Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

针刺通过RhoA/ROCK途径改善SAMP8小鼠的突触可塑性

卷 20, 期 6, 2023

发表于: 11 September, 2023

页: [420 - 430] 页: 11

弟呕挨: 10.2174/1567205020666230828095826

价格: $65

Open Access Journals Promotions 2
摘要

背景:研究发现突触可塑性损伤是阿尔茨海默病(AD)的早期标志物。RhoA/ROCK通路参与突触可塑性的调控。针刺能显著改善AD患者的认知状态。 目的:利用现代生物技术检测SAMP8小鼠突触可塑性和RhoA/ROCK通路的变化,以及针刺的干预作用。 方法:采用Morris水迷宫和电生理技术检测小鼠空间记忆和LTP的变化。采用Golgi Cox染色和CASEVIEWER2.1软件定量分析小鼠海马树突棘形态和数量的变化。采用下拉法和ELISA法分别检测小鼠海马RhoA和ROCK2的活性。采用WB技术检测小鼠海马中ROCK2蛋白的表达以及MLC2、LIMK2和CRMP2的磷酸化水平。 结果:8月龄SAMP8小鼠的神经行为和突触可塑性明显受损。针刺可提高SAMP8小鼠的空间学习记忆能力,部分防止海马顶端树突二级分支棘数减少和LTP减弱。RhoA/ROCK通路在8个月大的SAMP8小鼠的海马中被显著激活,针刺对其具有抑制作用。 结论:针刺可通过抑制RhoA/ROCK通路的异常激活来改善突触可塑性,提高AD的空间学习记忆能力,达到治疗AD的目的。

关键词: 阿尔茨海默病,易衰老小鼠8只,针刺,RhoA/ROCK,LTP,树突棘。

[1]
Alzheimer's Association. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement., 2022, 17(3), 327-406.
[2]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[3]
Ho, T.J.; Chan, T.M.; Ho, L.I.; Lai, C.Y.; Lin, C.H.; Macdonald, I.; Harn, H.J.; Lin, J.G.; Lin, S.Z.; Chen, Y.H. The possible role of stem cells in acupuncture treatment for neurodegenerative diseases: a literature review of basic studies. Cell Transplant., 2014, 23(4-5), 559-566.
[http://dx.doi.org/10.3727/096368914X678463] [PMID: 24636189]
[4]
Zhou, J.; Peng, W.; Xu, M.; Li, W.; Liu, Z. The effectiveness and safety of acupuncture for patients with Alzheimer disease: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 2015, 94(22), e933.
[http://dx.doi.org/10.1097/MD.0000000000000933] [PMID: 26039131]
[5]
Shao, S.; Tang, Y.; Guo, Y.; Tian, Z.; Xiang, D.; Wu, J. Effects of acupuncture on patients with Alzheimer’s disease. Medicine (Baltimore), 2019, 98(4), e14242.
[http://dx.doi.org/10.1097/MD.0000000000014242] [PMID: 30681612]
[6]
Kan, B.H.; Yu, J.C.; Zhao, L.; Zhao, J.; Li, Z.; Suo, Y.R.; Han, J.X. Acupuncture improves dendritic structure and spatial learning and memory ability of Alzheimer’s disease mice. Neural Regen. Res., 2018, 13(8), 1390-1395.
[http://dx.doi.org/10.4103/1673-5374.235292] [PMID: 30106051]
[7]
Ke, Ch.; Cao, Y.; Xia, Y.W. Analysis on the research progress of different acupuncture treatments for alzheimer’s disease. J. Hunan Univ. Chinese Med., 2022, 42(2), 337-342.
[8]
Jia, Y.; Zhang, X.; Yu, J.; Han, J.; Yu, T.; Shi, J.; Zhao, L.; Nie, K. Acupuncture for patients with mild to moderate Alzheimer’s disease: a randomized controlled trial. BMC Complement. Altern. Med., 2017, 17(1), 556.
[http://dx.doi.org/10.1186/s12906-017-2064-x] [PMID: 29284465]
[9]
Cheng, X.; Zhou, W.; Zhang, Y. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer’s disease animal model. Ageing Res. Rev., 2014, 13, 13-37.
[http://dx.doi.org/10.1016/j.arr.2013.10.002] [PMID: 24269312]
[10]
Li, R.; He, J.K.; Jiang, Y.H.; Jia, B.H. Progress of experimental researches on acupuncture intervention for Alzheimer’s disease based on SAMP8 mice model. Zhen Ci Yan Jiu, 2022, 47(5), 466-470.
[PMID: 35616423]
[11]
John, A.; Reddy, P.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res. Rev., 2021, 65, 101208.
[http://dx.doi.org/10.1016/j.arr.2020.101208] [PMID: 33157321]
[12]
Bourne, J.; Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 2007, 17(3), 381-386.
[http://dx.doi.org/10.1016/j.conb.2007.04.009] [PMID: 17498943]
[13]
Martin-Vilchez, S.; Whitmore, L.; Asmussen, H.; Zareno, J.; Horwitz, R.; Newell-Litwa, K. RhoGTPase regulators orchestrate distinct stages of synaptic development. PLoS One, 2017, 12(1), e0170464.
[http://dx.doi.org/10.1371/journal.pone.0170464] [PMID: 28114311]
[14]
Swanger, S.A.; Mattheyses, A.L.; Gentry, E.G.; Herskowitz, J.H. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell. Logist., 2015, 5(4), e1133266.
[http://dx.doi.org/10.1080/21592799.2015.1133266] [PMID: 27054047]
[15]
Castañeda, P.; Muñoz, M.; García-Rojo, G.; Ulloa, J.L.; Bravo, J.A.; Márquez, R.; García-Pérez, M.A.; Arancibia, D.; Araneda, K.; Rojas, P.S.; Mondaca-Ruff, D.; Díaz-Véliz, G.; Mora, S.; Aliaga, E.; Fiedler, J.L. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons. J. Neurosci. Res., 2015, 93(10), 1476-1491.
[http://dx.doi.org/10.1002/jnr.23602] [PMID: 26010004]
[16]
Benarroch, E.E. Rho GTPases: Role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology, 2007, 68(16), 1315-1318.
[http://dx.doi.org/10.1212/01.wnl.0000259588.97409.8f] [PMID: 17438224]
[17]
Petratos, S.; Li, Q.X.; George, A.J.; Hou, X.; Kerr, M.L.; Unabia, S.E.; Hatzinisiriou, I.; Maksel, D.; Aguilar, M.I.; Small, D.H. The β-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain, 2008, 131(1), 90-108.
[http://dx.doi.org/10.1093/brain/awm260] [PMID: 18000012]
[18]
Acevedo, K.; Moussi, N.; Li, R.; Soo, P.; Bernard, O. LIM kinase 2 is widely expressed in all tissues. J. Histochem. Cytochem., 2006, 54(5), 487-501.
[http://dx.doi.org/10.1369/jhc.5C6813.2006] [PMID: 16399995]
[19]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[20]
Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28.
[http://dx.doi.org/10.1016/j.brainresbull.2013.12.004] [PMID: 24333192]
[21]
Androuin, A.; Potier, B.; Nägerl, U.V.; Cattaert, D.; Danglot, L.; Thierry, M.; Youssef, I.; Triller, A.; Duyckaerts, C.; El Hachimi, K.H.; Dutar, P.; Delatour, B.; Marty, S. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol., 2018, 135(6), 839-854.
[http://dx.doi.org/10.1007/s00401-018-1847-6] [PMID: 29696365]
[22]
Spires-Jones, T.L.; Meyer-Luehmann, M.; Osetek, J.D.; Jones, P.B.; Stern, E.A.; Bacskai, B.J.; Hyman, B.T. Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am. J. Pathol., 2007, 171(4), 1304-1311.
[http://dx.doi.org/10.2353/ajpath.2007.070055] [PMID: 17717139]
[23]
Morley, J.E. The SAMP8 mouse: a model of Alzheimer disease? Biogerontology, 2002, 3(1/2), 57-60.
[http://dx.doi.org/10.1023/A:1015207429786] [PMID: 12014843]
[24]
Taniguchi, S.; Mizuno, H.; Kuwahara, M.; Ito, K. Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8. Exp. Brain Res., 2015, 233(11), 3145-3152.
[http://dx.doi.org/10.1007/s00221-015-4383-9] [PMID: 26195169]
[25]
del Valle, J.; Bayod, S.; Camins, A.; Beas-Zárate, C.; Velázquez-Zamora, D.A.; González-Burgos, I.; Pallàs, M. Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2012, 32(1), 233-240.
[http://dx.doi.org/10.3233/JAD-2012-120718] [PMID: 22776969]
[26]
Huang, Y.; Yang, S.; Zhou, W.X.; Zhang, Y.X. The method of long-term potentiation recording in hippocampus in anaesthetized mice in vivo. Chinese J. Appl. Physiol., 2008, 24(3), 291-295.
[PMID: 21141586]
[27]
Bolognin, S.; Lorenzetto, E.; Diana, G.; Buffelli, M. The potential role of rho GTPases in Alzheimer’s disease pathogenesis. Mol. Neurobiol., 2014, 50(2), 406-422.
[http://dx.doi.org/10.1007/s12035-014-8637-5] [PMID: 24452387]
[28]
Ahnert-Hilger, G.; Höltje, M.; Große, G.; Pickert, G.; Mucke, C.; Nixdorf-Bergweiler, B.; Boquet, P.; Hofmann, F.; Just, I. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J. Neurochem., 2004, 90(1), 9-18.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02475.x] [PMID: 15198662]
[29]
Shang, Y.Y.; Ma, Y.J.; Zhang, L.; Wang, L.J.; Wu, X.F.; Liu, X.P. Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. Neuroreport, 2018, 29(7), 564-569.
[http://dx.doi.org/10.1097/WNR.0000000000000989] [PMID: 29481523]
[30]
Chong, C.M.; Ai, N.; Lee, S. ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders. Curr. Drug Targets, 2017, 18(4), 455-462.
[http://dx.doi.org/10.2174/1389450117666160401123825] [PMID: 27033194]
[31]
Hou, Y.; Zhou, L.; Yang, Q.D.; Du, X.P.; Li, M.; Yuan, M.; Zhou, Z.W. Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience, 2012, 200, 120-129.
[http://dx.doi.org/10.1016/j.neuroscience.2011.10.030] [PMID: 22062134]
[32]
Chen, Y.; Wei, G.; Nie, H.; Lin, Y.; Tian, H.; Liu, Y.; Yu, X.; Cheng, S.; Yan, R.; Wang, Q.; Liu, D.H.; Deng, W.; Lai, Y.; Zhou, J.H.; Zhang, S.X.; Lin, W.W.; Chen, D.F. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res., 2014, 1552, 41-54.
[http://dx.doi.org/10.1016/j.brainres.2014.01.005] [PMID: 24457043]
[33]
Fujiwara, H.; Yoshida, J.; Dibwe, D.F.; Awale, S.; Hoshino, H.; Kohama, H.; Arai, H.; Kudo, Y.; Matsumoto, K. Orengedokuto and san’oshashinto improve memory deficits by inhibiting aging-dependent activation of glycogen synthase kinase-3β. J. Tradit. Complement. Med., 2019, 9(4), 328-335.
[http://dx.doi.org/10.1016/j.jtcme.2018.12.001] [PMID: 31453129]
[34]
Zhu, M.; Lin, J.; Qing, P.; Pu, L.; Chen, S.; Lin, S.; Li, C.; Cao, L.; Zhang, Y. Manual acupuncture relieves microglia-mediated neuroinflammation in a rat model of traumatic brain injury by inhibiting the RhoA/ROCK2 pathway. Acupunct. Med., 2020, 38(6), 426-434.
[http://dx.doi.org/10.1177/0964528420912248] [PMID: 32310010]
[35]
Peng, R.; Li, J.; Li, J.; Li, B.C.; Cai, G.W. Warm acupuncture improves arthritic injury by down-regulating expression of skeleton proteins in rats with knee osteoarthritis. Zhen Ci Yan Jiu, 2020, 45(2), 105-110.
[PMID: 32144919]
[36]
Xu, Y.; Guo, Y.; Song, Y.; Zhang, K.; Zhang, Y.; Li, Q.; Hong, S.; Liu, Y.; Guo, Y. A new theory for acupuncture: Promoting robust regulation. J. Acupunct. Meridian Stud., 2018, 11(1), 39-43.
[http://dx.doi.org/10.1016/j.jams.2017.11.004] [PMID: 29482800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy