Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Novel Invasive Methods as the Third Pillar for the Treatment of Essential Uncontrolled Hypertension

Author(s): Panagiotis-Anastasios Tsioufis, Panagiotis Theofilis, Panayotis K. Vlachakis, Kyriakos Dimitriadis, Dimitris Tousoulis and Konstantinos Tsioufis*

Volume 29, Issue 35, 2023

Published on: 12 September, 2023

Page: [2780 - 2786] Pages: 7

DOI: 10.2174/1381612829666230828142346

Price: $65

Abstract

Pharmacologic therapies remain the treatment of choice for patients with essential hypertension, as endorsed by international guidelines. However, several cases warrant additional modalities, such as invasive antihypertensive therapeutics. The major target of these interventions is the modulation of the sympathetic nervous system, which is a common pathophysiologic mechanism in essential hypertension. In this narrative review, we elaborate on the role of invasive antihypertensive treatments with a focus on renal denervation, stressing their potential as well as the drawbacks that prevent their widespread implementation in everyday clinical practice. In the field of renal denervation, several trials have shown significant and sustained reductions in the level of office and ambulatory blood pressure, regardless of the type of energy that was used (radiofrequency or ultrasound). Critically, renal denervation is considered a safe intervention, as evidenced by follow-up data from large clinical trials. Baroreflex activation therapy may result in enhanced parasympathetic nervous system activation, thus lowering blood pressure levels. Along the same lines, carotid body ablation could also produce a significant antihypertensive effect, which has not been tested in appropriately designed randomized trials. Moreover, cardiac neuromodulation therapy could prove efficacious by altering the duration of the atrioventricular interval in order to regulate the preload of the left ventricle and, therefore, lower blood pressure.

Keywords: Hypertension, sympathetic nervous system, renal denervation, left ventricle, lower blood pressure, ultrasound.

[1]
Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc 1953; 152(16): 1501-4.
[http://dx.doi.org/10.1001/jama.1953.03690160001001] [PMID: 13061307]
[2]
Burnier M, Egan BM. Adherence in hypertension. Circ Res 2019; 124(7): 1124-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313220] [PMID: 30920917]
[3]
Mancia G, Rea F, Corrao G, Grassi G. Two-drug combinations as first-step antihypertensive treatment. Circ Res 2019; 124(7): 1113-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313294] [PMID: 30920930]
[4]
Gupta P, Patel P, Štrauch B, et al. Biochemical screening for nonadherence is associated with blood pressure reduction and improvement in adherence. Hypertension 2017; 70(5): 1042-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09631] [PMID: 28847892]
[5]
Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension 1989; 14(2): 177-83.
[http://dx.doi.org/10.1161/01.HYP.14.2.177] [PMID: 2759678]
[6]
Esler M, Lambert E, Schlaich M. Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 2010; 109(6): 1996-8.
[http://dx.doi.org/10.1152/japplphysiol.00182.2010] [PMID: 20185633]
[7]
Schlaich MP, Lambert E, Kaye DM, et al. Sympathetic augmentation in hypertension: Role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension 2004; 43(2): 169-75.
[http://dx.doi.org/10.1161/01.HYP.0000103160.35395.9E] [PMID: 14610101]
[8]
Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 1992; 327(27): 1912-8.
[http://dx.doi.org/10.1056/NEJM199212313272704] [PMID: 1454086]
[9]
Smith P, Graham LN, Mackintosh AF, Stoker JB, Mary DASG. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17(3): 217-22.
[http://dx.doi.org/10.1016/j.amjhyper.2003.10.010] [PMID: 15001194]
[10]
Starling EH. The chemical control of the body. J Am Med Assoc 1908; L(11): 835.
[http://dx.doi.org/10.1001/jama.1908.25310370001001]
[11]
Mulder J, Hökfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol 2013; 304(8): R675-82.
[http://dx.doi.org/10.1152/ajpregu.00599.2012] [PMID: 23408032]
[12]
DiBona GF. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol Regul Integr Comp Physiol 2000; 279(5): R1517-24.
[http://dx.doi.org/10.1152/ajpregu.2000.279.5.R1517] [PMID: 11049831]
[13]
Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol 2011; 1(2): 731-67.
[http://dx.doi.org/10.1002/cphy.c100043] [PMID: 23737201]
[14]
Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res 2015; 116(6): 976-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303604] [PMID: 25767284]
[15]
Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373(9671): 1275-81.
[http://dx.doi.org/10.1016/S0140-6736(09)60566-3] [PMID: 19332353]
[16]
Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376(9756): 1903-9.
[http://dx.doi.org/10.1016/S0140-6736(10)62039-9] [PMID: 21093036]
[17]
Bhatt DL, Kandzari DE, O’Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370(15): 1393-401.
[http://dx.doi.org/10.1056/NEJMoa1402670] [PMID: 24678939]
[18]
Azizi M, Sapoval M, Gosse P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 2015; 385(9981): 1957-65.
[http://dx.doi.org/10.1016/S0140-6736(14)61942-5] [PMID: 25631070]
[19]
Sakakura K, Ladich E, Cheng Q, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64(7): 635-43.
[http://dx.doi.org/10.1016/j.jacc.2014.03.059] [PMID: 25125292]
[20]
Mompeo B, Maranillo E, Garcia-Touchard A, Larkin T, Sanudo J. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat 2016; 29(5): 660-4.
[http://dx.doi.org/10.1002/ca.22720] [PMID: 27090982]
[21]
Böhm M, Kario K, Kandzari DE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 2020; 395(10234): 1444-51.
[http://dx.doi.org/10.1016/S0140-6736(20)30554-7] [PMID: 32234534]
[22]
Mahfoud F, Kandzari DE, Kario K, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet 2022; 399(10333): 1401-10.
[http://dx.doi.org/10.1016/S0140-6736(22)00455-X] [PMID: 35390320]
[23]
Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): A randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390(10108): 2160-70.
[http://dx.doi.org/10.1016/S0140-6736(17)32281-X] [PMID: 28859944]
[24]
Kandzari DE, Böhm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 2018; 391(10137): 2346-55.
[http://dx.doi.org/10.1016/S0140-6736(18)30951-6] [PMID: 29803589]
[25]
Azizi M, Schmieder RE, Mahfoud F, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 2018; 391(10137): 2335-45.
[http://dx.doi.org/10.1016/S0140-6736(18)31082-1] [PMID: 29803590]
[26]
Azizi M, Sanghvi K, Saxena M, et al. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 2021; 397(10293): 2476-86.
[http://dx.doi.org/10.1016/S0140-6736(21)00788-1] [PMID: 34010611]
[27]
Tsioufis KP, Dimitriadis K. RADIANCE-HTN TRIO: How the saga of renal denervation revisits hypertension therapy. Cardiovasc Res 2021; 117(11): e141-3.
[http://dx.doi.org/10.1093/cvr/cvab274] [PMID: 34562002]
[28]
Azizi M, Mahfoud F, Weber MA, et al. Effects of renal denervation vs sham in resistant hypertension after medication escalation. JAMA Cardiol 2022; 7(12): 1244-52.
[http://dx.doi.org/10.1001/jamacardio.2022.3904] [PMID: 36350593]
[29]
Fischell TA, Ebner A, Gallo S, et al. Transcatheter alcohol-mediated perivascular renal denervation with the peregrine system. JACC Cardiovasc Interv 2016; 9(6): 589-98.
[http://dx.doi.org/10.1016/j.jcin.2015.11.041] [PMID: 27013159]
[30]
Mahfoud F, Renkin J, Sievert H, et al. Alcohol-mediated renal denervation using the peregrine system infusion catheter for treatment of hypertension. JACC Cardiovasc Interv 2020; 13(4): 471-84.
[http://dx.doi.org/10.1016/j.jcin.2019.10.048] [PMID: 32081241]
[31]
Schmieder RE, Mahfoud F, Mancia G, et al. European Society of Hypertension position paper on renal denervation 2021. J Hypertens 2021; 39(9): 1733-41.
[http://dx.doi.org/10.1097/HJH.0000000000002933] [PMID: 34261957]
[32]
Sanders MF, Reitsma JB, Morpey M, et al. Renal safety of catheter-based renal denervation: systematic review and meta-analysis. Nephrol Dial Transplant 2017; 32(9): 1440-7.
[http://dx.doi.org/10.1093/ndt/gfx088] [PMID: 29059396]
[33]
Booth LC, Nishi EE, Yao ST, et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension 2015; 65(2): 393-400.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04176] [PMID: 25403610]
[34]
Mahfoud F, Mancia G, Schmieder R, et al. Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol 2020; 75(23): 2879-88.
[http://dx.doi.org/10.1016/j.jacc.2020.04.036] [PMID: 32527396]
[35]
Kario K, Mahfoud F, Kandzari DE, et al. Long-term reduction in morning and nighttime blood pressure after renal denervation: 36-month results from SPYRAL HTN-ON MED trial. Hypertens Res 2023; 46(1): 280-8.
[http://dx.doi.org/10.1038/s41440-022-01042-8] [PMID: 36241705]
[36]
Rader F, Kirtane AK, Wang Y, et al. Durability of blood pressure reduction after ultrasound renal denervation: three-year follow-up of the treatment arm of the randomised RADIANCE-HTN SOLO trial. EuroIntervention 2022; 18(8): e677-85.
[http://dx.doi.org/10.4244/EIJ-D-22-00305] [PMID: 35913759]
[37]
Dörr O, Liebetrau C, Möllmann H, et al. Renal sympathetic denervation does not aggravate functional or structural renal damage. J Am Coll Cardiol 2013; 61(4): 479-80.
[http://dx.doi.org/10.1016/j.jacc.2012.09.051] [PMID: 23265338]
[38]
Mahfoud F, Cremers B, Janker J, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 2012; 60(2): 419-24.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.193870] [PMID: 22733462]
[39]
Worthley SG, Tsioufis CP, Worthley MI, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J 2013; 34(28): 2132-40.
[http://dx.doi.org/10.1093/eurheartj/eht197] [PMID: 23782649]
[40]
Papademetriou V, Tsioufis CP, Sinhal A, et al. Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system. Hypertension 2014; 64(3): 565-72.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03605] [PMID: 24935940]
[41]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39(33): 3021-104.
[http://dx.doi.org/10.1093/eurheartj/ehy339] [PMID: 30165516]
[42]
Barbato E, Azizi M, Schmieder RE, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2023; 44(15): 1313-30.
[http://dx.doi.org/10.1093/eurheartj/ehad054] [PMID: 36790101]
[43]
Kandzari DE, Townsend RR, Bakris G, et al. Renal denervation in hypertension patients: Proceedings from an expert consensus roundtable cosponsored by SCAI and NKF. Catheter Cardiovasc Interv 2021; 98(3): 416-26.
[http://dx.doi.org/10.1002/ccd.29884] [PMID: 34343406]
[44]
Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens 2023; 2023.
[http://dx.doi.org/10.1097/HJH.0000000000003480] [PMID: 37345492]
[45]
Tsioufis C, Schmieder RE, Mancia G. Interventional Therapies for Secondary and Essential Hypertension. Springer International Publishing 2016.
[46]
Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol 2011; 58(7): 765-73.
[http://dx.doi.org/10.1016/j.jacc.2011.06.008] [PMID: 21816315]
[47]
Hoppe UC, Brandt MC, Wachter R, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens 2012; 6(4): 270-6.
[http://dx.doi.org/10.1016/j.jash.2012.04.004] [PMID: 22694986]
[48]
Wallbach M, Born E, Kämpfer D, et al. Long-term effects of baroreflex activation therapy: 2-year follow-up data of the BAT Neo system. Clin Res Cardiol 2020; 109(4): 513-22.
[http://dx.doi.org/10.1007/s00392-019-01536-5] [PMID: 31388741]
[49]
van Kleef MEAM, Devireddy CM, van der Heyden J, et al. Treatment of resistant hypertension with endovascular baroreflex amplification. JACC Cardiovasc Interv 2022; 15(3): 321-32.
[http://dx.doi.org/10.1016/j.jcin.2021.12.015] [PMID: 35144789]
[50]
Mariggiò S, Madel MB, Iaccino E, Blin-Wakkach C. New perspectives on osteoclasts in health and disease. Front Cell Dev Biol 2022; 10: 1093394.
[51]
Hering D, Zdrojewski Z, Król E, et al. Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens 2007; 25(1): 157-61.
[http://dx.doi.org/10.1097/HJH.0b013e3280102d92] [PMID: 17143187]
[52]
Nakayama K. Surgical removal of the carotid body for bronchial asthma. ANZ J Surg 1962; 31(3): 214-21.
[http://dx.doi.org/10.1111/j.1445-2197.1962.tb03265.x] [PMID: 14478243]
[53]
Winter B, Whipp BJ. Immediate effects of bilateral carotid body resection on total respiratory resistance and compliance in humans. Adv Exp Med Biol 2004; 551: 15-21.
[http://dx.doi.org/10.1007/0-387-27023-X_3] [PMID: 15602939]
[54]
Narkiewicz K, Ratcliffe LEK, Hart EC, et al. Unilateral carotid body resection in resistant hypertension. JACC Basic Transl Sci 2016; 1(5): 313-24.
[http://dx.doi.org/10.1016/j.jacbts.2016.06.004] [PMID: 27766316]
[55]
Mahfoud F, Schlaich MP, Lobo MD. Device therapy of hypertension. Circ Res 2021; 128(7): 1080-99.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318091] [PMID: 33793330]
[56]
Schlaich M, Schultz C, Shetty S, et al. Transvenous carotid body ablation for resistant hypertension: main results of a multicentre safety and proof-of-principle cohort study. Eur Heart J 2018; 39: ehy565.1416.
[57]
Neuzil P, Merkely B, Erglis A, et al. Pacemaker-mediated programmable hypertension control therapy. J Am Heart Assoc 2017; 6(12): e006974.
[http://dx.doi.org/10.1161/JAHA.117.006974] [PMID: 29275370]
[58]
Kuck KH. MODERATO II: A double-blind randomized trial of cardiac neuromodulation therapy in patients with hypertension. Transcatheter Cardiovascular Therapeutics meeting 2019; 28.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy