Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Review Article

A Review of Modified Cellulose Nanocrystals and their Applications

Author(s): Sakshi Gadhave and Minal Narkhede*

Volume 1, 2023

Published on: 13 October, 2023

Article ID: e290823220479 Pages: 15

DOI: 10.2174/2210299X01666230829150118

open_access

conference banner
Abstract

Cellulose is one of the most abundant natural polymers developed in the ecosystem and has been used in many applications for industrial products since ancient times. Although the main sources of cellulose are wood plant, fibers and, additional sources can also be discovered, such as algae, fungi, bacteria, and even some marine organisms (such as tunicates). Mechanical or chemical processes are used to transform cellulosic materials into cellulose nanocrystals due to their efficacy, high aspect ratio, low density, renewability, and non-toxicity. They have drawn a lot of attention in a variety of industries. Here, we discuss various applications and properties in particular mechanical, rheological, liquid crystalline nature, and adhesives to introduce cellulose nanocrystals hydrophilic, colloidal stable, and rigid rod-shaped bio-based nanomaterial with high strength and high surface area. Under various circumstances, it improves the characteristics of various compounds. The grafting of polymers on the surface of cellulose nanocrystals has attracted significant interest in both academia and industry due to the rapidly expanding number of potential applications of surface-modified cellulose nanocrystals, which range from building blocks in nanocomposites and responsive nanomaterials to antimicrobial agents. Furthermore, we explore the most popular polymerization methods, such as surface-initiated ring-opening polymerization, surface-initiated free radical polymerization, surface-initiated atom transferred radical polymerization and surface-initiated controlled radical polymerization that are employed to graft polymers from the surface and reducing end groups of cellulose nanocrystals. In this review, we examine the available literature and provide a summary of recent applications of cellulose nanocrystals, including biomedical application, drug delivery, biosensor, tissue engineering, antibacterial activity, wound healings, etc.

Keywords: Cellulose nanocrystals, Grafting, Polymerization, Applications, Drug delivery system, Biomedical.

[1]
Kan, K.H.M. Responsive Polymer-Grafted Cellulose Nanocrystals From Ceric (Iv).Ion-Initiated Polymerization; MacSphere, 2013, p. 88.
[2]
Tingaut, P.; Zimmermann, T.; Sèbe, G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J. Mater. Chem., 2012, 22(38), 20105-20111.
[http://dx.doi.org/10.1039/c2jm32956e]
[3]
Lin, N. Cellulose nanocrystals: Surface modification and advanced materials. Cellulose nanocrystals : surface modification and advanced materials, 2016.
[4]
Zoppe, J.O.; Habibi, Y.; Rojas, O.J.; Venditti, R.A.; Johansson, L.S.; Efimenko, K.; Österberg, M.; Laine, J. Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules, 2010, 11(10), 2683-2691.
[http://dx.doi.org/10.1021/bm100719d] [PMID: 20843063]
[5]
Cao, Y. Applications of cellulose nanomaterials in pharmaceutical science and pharmacology. Express Polym. Lett., 2018, 12(9), 768-780.
[http://dx.doi.org/10.3144/expresspolymlett.2018.66]
[6]
Cudjoe, E. Cellulose Nanocrystals and Reiated Polymer Nanocomposites; CASE WESTERN RESERVE UNIVERSITY, 2017.
[7]
Jiang, Q.; Xing, X.; Jing, Y.; Han, Y. Preparation of cellulose nanocrystals based on waste paper via different systems. Int. J. Biol. Macromol., 2020, 149, 1318-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.110] [PMID: 32061703]
[8]
Beltramino, F.; Roncero, M.B.; Torres, A.L.; Vidal, T.; Valls, C. Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose, 2016, 23(3), 1777-1789.
[http://dx.doi.org/10.1007/s10570-016-0897-y]
[9]
George, J.; S N, S. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[10]
Šturcová, A.; Davies, G.R.; Eichhorn, S.J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules, 2005, 6(2), 1055-1061.
[http://dx.doi.org/10.1021/bm049291k] [PMID: 15762678]
[11]
Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. The effect of chemical composition on microfibrillar cellulose films from wood pulps: Water interactions and physical properties for packaging applications. Cellulose, 2010, 17(4), 835-848.
[http://dx.doi.org/10.1007/s10570-010-9424-8]
[12]
Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 2010, 17(3), 459-494.
[http://dx.doi.org/10.1007/s10570-010-9405-y]
[13]
Aziz, T.; Fan, H.; Zhang, X.; Haq, F.; Ullah, A.; Ullah, R.; Khan, F.U.; Iqbal, M. Advance study of cellulose nanocrystals properties and applications. J. Polym. Environ., 2020, 28(4), 1117-1128.
[http://dx.doi.org/10.1007/s10924-020-01674-2]
[14]
Dissertations, A. Cellulose nanocrystals properties and applications in renewable nanocomposites; Clemson University, 2011.
[15]
da Fonsêca, J.H.L.; d’Ávila, M.A. Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions. Rheol. Acta, 2021, 60(9), 497-509.
[http://dx.doi.org/10.1007/s00397-021-01292-2]
[16]
Dufresne, A. Rheological behavior of nanocellulose suspensions and self-assembly. Nanocellulose, 2017, 287-350.
[17]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40, 3941-3994.
[18]
Revol, J.F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol., 1992, 14(3), 170-172.
[http://dx.doi.org/10.1016/S0141-8130(05)80008-X] [PMID: 1390450]
[19]
Bhat, A.H.; Dasan, Y.K.; Khan, I.; Soleimani, H.; Usmani, A. Application of nanocrystalline cellulose: Processing and biomedical applications. In: Cellulose-Reinforced Nanofibre Composites; Woodhead Publishing, 2017; pp. 215-240.
[http://dx.doi.org/10.1016/B978-0-08-100957-4.00009-7]
[20]
Sakhare, M.S.; Rajput, H.H. Polymer grafting and applications in pharmaceutical drug delivery systems : A brief review. Asian J. Pharm. Clin. Res., 2017, 10(6), 59-63.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i6.18072]
[21]
Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; Ali, A.; Muzammal, M.; Shah, M.; Akhtar, N.; Selim, S.; Hagagy, N.; Samy, M.; Al Jaouni, S.K. A review on the modification of cellulose and its applications. Polymers, 2022, 14(15), 3206.
[http://dx.doi.org/10.3390/polym14153206] [PMID: 35956720]
[22]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[23]
Mohammadbagheri, Z.; Rahmati, A.; Hoshyarmanesh, P. Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer. Int. J. Biol. Macromol., 2021, 182, 1893-1905.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.191] [PMID: 34081953]
[24]
Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting polymers from cellulose nanocrystals: Synthesis, properties, and applications. Macromolecules, 2018, 51(16), 6157-6189.
[http://dx.doi.org/10.1021/acs.macromol.8b00733]
[25]
Jérôme, C.; Lecomte, P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Deliv. Rev., 2008, 60(9), 1056-1076.
[http://dx.doi.org/10.1016/j.addr.2008.02.008] [PMID: 18403043]
[26]
Nuyken, O.; Pask, S. Ring-opening polymerization :An introductory review. Polymers, 2013, 5(2), 361-403.
[http://dx.doi.org/10.3390/polym5020361]
[27]
Carlmark, A.; Larsson, E.; Malmström, E. Grafting of cellulose by ring-opening polymerisation : A review. Eur. Polym. J., 2012, 48(10), 1646-1659.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.06.013]
[28]
Lönnberg, H.; Zhou, Q.; Brumer, H., III; Teeri, T.T.; Malmström, E.; Hult, A. Grafting of cellulose fibers with poly(ε-caprolactone) and poly(L-lactic acid) via ring-opening polymerization. Biomacromolecules, 2006, 7(7), 2178-2185.
[http://dx.doi.org/10.1021/bm060178z] [PMID: 16827585]
[29]
Wang, J; Matyjaszewski, K. I. Living/controlled radical polymerization. transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules, 1995, 28(22), 7522-7573.
[30]
Zhang, Z; Sebe, G; Wang, X. Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization. J. App. Poly. Sci., 2021, 138(48), 51548.
[31]
Zhang, Z.; Tam, K.C.; Sèbe, G.; Wang, X. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydr. Polym., 2018, 199, 603-609.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.060] [PMID: 30143168]
[32]
Çankaya, N. Cellulose Grafting by Atom Transfer Radical Polymerization Method. Cellul - Fundam Asp Curr Trends; intechopen, 2015.
[33]
Olivier, A.; Meyer, F.; Raquez, J.M.; Damman, P.; Dubois, P. Surface-initiated controlled polymerization as a convenient method for designing functional polymer brushes: From self-assembled monolayers to patterned surfaces. Prog. Polym. Sci., 2012, 37(1), 157-181.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.002]
[34]
Yan, J.; Pan, X.; Schmitt, M.; Wang, Z.; Bockstaller, M.R.; Matyjaszewski, K. Enhancing initiation efficiency in metal-free surface-initiated atom transfer radical polymerization (SI-ATRP). ACS Macro Lett., 2016, 5(6), 661-665.
[http://dx.doi.org/10.1021/acsmacrolett.6b00295] [PMID: 35614657]
[35]
Navarro, J.R.G.; Edlund, U. Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils. Biomacromolecules, 2017, 18(6), 1947-1955.
[http://dx.doi.org/10.1021/acs.biomac.7b00398] [PMID: 28482654]
[36]
Ouchi, M.; Sawamoto, M. Living Radical Polymerization. Water Org Synth, 2012, 1.
[37]
Suparyanto dan Rosad (2015. No Title No Title No Title. Vol. 5, Suparyanto dan Rosad (2015. 2020. 248–253 p. 2020.
[38]
Tang, J. Functionalized cellulose nanocrystals (CNC) for advanced applications. Thesis, 2016, 8-69. Available from: http://hdl.handle.net/10012/10624
[39]
Zhou, C.; Wu, Q.; Yue, Y.; Zhang, Q. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J. Colloid Interface Sci., 2011, 353(1), 116-123.
[http://dx.doi.org/10.1016/j.jcis.2010.09.035] [PMID: 20932533]
[40]
Tian, C.; Fu, S.; Chen, J.; Meng, Q.; Lucia, L.A. Graft polymerization of ε-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nord. Pulp Paper Res. J., 2014, 29(1), 58-68.
[http://dx.doi.org/10.3183/npprj-2014-29-01-p058-068]
[41]
Astruc, J.; Cousin, P.; Laroche, G.; Robert, M.; Elkoun, S. Polycaprolactone (pcl) chains grafting on the surface of cellulose nanocrystals (cncs) during In Situ Polymerization of Caprolactone at Room Temperature. Mater. Sci. Appl., 2020, 11(11), 744-756.
[http://dx.doi.org/10.4236/msa.2020.1111050]
[42]
Habibi, Y.; Goffin, A.L.; Schiltz, N.; Duquesne, E.; Dubois, P.; Dufresne, A. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem., 2008, 18(41), 5002-5010.
[http://dx.doi.org/10.1039/b809212e]
[43]
Huang, Q.; Huang, J.; Chang, P.R. Polycaprolactone grafting of cellulose nanocrystals in ionic liquid [BMIM]Cl. Wuhan Univ. J. Nat. Sci., 2014, 19(2), 117-122.
[http://dx.doi.org/10.1007/s11859-014-0987-3]
[44]
Habibi, Y.; Dufresne, A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules, 2008, 9(7), 1974-1980.
[http://dx.doi.org/10.1021/bm8001717] [PMID: 18510360]
[45]
Mohanta, V.; Madras, G.; Patil, S. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(22), 20093-20101.
[http://dx.doi.org/10.1021/am505681e] [PMID: 25338530]
[46]
Xu, Q.; Ji, Y.; Sun, Q.; Fu, Y.; Xu, Y.; Jin, L. Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials, 2019, 9(2), 253.
[http://dx.doi.org/10.3390/nano9020253] [PMID: 30781761]
[47]
Akhlaghi, S.P.; Berry, R.C.; Tam, K.C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose, 2013, 20(4), 1747-1764.
[http://dx.doi.org/10.1007/s10570-013-9954-y]
[48]
Aziz, T.; Ullah, A.; Fan, H.; Ullah, R.; Haq, F.; Khan, F.U.; Iqbal, M.; Wei, J. Cellulose nanocrystals applications in health, medicine and catalysis. J. Polym. Environ., 2021, 29(7), 2062-2071.
[http://dx.doi.org/10.1007/s10924-021-02045-1]
[49]
Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J., 2014, 59(July), 302-325.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025]
[50]
Villanova, J.C.O.; Ayres, E.; Carvalho, S.M.; Patrício, P.S.; Pereira, F.V.; Oréfice, R.L. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur. J. Pharm. Sci., 2011, 42(4), 406-415.
[http://dx.doi.org/10.1016/j.ejps.2011.01.005] [PMID: 21241802]
[51]
Dong, S.; Cho, H.J.; Lee, Y.W.; Roman, M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules, 2014, 15(5), 1560-1567.
[http://dx.doi.org/10.1021/bm401593n] [PMID: 24716601]
[52]
Dash, R.; Ragauskas, A.J. Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Advances, 2012, 2(8), 3403-3409.
[http://dx.doi.org/10.1039/c2ra01071b]
[53]
Badshah, M.; Ullah, H.; Khan, S.A.; Park, J.K.; Khan, T. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose, 2017, 24(11), 5041-5052.
[http://dx.doi.org/10.1007/s10570-017-1474-8]
[54]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym., 2019, 209(209), 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[55]
Kolakovic, R.; Peltonen, L.; Laaksonen, T.; Putkisto, K.; Laukkanen, A.; Hirvonen, J. Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech, 2011, 12(4), 1366-1373.
[http://dx.doi.org/10.1208/s12249-011-9705-z] [PMID: 22005956]
[56]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011, 2011(ii), 1-19.
[http://dx.doi.org/10.1155/2011/290602]
[57]
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M., Jr The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1), 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[58]
Kumar, A.; Lee, Y.; Kim, D.; Rao, K.M.; Kim, J.; Park, S.; Haider, A.; Lee, D.H.; Han, S.S. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int. J. Biol. Macromol., 2017, 95, 962-973.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.085] [PMID: 27793679]
[59]
Syverud, K.; Pettersen, S.R.; Draget, K.; Chinga-Carrasco, G. Controlling the elastic modulus of cellulose nanofibril hydrogels—scaffolds with potential in tissue engineering. Cellulose, 2015, 22(1), 473-481.
[http://dx.doi.org/10.1007/s10570-014-0470-5]
[60]
Chen, X.; Zhou, R.; Chen, B.; Chen, J. Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration. RSC Advances, 2016, 6(42), 35684-35691.
[http://dx.doi.org/10.1039/C6RA02038K]
[61]
Dysregulation, FR; Release, CA; Uptake, G; Models, T; George, D; Program, VR Page 1 of 54 1, , 812-855.
[62]
Sarkar, C.; Chowdhuri, A.R.; Kumar, A.; Laha, D.; Garai, S.; Chakraborty, J.; Sahu, S.K. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr. Polym., 2018, 181, 710-718.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.091] [PMID: 29254027]
[63]
Zhou, C.; Shi, Q.; Guo, W.; Terrell, L.; Qureshi, A.T.; Hayes, D.J.; Wu, Q. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl. Mater. Interfaces, 2013, 5(9), 3847-3854.
[http://dx.doi.org/10.1021/am4005072] [PMID: 23590943]
[64]
Murizan, N.I.S.; Mustafa, N.S.; Ngadiman, N.H.A.; Mohd Yusof, N.; Idris, A. Review on nanocrystalline cellulose in bone tissue engineering applications. Polymers, 2020, 12(12), 2818.
[http://dx.doi.org/10.3390/polym12122818] [PMID: 33261121]
[65]
Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials, 2019, 9(2), 164.
[http://dx.doi.org/10.3390/nano9020164] [PMID: 30699947]
[66]
Razali, S.A.; Azwadi, N.; Sidik, C.; Koten, H. Cellulose nanocrystals: A brief review on properties and general applications. J. Adv. Res. Des., 2019, 60(1), 1-15. Available from: www.akademiabaru.com/ard.html
[67]
Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci., 2015, 132(14), 41719.
[http://dx.doi.org/10.1002/app.41719]
[68]
Fu, L.; Zhang, Y.; Li, C.; Wu, Z.; Zhuo, Q.; Huang, X.; Qiu, G.; Zhou, P.; Yang, G. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J. Mater. Chem., 2012, 22(24), 12349-12357.
[http://dx.doi.org/10.1039/c2jm00134a]
[69]
Vatankhah, E.; Prabhakaran, M.P.; Jin, G.; Mobarakeh, L.G.; Ramakrishna, S. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J. Biomater. Appl., 2014, 28(6), 909-921.
[http://dx.doi.org/10.1177/0885328213486527] [PMID: 23640859]
[70]
Mohd Zuki, S.A.; Abd Rahman, N.; Abu Bakar, N.F. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: An overview. IOP. Conf .Ser. Mater. Sci. Eng., 2018, 334, p. 012046.
[http://dx.doi.org/10.1088/1757-899X/334/1/012046]
[71]
Jagur-Grodzinski, J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym. Adv. Technol., 2010, 21(1), 27-47.
[http://dx.doi.org/10.1002/pat.1504]
[72]
Seo, Y.R.; Kim, J.W.; Hoon, S.; Kim, J.; Chung, J.H.; Lim, K.T. Cellulose-based nanocrystals: Sources and applications via agricultural byproducts. J. Biosyst. Eng., 2018, 43(1), 59-71. Available from: http://www.e-sciencecentral.org/articles/SC000028909
[73]
Ghorbani, M.; Roshangar, L.; Soleimani Rad, J. Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur. Polym. J., 2020, 130(February), 109697.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109697]
[74]
Domingues, R.M.A.; Gomes, M.E.; Reis, R.L. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014, 15(7), 2327-2346.
[http://dx.doi.org/10.1021/bm500524s] [PMID: 24914454]
[75]
Lin, N.; Gèze, A.; Wouessidjewe, D.; Huang, J.; Dufresne, A. Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl. Mater. Interfaces, 2016, 8(11), 6880-6889.
[http://dx.doi.org/10.1021/acsami.6b00555] [PMID: 26925765]
[76]
Patel, D.K.; Dutta, S.D.; Shin, W.C.; Ganguly, K.; Lim, K.T. Fabrication and characterization of 3D printable nanocellulose-based hydrogels for tissue engineering. RSC Advances, 2021, 11(13), 7466-7478.
[http://dx.doi.org/10.1039/D0RA09620B] [PMID: 35423276]
[77]
Wang, K; Mosser, G; Haye, B; Baccile, N; Griel, P; Pernot, P Cellulose nanocrystal-fibrin nanocomposite hydrogels promoting myotube formation. Biomacromolecules, 2021, 22(6), 2740-2753.
[78]
Xie, S.; Zhang, X.; Walcott, M.P.; Lin, H. Applications of cellulose nanocrystals: A review. Eng. Sci., 2018, 2, 4-16.
[79]
Edwards, J.V.; Prevost, N.; Sethumadhavan, K.; Ullah, A.; Condon, B. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity. Cellulose, 2013, 20(3), 1223-1235.
[http://dx.doi.org/10.1007/s10570-013-9901-y]
[80]
Drogat, N.; Granet, R.; Sol, V.; Memmi, A.; Saad, N.; Klein Koerkamp, C.; Bressollier, P.; Krausz, P. Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res., 2011, 13(4), 1557-1562.
[http://dx.doi.org/10.1007/s11051-010-9995-1]
[81]
Cassano, R.; Trombino, S.; Ferrarelli, T.; Nicoletta, F.P.; Mauro, M.V.; Giraldi, C.; Picci, N. Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose, 2013, 20(1), 547-557.
[http://dx.doi.org/10.1007/s10570-012-9804-3]
[82]
Azizi, S.; Ahmad, M.; Mahdavi, M.; Abdolmohammadi, S. Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. BioResources, 2013, 8(2), 1841-1851.
[http://dx.doi.org/10.15376/biores.8.2.1841-1851]
[83]
Andresen, M.; Stenstad, P.; Møretrø, T.; Langsrud, S.; Syverud, K.; Johansson, L.S.; Stenius, P. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 2007, 8(7), 2149-2155.
[http://dx.doi.org/10.1021/bm070304e] [PMID: 17542633]
[84]
Hua, KAI Nanocellulose for Biomedical Applications; Acta Universitatis Upsaliensis, 2015, p. 80.
[85]
Norrrahim, M.N.F.; Nurazzi, N.M.; Jenol, M.A.; Farid, M.A.A.; Janudin, N.; Ujang, F.A.; Yasim-Anuar, T.A.T.; Syed Najmuddin, S.U.F.; Ilyas, R.A. Emerging development of nanocellulose as an antimicrobial material: An overview. Mat. Adv., 2021, 2(11), 3538-3551.
[http://dx.doi.org/10.1039/D1MA00116G]

© 2024 Bentham Science Publishers | Privacy Policy