dx.doi.org/10.1016/j.diabres.2023.110602] [PMID: 36871876]
[4]
Li L, Chen J, Wang J, Cai D. Prevalence and risk factors of diabetic peripheral neuropathy in Type 2 diabetes mellitus patients with overweight/obese in Guangdong province, China. Prim Care Diabetes 2015; 9(3): 191-5.
[http://dx.doi.org/10.1016/j.pcd.2014.07.006] [PMID: 25163987]
[5]
Argoff CE, Cole BE, Fishbain DA, Irving GA. Diabetic peripheral neuropathic pain: clinical and quality-of-life issues. Mayo Clin Proc 2006; 81(S4): S3-S11.
[http://dx.doi.org/10.1016/S0025-6196(11)61474-2] [PMID: 16608048]
[6]
Han JW, Sin MY, Yoon Y. Cell therapy for diabetic neuropathy using adult stem or progenitor cells. Diabetes Metab J 2013; 37(2): 91-105.
[http://dx.doi.org/10.4093/dmj.2013.37.2.91] [PMID: 23641349]
[7]
Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7(10): 573-83.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[8]
Dominiczak MH. Obesity, glucose intolerance and diabetes and their links to cardiovascular disease. Implications for laboratory medicine. Clin Chem Lab Med 2003; 41(9): 1266-78.
[http://dx.doi.org/10.1515/CCLM.2003.194] [PMID: 14598880]
[9]
Porada C, Zanjani E, Almeida-Porada G. Adult mesenchymal stem cells: A pluripotent population with multiple applications. Curr Stem Cell Res Ther 2006; 1(3): 365-9.
[http://dx.doi.org/10.2174/157488806778226821] [PMID: 18220880]
[10]
Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): Controversies, myths, and changing paradigms. Mol Ther 2009; 17(6): 939-46.
[http://dx.doi.org/10.1038/mt.2009.62] [PMID: 19337235]
[11]
Bunnell BA, Betancourt AM, Sullivan DE. New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 2010; 1(5): 34.
[http://dx.doi.org/10.1186/scrt34] [PMID: 21092149]
[12]
Salem HK, Thiemermann C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells 2010; 28(3): 585-96.
[http://dx.doi.org/10.1002/stem.269] [PMID: 19967788]
[13]
Singer NG, Caplan AI. Mesenchymal stem cells: Mechanisms of inflammation. Annu Rev Pathol 2011; 6(1): 457-78.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130230] [PMID: 21073342]
[14]
Zdravkovic N, Shahin A, Arsenijevic N, Lukic ML, Mensah-Brown EPK. Regulatory T cells and ST2 signaling control diabetes induction with multiple low doses of streptozotocin. Mol Immunol 2009; 47(1): 28-36.
[http://dx.doi.org/10.1016/j.molimm.2008.12.023] [PMID: 19356801]
[15]
Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010; 43(4): 255-63.
[http://dx.doi.org/10.3109/08916930903305641] [PMID: 19845478]
[16]
Omi M, Hata M, Nakamura N, et al. Transplantation of dental pulp stem cells suppressed inflammation in sciatic nerves by promoting macrophage polarization towards anti‐inflammation phenotypes and ameliorated diabetic polyneuropathy. J Diabetes Investig 2016; 7(4): 485-96.
[http://dx.doi.org/10.1111/jdi.12452] [PMID: 27181261]
[17]
Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010; 5(4): e10088.
[http://dx.doi.org/10.1371/journal.pone.0010088] [PMID: 20436665]
[18]
Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark Res 2020; 8(1): 49.
[http://dx.doi.org/10.1186/s40364-020-00228-x] [PMID: 33005420]
[19]
Li X, Du W, Ma FX, Feng X, Bayard F, Han ZC. High concentrations of TNF-α induce cell death during interactions between human umbilical cord mesenchymal stem cells and peripheral blood mononuclear cells. PLoS One 2015; 10(5): e0128647.
[http://dx.doi.org/10.1371/journal.pone.0128647] [PMID: 26023782]
[20]
Mounayar M, Kefaloyianni E, Smith B, et al. PI3kα and STAT1 interplay regulates human mesenchymal stem cell immune polarization. Stem Cells 2015; 33(6): 1892-901.
[http://dx.doi.org/10.1002/stem.1986] [PMID: 25753288]
[21]
Meirelles LS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(11): 2204-13.
[http://dx.doi.org/10.1242/jcs.02932] [PMID: 16684817]
[22]
Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91(8): 1017-26.
[PMID: 16870554]
[23]
Carrade Holt DD, Wood JA, Granick JL, Walker NJ, Clark KC, Borjesson DL. Equine mesenchymal stem cells inhibit T cell proliferation through different mechanisms depending on tissue source. Stem Cells Dev 2014; 23(11): 1258-65.
[http://dx.doi.org/10.1089/scd.2013.0537] [PMID: 24438346]
[24]
Cheng YC, Chu LW, Chen JY, et al. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation. Cells 2020; 9(9): 1948.
[http://dx.doi.org/10.3390/cells9091948] [PMID: 32842536]
[25]
Zhang C, Huang L, Wang X, et al. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: A phase I pilot study with a 3-year follow-up. Stem Cell Res Ther 2022; 13(1): 451.
[http://dx.doi.org/10.1186/s13287-022-03143-0] [PMID: 36064461]
[26]
Xue J, Sun N, Liu Y. Self-assembled nano-peptide hydrogels with human umbilical cord mesenchymal stem cell spheroids accelerate diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis. Int J Nanomedicine 2022; 17: 2459-74.
[http://dx.doi.org/10.2147/IJN.S363777] [PMID: 35669002]
[27]
Shi R, Lian W, Jin Y, et al. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats. Acta Biochim Biophys Sin 2020; 52(6): 620-30.
[http://dx.doi.org/10.1093/abbs/gmaa039] [PMID: 32484226]
[28]
Bailey CJ. Treating insulin resistance: Future prospects. Diab Vasc Dis Res 2007; 4(1): 20-31.
[http://dx.doi.org/10.3132/dvdr.2007.002] [PMID: 17469040]
[29]
Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 2011; 17(37): 4147-58.
[http://dx.doi.org/10.2174/138161211798764825] [PMID: 22204375]
[30]
Sjöholm A, Nyström T. Endothelial inflammation in insulin resistance. Lancet 2005; 365(9459): 610-2.
[http://dx.doi.org/10.1016/S0140-6736(05)70804-7] [PMID: 15708106]
[31]
Purwata T. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res 2011; 4: 169-75.
[http://dx.doi.org/10.2147/JPR.S21751] [PMID: 21811392]
[32]
Uçeyler N, Rogausch JP, Toyka KV, Sommer C. Differential expression of cytokines in painful and painless neuropathies. Neurology 2007; 69(1): 42-9.
[http://dx.doi.org/10.1212/01.wnl.0000265062.92340.a5] [PMID: 17606879]
[33]
Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 2009; 94(6): 2157-63.
[http://dx.doi.org/10.1210/jc.2008-2385] [PMID: 19276232]
[34]
Bharti D, Shivakumar SB, Park JK, et al. Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2018; 372(1): 51-65.
[http://dx.doi.org/10.1007/s00441-017-2699-4] [PMID: 29204746]
[35]
Dabrowski FA, Burdzinska A, Kulesza A, et al. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res 2017; 43(11): 1758-68.
[http://dx.doi.org/10.1111/jog.13432] [PMID: 28707770]
[36]
Liu Q, Chen X, Liu C, et al. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12(3): 240.
[http://dx.doi.org/10.1038/s41419-021-03524-y] [PMID: 33664231]
[37]
Yin Y, Hao H, Cheng Y, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 2018; 9(7): 760.
[http://dx.doi.org/10.1038/s41419-018-0801-9] [PMID: 29988034]
[38]
Inoue SI, Niikura M, Mineo S, Kobayashi F. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria. Front Immunol 2013; 4: 258.
[http://dx.doi.org/10.3389/fimmu.2013.00258] [PMID: 24009610]
[39]
Xia N, Xu JM, Zhao N, Zhao QS, Li M, Cheng ZF. Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci Lett 2015; 597: 84-9.
[http://dx.doi.org/10.1016/j.neulet.2015.04.038] [PMID: 25916880]
[40]
WenBo W, Fei Z, YiHeng D, et al. Human umbilical cord mesenchymal stem cells overexpressing nerve growth factor ameliorate diabetic cystopathy in rats. Neurochem Res 2017; 42(12): 3537-47.
[http://dx.doi.org/10.1007/s11064-017-2401-y] [PMID: 28952006]
[41]
Chen G, Fan X, Zheng X, Jin Y, Liu Y, Liu S. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Res Ther 2020; 11(1): 401.
[http://dx.doi.org/10.1186/s13287-020-01865-7] [PMID: 32938466]
[42]
Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab 2014; 60(12/2014): 1969-76.2014;
[http://dx.doi.org/10.7754/Clin.Lab.2014.140305] [PMID: 25651730]
[43]
Cai J, Wu Z, Xu X, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: A pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care 2016; 39(1): 149-57.
[http://dx.doi.org/10.2337/dc15-0171] [PMID: 26628416]
[44]
Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM. Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 2012; 1(7): 557-65.
[http://dx.doi.org/10.5966/sctm.2012-0025] [PMID: 23197860]
[45]
Keating A. Mesenchymal stromal cells: New directions. Cell Stem Cell 2012; 10(6): 709-16.
[http://dx.doi.org/10.1016/j.stem.2012.05.015] [PMID: 22704511]
[46]
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12(5): 383-96.
[http://dx.doi.org/10.1038/nri3209] [PMID: 22531326]
[47]
Prockop DJ, Youn Oh J. Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther 2012; 20(1): 14-20.
[http://dx.doi.org/10.1038/mt.2011.211] [PMID: 22008910]
[48]
Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death Differ 2012; 19(9): 1505-13.
[http://dx.doi.org/10.1038/cdd.2012.26] [PMID: 22421969]
[49]
Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2(2): 141-50.
[http://dx.doi.org/10.1016/j.stem.2007.11.014] [PMID: 18371435]
[50]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[51]
Ren G, Su J, Zhang L, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009; 27(8): 1954-62.
[http://dx.doi.org/10.1002/stem.118] [PMID: 19544427]
[52]
Mellor AL, Munn DH. Ido expression by dendritic cells: Tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4(10): 762-74.
[http://dx.doi.org/10.1038/nri1457] [PMID: 15459668]
[53]
Polchert D, Sobinsky J, Douglas GW, et al. IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol 2008; 38(6): 1745-55.
[http://dx.doi.org/10.1002/eji.200738129] [PMID: 18493986]
[54]
Li H, Liu Q, Gao X, zhang D, Mao S, Jia Y. IFN-γ gene loaded human umbilical mesenchymal stromal cells targeting therapy for Graft-versus-host disease. Int J Pharm 2021; 592: 120058.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120058] [PMID: 33220383]
[55]
Duijvestein M, Wildenberg ME, Welling MM, et al. Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells 2011; 29(10): 1549-58.
[http://dx.doi.org/10.1002/stem.698] [PMID: 21898680]
[56]
Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: Together they strive? EMBO Rep 2015; 16(4): 416-26.
[http://dx.doi.org/10.15252/embr.201439702] [PMID: 25739812]
[57]
Yang C, Chen Y, Li F, et al. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines. Mol Cell Biochem 2018; 446(1-2): 171-84.
[http://dx.doi.org/10.1007/s11010-018-3284-1] [PMID: 29356988]
[58]
Ahmed M, Gaffen SL. IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Krüppel-like factors. Cytokine 2013; 61(3): 898-905.
[http://dx.doi.org/10.1016/j.cyto.2012.12.007] [PMID: 23332504]
[59]
Wei H, Shen G, Deng X, et al. The role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and chondrogenesis. Cell Tissue Bank 2013; 14(4): 699-706.
[http://dx.doi.org/10.1007/s10561-012-9354-9] [PMID: 23322270]
[60]
Li C, Li G, Liu M, Zhou T, Zhou H. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. J Biosci Bioeng 2016; 121(2): 213-9.
[http://dx.doi.org/10.1016/j.jbiosc.2015.05.017] [PMID: 26315505]
[61]
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic propertiesof differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31(10): 890-6.
[http://dx.doi.org/10.1016/S0301-472X(03)00110-3] [PMID: 14550804]
[62]
Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine 2016; 85: 51-60.
[http://dx.doi.org/10.1016/j.cyto.2016.06.003] [PMID: 27288632]
[63]
Croitoru-Lamoury J, Lamoury FMJ, Caristo M, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One 2011; 6(2): e14698.
[http://dx.doi.org/10.1371/journal.pone.0014698] [PMID: 21359206]
[64]
Vigo T, Procaccini C, Ferrara G, et al. IFN-γ orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. J Allergy Clin Immunol 2017; 139(5): 1667-76.
[http://dx.doi.org/10.1016/j.jaci.2016.09.004] [PMID: 27670240]
[65]
Takeshita K, Motoike S, Kajiya M, et al. Xenotransplantation of interferon-gamma-pretreated clumps of a human mesenchymal stem cell/extracellular matrix complex induces mouse calvarial bone regeneration. Stem Cell Res Ther 2017; 8(1): 101.
[http://dx.doi.org/10.1186/s13287-017-0550-1] [PMID: 28446226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy