Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Thiolated Polymeric Hydrogels for Biomedical Applications: A Review

Author(s): Farhan Younas, Muhammad Zaman, Waqar Aman, Umer Farooq, Maria Abdul Ghafoor Raja and Muhammad Wahab Amjad*

Volume 29, Issue 40, 2023

Published on: 01 November, 2023

Page: [3172 - 3186] Pages: 15

DOI: 10.2174/1381612829666230825100859

Price: $65

Abstract

Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.

Keywords: Hydrogels, thiolation, chitosan, biomedical, drug delivery, novel targeting.

[1]
Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: A review. Mater Sci Eng C 2015; 57: 414-33.
[http://dx.doi.org/10.1016/j.msec.2015.07.053] [PMID: 26354282]
[2]
Varghese SA. Natural polymers and the hydrogels prepared from them. Hydrogels Based on Natural Polymers. Elsevier 2020; pp. 17-47.
[http://dx.doi.org/10.1016/B978-0-12-816421-1.00002-1]
[3]
Ahsan A, Tian W-X, Farooq MA, Khan DH. An overview of hydrogels and their role in transdermal drug delivery. Int J Polym Mater 2021; 70(8): 574-84.
[http://dx.doi.org/10.1080/00914037.2020.1740989]
[4]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[5]
Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 2014; 11(6): 901-15.
[http://dx.doi.org/10.1517/17425247.2014.902047] [PMID: 24848309]
[6]
Ghasemiyeh P, Mohammadi-Samani S. Hydrogels as drug delivery systems; pros and cons. Trends Pharmacol Sci 2019; 5(1): 7-24.
[7]
Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules 2019; 24(3): 603.
[http://dx.doi.org/10.3390/molecules24030603] [PMID: 30744011]
[8]
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol 2021; 170: 728-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.202] [PMID: 33387543]
[9]
Fathi M, Barar J, Aghanejad A, Omidi Y. Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 2015; 5(4): 159-64.
[http://dx.doi.org/10.15171/bi.2015.31] [PMID: 26929918]
[10]
Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 2016; 51(1): 271-310.
[http://dx.doi.org/10.1007/s10853-015-9382-5]
[11]
Chamkouri H, Chamkouri M. A review of hydrogels, their properties and applications in medicine. Am J Biomed Sci Res 2021; 11(6): 485-93.
[http://dx.doi.org/10.34297/AJBSR.2021.11.001682]
[12]
Sánchez ME, Gómez-Blanco JC, Nieto LE, et al. Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting pa-rameters, and bioprinted structures behavior. Front Bioeng Biotechnol 2020; 8: 776.
[http://dx.doi.org/10.3389/fbioe.2020.00776] [PMID: 32850697]
[13]
Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: A review. J Mater Res Technol 2021; 10: 935-52.
[http://dx.doi.org/10.1016/j.jmrt.2020.12.012]
[14]
Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol 2019; 135: 1006-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.198] [PMID: 31154040]
[15]
Sharma S, Tiwari S. RETRACTED: A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol 2020; 162: 737-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.110] [PMID: 32553961]
[16]
Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol Pharm 2019; 17(2): 373-91.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01020] [PMID: 31877054]
[17]
Sun X, Agate S, Salem KS, Lucia L, Pal L. Hydrogel-based sensor networks: Compositions, properties, and applications-A review. ACS Appl Bio Mater 2021; 4(1): 140-62.
[http://dx.doi.org/10.1021/acsabm.0c01011] [PMID: 35014280]
[18]
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2020; 573: 118803.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118803] [PMID: 31682963]
[19]
Malpure PS, Shital PS, Yashpal MM, Nikam PP. A review on-hydrogel. Am J PharmTech Res 2018; 8(3)
[http://dx.doi.org/10.46624/ajptr.2018.v8.i3.005]
[20]
Coviello T, Grassi M, Rambone G, et al. Novel hydrogel system from scleroglucan: Synthesis and characterization. J Control Release 1999; 60(2-3): 367-78.
[http://dx.doi.org/10.1016/S0168-3659(99)00091-7] [PMID: 10425341]
[21]
Satish C, Satish K, Shivakumar H. Hydrogels as controlled drug delivery systems: Synthesis, crosslinking, water and drug transport mechanism. Indian J Pharm Sci 2006; 68(2)
[22]
Thakur S, Thakur VK, Arotiba OA. History, classification, properties and application of hydrogels: An overview. Hydrogels 2018; 29-50.
[23]
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017; 3(1): 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[24]
Rosiak JM, Yoshii F. Hydrogels and their medical applications. Nucl Instrum Methods Phys Res B 1999; 151(1-4): 56-64.
[http://dx.doi.org/10.1016/S0168-583X(99)00118-4]
[25]
Singh A. Hydrogels: A review. Int J Pharm Sci Rev Res 2010; 4(2): 97-105.
[26]
Bharskar G. A review on hydrogel. World J Pharm Sci 2020; 9: 1288-98.
[27]
Singhal R, Gupta K. A review: Tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 2016; 55(1): 54-70.
[http://dx.doi.org/10.1080/03602559.2015.1050520]
[28]
You Y, Xing R, Zou Q, Shi F, Yan X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein J Nanotechnol 2019; 10(1): 1894-901.
[http://dx.doi.org/10.3762/bjnano.10.184] [PMID: 31598455]
[29]
Akagi Y, Gong JP, Chung U, Sakai T. Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 2013; 46(3): 1035-40.
[http://dx.doi.org/10.1021/ma302270a]
[30]
Lee PI. Kinetics of drug release from hydrogel matrices. J Control Release 1985; 2: 277-88.
[http://dx.doi.org/10.1016/0168-3659(85)90051-3]
[31]
Rodríguez-Llansola F, Miravet JF, Escuder B. A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reac-tion. Chem Commun 2009; (47): 7303-5.
[http://dx.doi.org/10.1039/b916250j] [PMID: 20024209]
[32]
Willner I. Stimuli-controlled hydrogels and their applications. Acc Chem Res 2017; 50(4): 657-8.
[http://dx.doi.org/10.1021/acs.accounts.7b00142] [PMID: 28415844]
[33]
Puri V, Sharma A, Kumar P, Singh I. Thiolation of biopolymers for developing drug delivery systems with enhanced mechanical and mucoadhesive properties: A review. Polymers 2020; 12(8): 1803.
[http://dx.doi.org/10.3390/polym12081803] [PMID: 32796741]
[34]
Ijaz M, Bernkop-Schnürch A. Preactivated thiomers: Their role in drug delivery. Expert Opin Drug Deliv 2015; 12(8): 1269-81.
[http://dx.doi.org/10.1517/17425247.2015.1005598] [PMID: 25604394]
[35]
Kaur L, Singh I. Chitosan-catechol conjugates–A novel class of bioadhesive polymers: A critical review. Rev Adhes Adhes 2019; 7(1): 51-67.
[http://dx.doi.org/10.7569/RAA.2019.097301]
[36]
Kgesa T, Choonara Y, Tyagi C, et al. Disulphide-thiol chemistry: A multi-faceted tool for macromolecular design and synthesis of poly-functional materials for specialized drug delivery. Curr Drug Deliv 2015; 12(3): 282-98.
[http://dx.doi.org/10.2174/1567201812666150120161952] [PMID: 25601062]
[37]
Bernkopschnürch A, Greimel A. Thiomers: A new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005; 57(11): 1569-82.
[http://dx.doi.org/10.1016/j.addr.2005.07.002] [PMID: 16176846]
[38]
Iqbal J, Shahnaz G, Dünnhaupt S, Müller C, Hintzen F, Bernkop-Schnürch A. Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials 2012; 33(5): 1528-35.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.021] [PMID: 22118819]
[39]
Kast CE, Bernkop-Schnürch A. Thiolated polymers - Thiomers: Development and in vitro evaluation of chitosan–thioglycolic acid con-jugates. Biomaterials 2001; 22(17): 2345-52.
[http://dx.doi.org/10.1016/S0142-9612(00)00421-X] [PMID: 11511031]
[40]
Gyarmati B, Némethy Á, Szilágyi A. Reversible disulphide formation in polymer networks: A versatile functional group from synthesis to applications. Eur Polym J 2013; 49(6): 1268-86.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.03.001]
[41]
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152: 191-221.
[http://dx.doi.org/10.1016/j.addr.2019.04.007] [PMID: 31028759]
[42]
Ma X, Bussonniere A, Liu Q. A facile sonochemical synthesis of shell-stabilized reactive microbubbles using surface-thiolated bovine serum albumin with the Traut’s reagent. Ultrason Sonochem 2017; 36: 454-65.
[http://dx.doi.org/10.1016/j.ultsonch.2016.12.033] [PMID: 28069233]
[43]
Roldo M, Hornof M, Caliceti P, Bernkop-Schnürch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: Synthesis and in vitro evaluation. Eur J Pharm Biopharm 2004; 57(1): 115-21.
[http://dx.doi.org/10.1016/S0939-6411(03)00157-7] [PMID: 14729087]
[44]
Yadav S, Ahuja M, Kumar A, Kaur H. Gellan–thioglycolic acid conjugate: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 2014; 99: 601-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.068] [PMID: 24274549]
[45]
Wang X, Mei Z, Wang Y, Tang L. Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. Beilstein J Nanotechnol 2017; 8(1): 372-80.
[http://dx.doi.org/10.3762/bjnano.8.39] [PMID: 28326226]
[46]
Zaman M, Bajwa RI, Qureshi OS, et al. Synthesis of thiol-modified hemicellulose, its biocompatibility, studies, and appraisal as a sus-tained release carrier of ticagrelor. Front Pharmacol 2021; 12: 550020.
[http://dx.doi.org/10.3389/fphar.2021.550020] [PMID: 34122054]
[47]
Bernkop-Schnürch A, Krauland AH, Leitner VM, Palmberger T. Thiomers: Potential excipients for non-invasive peptide delivery systems. Eur J Pharm Biopharm 2004; 58(2): 253-63.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.032] [PMID: 15296953]
[48]
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated hyaluronic acid as versatile Mucoadhesive polymer: From the chemistry behind to product developments-what are the capabilities? Polymers 2018; 10(3): 243.
[http://dx.doi.org/10.3390/polym10030243] [PMID: 30966278]
[49]
Kazemi MS, Mohammadi Z, Amini M, et al. Thiolated chitosan-lauric acid as a new chitosan derivative: Synthesis, characterization and cytotoxicity. Int J Biol Macromol 2019; 136: 823-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.132] [PMID: 31228504]
[50]
Cevher E, Taha MAM, Orlu M, Araman A. Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formula-tions containing carbomers and their thiolated derivatives. Drug Deliv 2008; 15(1): 57-67.
[http://dx.doi.org/10.1080/10717540701829234] [PMID: 18197525]
[51]
Cramer NB, Couch CL, Schreck KM, et al. Properties of methacrylate-thiol-ene formulations as dental restorative materials. Dent Mater 2010; 26(8): 799-806.
[http://dx.doi.org/10.1016/j.dental.2010.04.005] [PMID: 20553973]
[52]
Podgórski M, Becka E, Chatani S, Claudino M, Bowman CN. Ester-free thiol-X resins: New materials with enhanced mechanical behav-ior and solvent resistance. Polym Chem 2015; 6(12): 2234-40.
[http://dx.doi.org/10.1039/C4PY01552E] [PMID: 25893009]
[53]
Asadian M, Onyshchenko I, Thiry D, et al. Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Appl Surf Sci 2019; 479: 942-52.
[http://dx.doi.org/10.1016/j.apsusc.2019.02.178]
[54]
Esquivel R, Mario A, Jaime I, et al. Synthesis and characterization of new thiolated chitosan nanoparticles obtained by ionic gelation method. Int J Polym Sci 2015 2015.
[http://dx.doi.org/10.1155/2015/502058]
[55]
Albrecht K, Bernkop-Schnürch A. Thiomers: Forms, functions and applications to nanomedicine. Nanomedicine 2007; 2(1): 41-50.
[http://dx.doi.org/10.2217/17435889.2.1.41]
[56]
Su J. Thiol-mediated chemoselective strategies for in situ formation of hydrogels. Gels 2018; 4(3): 72.
[http://dx.doi.org/10.3390/gels4030072] [PMID: 30674848]
[57]
Mutlu H, Ceper EB, Li X, et al. Sulfur chemistry in polymer and materials science. Macromol Rapid Commun 2019; 40(1): 1800650.
[http://dx.doi.org/10.1002/marc.201800650] [PMID: 30468540]
[58]
Lu H, Yuan L, Yu X, Wu C, He D, Deng J. Recent advances of on-demand dissolution of hydrogel dressings. Burns Trauma 2018; 6: 35.
[http://dx.doi.org/10.1186/s41038-018-0138-8] [PMID: 30619904]
[59]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[60]
Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 2013; 18(13): 1623-41.
[http://dx.doi.org/10.1089/ars.2012.4973] [PMID: 23075118]
[61]
Laffleur F, Bernkop-Schnürch A. Thiomers: Promising platform for macromolecular drug delivery. Future Med Chem 2012; 4(17): 2205-16.
[http://dx.doi.org/10.4155/fmc.12.165] [PMID: 23190108]
[62]
Ijaz M, Prantl M, Lupo N, et al. Development of pre-activated α-cyclodextrin as a mucoadhesive excipient for intra-vesical drug delivery. Int J Pharm 2017; 534(1-2): 339-47.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.054] [PMID: 29111098]
[63]
Friedl HE, Dünnhaupt S, Waldner C, Bernkop-Schnürch A. Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials 2013; 34(32): 7811-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.021] [PMID: 23886732]
[64]
Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 2010; 1(1): 17-36.
[http://dx.doi.org/10.1039/B9PY00216B]
[65]
Jin R, Moreira Teixeira LS, Krouwels A, et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater 2010; 6(6): 1968-77.
[http://dx.doi.org/10.1016/j.actbio.2009.12.024] [PMID: 20025999]
[66]
Stichler S, Jungst T, Schamel M, Zilkowski I, Groll J, Poly TE. Hydrogels for Biofrabication. Additive Manufactruing of Biomaterials, Tissues and Organs 2016.
[67]
Moy CS, Songer TJ, LaPorte RE, et al. Insulin-dependent diabetes mellitus, physical activity, and death. Am J Epidemiol 1993; 137(1): 74-81.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116604] [PMID: 8434575]
[68]
Holmes R, Yang XB, Dunne A, Florea L, Wood D, Tronci G. Thiol-ene photo-click collagen-PEG hydrogels: Impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties. Polymers 2017; 9(12): 226.
[http://dx.doi.org/10.3390/polym9060226] [PMID: 30970903]
[69]
Lin CC, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci 2015; 132(8)
[http://dx.doi.org/10.1002/app.41563] [PMID: 25558088]
[70]
Ooi HW, Mota C, ten Cate AT, Calore A, Moroni L, Baker MB. Thiol-ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules 2018; 19(8): 3390-400.
[http://dx.doi.org/10.1021/acs.biomac.8b00696] [PMID: 29939754]
[71]
Lowe AB, Hoyle CE, Bowman CN. Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis. J Mater Chem 2010; 20(23): 4745-50.
[http://dx.doi.org/10.1039/b917102a]
[72]
Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly R. Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J Funct Biomater 2018; 9(1): 13.
[http://dx.doi.org/10.3390/jfb9010013] [PMID: 29364833]
[73]
Kharkar PM, Rehmann MS, Skeens KM, Maverakis E, Kloxin AM. Thiol-ene click hydrogels for therapeutic delivery. ACS Biomater Sci Eng 2016; 2(2): 165-79.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00420] [PMID: 28361125]
[74]
Onaciu A, Munteanu RA, Moldovan AI, Moldovan CS, Berindan-Neagoe I. Hydrogels based drug delivery synthesis, characterization and administration. Pharmaceutics 2019; 11(9): 432.
[http://dx.doi.org/10.3390/pharmaceutics11090432] [PMID: 31450869]
[75]
Xu K, Yao H, Fan D, Zhou L, Wei S. Hyaluronic acid thiol modified injectable hydrogel: Synthesis, characterization, drug release, cellular drug uptake and anticancer activity. Carbohydr Polym 2021; 254: 117286.
[http://dx.doi.org/10.1016/j.carbpol.2020.117286] [PMID: 33357859]
[76]
Radhakumary C, Antonty M, Sreenivasan K. Drug loaded thermoresponsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr Polym 2011; 83(2): 705-13.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.042]
[77]
Li R, Lin Z, Zhang Q, et al. Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for pre-vention of in vivo breast cancer recurrence. ACS Appl Mater Interfaces 2020; 12(15): 17936-48.
[http://dx.doi.org/10.1021/acsami.9b21528] [PMID: 32208630]
[78]
Li R, Zhang Y, Lin Z, et al. Injectable halloysite-g-chitosan hydrogels as drug carriers to inhibit breast cancer recurrence. Compos, Part B Eng 2021; 221: 109031.
[http://dx.doi.org/10.1016/j.compositesb.2021.109031]
[79]
Hanafy N, Leporatti S, El-Kemary M. Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Appl Sci 2019; 9(5): 825.
[http://dx.doi.org/10.3390/app9050825]
[80]
Gajendiran M, Rhee JS, Kim K. Recent developments in thiolated polymeric hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2018; 24(1): 66-74.
[http://dx.doi.org/10.1089/ten.teb.2016.0442] [PMID: 28726576]
[81]
Asim MH, Silberhumer S, Shahzadi I, Jalil A, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated hyaluronic acid: In-situ cross-linking hydrogels for 3D cell culture scaffold. Carbohydr Polym 2020; 237: 116092.
[http://dx.doi.org/10.1016/j.carbpol.2020.116092] [PMID: 32241444]
[82]
Bian S, He M, Sui J, et al. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids Surf B Biointerfaces 2016; 140: 392-402.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.008] [PMID: 26780252]
[83]
Zhang Y, Liu S, Li T, et al. Cytocompatible and non-fouling zwitterionic hyaluronic acid-based hydrogels using thiol-ene “click” chemis-try for cell encapsulation. Carbohydr Polym 2020; 236: 116021.
[http://dx.doi.org/10.1016/j.carbpol.2020.116021] [PMID: 32172841]
[84]
Yang G, Espandar L, Mamalis N, Prestwich GD. A cross-linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Vet Ophthalmol 2010; 13(3): 144-50.
[http://dx.doi.org/10.1111/j.1463-5224.2010.00771.x] [PMID: 20500713]
[85]
Lee HJ, Fernandes-Cunha GM, Myung D. In situ-forming hyaluronic acid hydrogel through visible light-induced thiol-ene reaction. React Funct Polym 2018; 131: 29-35.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.06.010] [PMID: 32256185]
[86]
Yang G, Prestwich GD, Mann BK. Thiolated carboxymethyl-hyaluronic-acid-based biomaterials enhance wound healing in rats, dogs, and horses. ISRN Vet Sci 2011 2011.
[http://dx.doi.org/10.5402/2011/851593]
[87]
Bauer C, Jeyakumar V, Niculescu-Morzsa E, Kern D, Nehrer S. Hyaluronan thiomer gel/matrix mediated healing of articular cartilage defects in New Zealand white rabbits-a pilot study. J Exp Orthop 2017; 4(1): 14.
[http://dx.doi.org/10.1186/s40634-017-0089-1] [PMID: 28470629]
[88]
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2020; 8(1): 405-12.
[http://dx.doi.org/10.1039/C9BM01494B] [PMID: 31729512]
[89]
Yegappan R, Selvaprithiviraj V, Mohandas A, Jayakumar R. Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydro-gel for angiogenic drug delivery. Colloids Surf B Biointerfaces 2019; 177: 41-9.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.035] [PMID: 30711759]
[90]
Bhakta G, Lim ZXH, Rai B, et al. The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphoge-netic protein-2 and ectopic bone formation. Acta Biomater 2013; 9(11): 9098-106.
[http://dx.doi.org/10.1016/j.actbio.2013.07.008] [PMID: 23871940]
[91]
Grewal P, Mundlia J, Ahuja M. Thiol modified Moringa gum - A potential bioadhesive polymer. Carbohydr Polym 2019; 209: 400-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.100] [PMID: 30732824]
[92]
Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 2012; 64: 223-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.009] [PMID: 11755704]
[93]
Yu H, Wang Y, Yang H, Peng K, Zhang X. Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. J Mater Chem B Mater Biol Med 2017; 5(22): 4121-7.
[http://dx.doi.org/10.1039/C7TB00746A] [PMID: 32264144]
[94]
Zhang H, Qadeer A, Chen W. In situ gelable interpenetrating double network hydrogel formulated from binary components: Thiolated chitosan and oxidized dextran. Biomacromolecules 2011; 12(5): 1428-37.
[http://dx.doi.org/10.1021/bm101192b] [PMID: 21410248]
[95]
Vlierberghe SV, Schacht E, Dubruel P. Reversible gelatin-based hydrogels: Finetuning of material properties. Eur Polym J 2011; 47(5): 1039-47.
[http://dx.doi.org/10.1016/j.eurpolymj.2011.02.015]
[96]
Yamauchi K, Takeuchi N, Kurimoto A, Tanabe T. Films of collagen crosslinked by S-S bonds: Preparation and characterization. Biomaterials 2001; 22(8): 855-63.
[http://dx.doi.org/10.1016/S0142-9612(00)00249-0] [PMID: 11246954]
[97]
Zhao Y, Gao S, Zhao S, et al. Synthesis and characterization of disulfide-crosslinked alginate hydrogel scaffolds. Mater Sci Eng C 2012; 32(8): 2153-62.
[http://dx.doi.org/10.1016/j.msec.2012.05.024]
[98]
Tae G, Kim YJ, Choi WI, Kim M, Stayton PS, Hoffman AS. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules 2007; 8(6): 1979-86.
[http://dx.doi.org/10.1021/bm0701189] [PMID: 17511500]
[99]
Gwon K, Kim E, Tae G. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Acta Biomater 2017; 49: 284-95.
[http://dx.doi.org/10.1016/j.actbio.2016.12.001] [PMID: 27919839]
[100]
Arslan M, Yirmibesoglu T, Celebi M. In situ crosslinkable thiol-ene hydrogels based on pegylated chitosan and β-cyclodextrin. J Turk Chem Soc A: Chem 2018; 5(3): 1327-36.
[http://dx.doi.org/10.18596/jotcsa.460275]
[101]
Teng D, Wu Z, Zhang X, et al. Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 2010; 51(3): 639-46.
[http://dx.doi.org/10.1016/j.polymer.2009.12.003]
[102]
Ding H, Li B, Jiang Y, et al. pH-responsive UV crosslinkable chitosan hydrogel via “thiol-ene” click chemistry for active modulating opposite drug release behaviors. Carbohydr Polym 2021; 251: 117101.
[http://dx.doi.org/10.1016/j.carbpol.2020.117101] [PMID: 33142639]
[103]
Guaresti O, Basasoro S, González K, Eceiza A, Gabilondo N. In situ cross-linked chitosan hydrogels via Michael addition reaction based on water-soluble thiol-maleimide precursors. Eur Polym J 2019; 119: 376-84.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.009]
[104]
Nie W, Yuan X, Zhao J, Zhou Y, Bao H. Rapidly in situ forming chitosan/ε-polylysine hydrogels for adhesive sealants and hemostatic materials. Carbohydr Polym 2013; 96(1): 342-8.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.008] [PMID: 23688490]
[105]
Liu J, Yang B, Li M, Li J, Wan Y. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Carbohydr Polym 2020; 227: 115335.
[http://dx.doi.org/10.1016/j.carbpol.2019.115335] [PMID: 31590851]
[106]
Liu X, Yu B, Huang Q, et al. In vitro BMP-2 peptide release from thiolated chitosan based hydrogel. Int J Biol Macromol 2016; 93(Pt A): 314-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.048] [PMID: 27544436]
[107]
Zhou Y, Zhao S, Zhang C, et al. Photopolymerized maleilated chitosan/thiol-terminated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym 2018; 184: 383-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.009] [PMID: 29352933]
[108]
Ding H, Li B, Liu Z, et al. Decoupled pH‐ and thermo‐responsive injectable chitosan/PNIPAM hydrogel via thiol‐ene click chemistry for potential applications in tissue engineering. Adv Healthc Mater 2020; 9(14): 2000454.
[http://dx.doi.org/10.1002/adhm.202000454] [PMID: 32548983]
[109]
Zeng Z, Mo X. Rapid in situ cross-linking of hydrogel adhesives based on thiol-grafted bio-inspired catechol-conjugated chitosan. J Biomater Appl 2017; 32(5): 612-21.
[http://dx.doi.org/10.1177/0885328217738403] [PMID: 29113567]
[110]
Lin Z, Li R, Liu Y, et al. Histatin1-modified thiolated chitosan hydrogels enhance wound healing by accelerating cell adhesion, migration and angiogenesis. Carbohydr Polym 2020; 230: 115710.
[http://dx.doi.org/10.1016/j.carbpol.2019.115710] [PMID: 31887922]
[111]
Kiene K, Porta F, Topacogullari B, Detampel P, Huwyler J. Self-assembling chitosan hydrogel: A drug-delivery device enabling the sustained release of proteins. J Appl Polym Sci 2018; 135(1): 45638.
[http://dx.doi.org/10.1002/app.45638]
[112]
Wu ZM, Zhang XG, Zheng C, et al. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 2009; 37(3-4): 198-206.
[http://dx.doi.org/10.1016/j.ejps.2009.01.010] [PMID: 19491006]
[113]
Michel SES, Rogers SE, Briscoe WH, Galan MC. Tunable thiol-ene photo-cross-linked chitosan-based hydrogels for biomedical applications. ACS Appl Bio Mater 2020; 3(11): 8075-83.
[http://dx.doi.org/10.1021/acsabm.0c01171] [PMID: 35019547]
[114]
Mehrali M, Thakur A, Kadumudi FB, et al. Pectin methacrylate (PEMA) and gelatin-based hydrogels for cell delivery: Converting waste materials into biomaterials. ACS Appl Mater Interfaces 2019; 11(13): 12283-97.
[http://dx.doi.org/10.1021/acsami.9b00154] [PMID: 30864429]
[115]
Mũnoz Z, Shih H, Lin CC. Gelatin hydrogels formed by orthogonal thiol-norbornene photochemistry for cell encapsulation. Biomater Sci 2014; 2(8): 1063-72.
[http://dx.doi.org/10.1039/C4BM00070F] [PMID: 32482001]
[116]
Bertlein S, Brown G, Lim KS, et al. Thiol-ene clickable gelatin: A platform bioink for multiple 3D biofabrication technologies. Adv Mater 2017; 29(44): 1703404.
[http://dx.doi.org/10.1002/adma.201703404] [PMID: 29044686]
[117]
Gilchrist AE, Serrano JF, Ngo MT, Hrnjak Z, Kim S, Harley BAC. Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomater 2021; 131: 138-48.
[http://dx.doi.org/10.1016/j.actbio.2021.06.028] [PMID: 34161871]
[118]
Van Damme L, Van Hoorick J, Blondeel P, Van Vlierberghe S. Toward adipose tissue engineering using thiol-norbornene photo-crosslinkable gelatin hydrogels. Biomacromolecules 2021; 22(6): 2408-18.
[http://dx.doi.org/10.1021/acs.biomac.1c00189] [PMID: 33950675]
[119]
Li L, Lu C, Wang L, et al. Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl Mater Interfaces 2018; 10(16): 13283-92.
[http://dx.doi.org/10.1021/acsami.7b17054] [PMID: 29620862]
[120]
Xu J, Duan Z, Qi X, et al. Injectable gelatin hydrogel suppresses inflammation and enhances functional recovery in a mouse model of intracerebral hemorrhage. Front Bioeng Biotechnol 2020; 8: 785.
[http://dx.doi.org/10.3389/fbioe.2020.00785] [PMID: 32760708]
[121]
Perera MM, Ayres N. Gelatin based dynamic hydrogels via thiol-norbornene reactions. Polym Chem 2017; 8(44): 6741-9.
[http://dx.doi.org/10.1039/C7PY01630A]
[122]
Xu G, Cheng L, Zhang Q, et al. In situ thiolated alginate hydrogel: Instant formation and its application in hemostasis. J Biomater Appl 2016; 31(5): 721-9.
[http://dx.doi.org/10.1177/0885328216661557] [PMID: 27485953]
[123]
Popescu I, Turtoi M, Suflet DM, et al. Alginate/poloxamer hydrogel obtained by thiol-acrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes. Int J Biol Macromol 2021; 180: 418-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.082] [PMID: 33737187]
[124]
Niu G, Du F, Song L, et al. Synthesis and characterization of reactive poloxamer 407s for biomedical applications. J Control Release 2009; 138(1): 49-56.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.026] [PMID: 19409430]
[125]
Peng HH, Chen YM, Lee CI, Lee MW. Synthesis of a disulfide cross-linked polygalacturonic acid hydrogel for biomedical applications. J Mater Sci Mater Med 2013; 24(6): 1375-82.
[http://dx.doi.org/10.1007/s10856-013-4901-x] [PMID: 23468164]
[126]
Zhang M, Wei X, Xu X, Jin Z, Wang J. Synthesis and characterization of water-soluble β-cyclodextrin polymers via thiol-maleimide ‘click’ chemistry. Eur Polym J 2020; 128: 109603.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109603]
[127]
Shih H, Lin CC. Photoclick hydrogels prepared from functionalized cyclodextrin and poly (ethylene glycol) for drug delivery and in situ cell encapsulation. Biomacromolecules 2015; 16(7): 1915-23.
[http://dx.doi.org/10.1021/acs.biomac.5b00471] [PMID: 25996903]
[128]
Arslan M, Gevrek TN, Sanyal R, Sanyal A. Fabrication of poly(ethylene glycol)-based cyclodextrin containing hydrogels via thiol-ene click reaction. Eur Polym J 2015; 62: 426-34.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.08.018]
[129]
Hu X, Tan H, Wang X, Chen P. Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. Colloids Surf A Physicochem Eng Asp 2016; 489: 297-304.
[http://dx.doi.org/10.1016/j.colsurfa.2015.11.007]
[130]
Peng K, Cui C, Tomatsu I, et al. Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter 2010; 6(16): 3778-83.
[http://dx.doi.org/10.1039/c0sm00096e]
[131]
Peng K, Tomatsu I, Korobko AV, Kros A. Cyclodextrin-dextran based in situ hydrogel formation: A carrier for hydrophobic drugs. Soft Matter 2010; 6(1): 85-7.
[http://dx.doi.org/10.1039/B914166A]
[132]
Cai T, Yang WJ, Zhang Z, Zhu X, Neoh K-G, Kang E-T. Preparation of stimuli-responsive hydrogel networks with threaded β-cyclodextrin end-capped chains via combination of controlled radical polymerization and click chemistry. Soft Matter 2012; 8(20): 5612-20.
[http://dx.doi.org/10.1039/c2sm25368b]
[133]
Lee HJ, Le PT, Kwon HJ, Park KD. Supramolecular assembly of tetronic-adamantane and poly(β-cyclodextrin) as injectable shear-thinning hydrogels. J Mater Chem B Mater Biol Med 2019; 7(21): 3374-82.
[http://dx.doi.org/10.1039/C9TB00072K]
[134]
Sheng J, Wang Y, Xiong L, et al. Injectable doxorubicin-loaded hydrogels based on dendron-like β-cyclodextrin-poly(ethylene glycol) conjugates. Polym Chem 2017; 8(10): 1680-8.
[http://dx.doi.org/10.1039/C6PY02243J]
[135]
Arslan M, Gevrek TN, Sanyal A, Sanyal R. Cyclodextrin mediated polymer coupling via thiol-maleimide conjugation: Facile access to functionalizable hydrogels. RSC Adv 2014; 4(101): 57834-41.
[http://dx.doi.org/10.1039/C4RA12408A]
[136]
Yom-Tov O, Seliktar D, Bianco-Peled H. PEG-Thiol based hydrogels with controllable properties. Eur Polym J 2016; 74: 1-12.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.11.002]
[137]
Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release 2001; 76(1-2): 11-25.
[http://dx.doi.org/10.1016/S0168-3659(01)00398-4] [PMID: 11532309]
[138]
Zustiak SP, Leach JB. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels. Biotechnol Bioeng 2011; 108(1): 197-206.
[http://dx.doi.org/10.1002/bit.22911] [PMID: 20803477]
[139]
Daniele MA, Adams AA, Naciri J, North SH, Ligler FS. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 2014; 35(6): 1845-56.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.009] [PMID: 24314597]
[140]
Toepke MW, Impellitteri NA, Theisen JM, Murphy WL. Characterization of thiol‐ene crosslinked PEG hydrogels. Macromol Mater Eng 2013; 298(6): 699-703.
[http://dx.doi.org/10.1002/mame.201200119] [PMID: 24883041]
[141]
Lin CC, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 2011; 32(36): 9685-95.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.083] [PMID: 21924490]
[142]
Roberts JJ, Bryant SJ. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 2013; 34(38): 9969-79.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.020] [PMID: 24060418]
[143]
Salinas CN, Anseth KS. Mixed mode thiol-acrylate photopolymerizations for the synthesis of PEG-peptide hydrogels. Macromolecules 2008; 41(16): 6019-26.
[http://dx.doi.org/10.1021/ma800621h]
[144]
Jansen LE, Negrón-Piñeiro LJ, Galarza S, Peyton SR. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks. Acta Biomater 2018; 70: 120-8.
[http://dx.doi.org/10.1016/j.actbio.2018.01.043] [PMID: 29452274]
[145]
Huynh CT, Liu F, Cheng Y, Coughlin KA, Alsberg E. Thiol-epoxy “Click” chemistry to engineer cytocompatible PEG-based hydrogel for siRNA-mediated osteogenesis of hMSCs. ACS Appl Mater Interfaces 2018; 10(31): 25936-42.
[http://dx.doi.org/10.1021/acsami.8b07167] [PMID: 29986132]
[146]
Jukes JM, van der Aa LJ, Hiemstra C, et al. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for carti-lage tissue engineering. Tissue Eng Part A 2010; 16(2): 565-73.
[http://dx.doi.org/10.1089/ten.tea.2009.0173] [PMID: 19737051]
[147]
Lin C, Zhao P, Li F, Guo F, Li Z, Wen X. Thermosensitive in situ-forming dextran-pluronic hydrogels through Michael addition. Mater Sci Eng C 2010; 30(8): 1236-44.
[http://dx.doi.org/10.1016/j.msec.2010.07.004]
[148]
Eliyahu S, Galitsky A, Ritov E, Bianco-Peled H. Hybrid acrylated chitosan and thiolated pectin cross-linked hydrogels with tunable properties. Polymers 2021; 13(2): 266.
[http://dx.doi.org/10.3390/polym13020266] [PMID: 33466959]
[149]
Wang JH, Tsai CW, Tsai NY, et al. An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. Int J Biol Macromol 2021; 185: 441-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.162] [PMID: 34197849]
[150]
Güner OZ, Kocaaga B, Batirel S, Kurkcuoglu O, Güner FS. 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. Int J Polym Mater 2021; 70(10): 703-11.
[http://dx.doi.org/10.1080/00914037.2020.1760272]
[151]
Özkahraman B. Development of mucoadhesive modified kappa‐carrageenan/pectin patches for controlled delivery of drug in the buccal cavity. J Biomed Mater Res B Appl Biomater 2021; 110(4): 787-98.
[PMID: 34846796]
[152]
Ijaz H, Tulain UR, Azam F, Qureshi J. Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabi-noxylan grafted acrylic acid copolymer. Drug Dev Ind Pharm 2019; 45(5): 754-66.
[http://dx.doi.org/10.1080/03639045.2019.1569041] [PMID: 30640559]
[153]
Lee S, Park YH, Ki CS. Fabrication of PEG-carboxymethyl-cellulose hydrogel by thiol-norbornene photo-click chemistry. Int J Biol Macromol 2016; 83: 1-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.050] [PMID: 26616448]
[154]
McOscar TVC, Gramlich WM. Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction. Cellulose 2018; 25(11): 6531-45.
[http://dx.doi.org/10.1007/s10570-018-2015-9]
[155]
Dadoo N, Landry SB, Bomar JD, Gramlich WM. Synthesis and spatiotemporal modification of biocompatible and stimuli‐responsive carboxymethyl cellulose hydrogels using thiol‐norbornene chemistry. Macromol Biosci 2017; 17(9): 1700107.
[http://dx.doi.org/10.1002/mabi.201700107] [PMID: 28671763]
[156]
Lee SY, Bang S, Kim S, et al. Synthesis and in vitro characterizations of porous carboxymethyl cellulose-poly(ethylene oxide) hydrogel film. Biomater Res 2015; 19(1): 12.
[http://dx.doi.org/10.1186/s40824-015-0033-3] [PMID: 26331082]
[157]
Xu Z, Li Z, Jiang S, Bratlie KM. Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaf-folds. ACS Omega 2018; 3(6): 6998-7007.
[http://dx.doi.org/10.1021/acsomega.8b00683] [PMID: 30023967]
[158]
Du H, Hamilton P, Reilly M, Ravi N. Injectable in situ physically and chemically crosslinkable gellan hydrogel. Macromol Biosci 2012; 12(7): 952-61.
[http://dx.doi.org/10.1002/mabi.201100422] [PMID: 22707249]
[159]
Yu Y, Zhu S, Wu D, Li L, Zhou C, Lu L. Thiolated gellan gum hydrogels as a peptide delivery system for 3D neural stem cell culture. Mater Lett 2020; 259: 126891.
[http://dx.doi.org/10.1016/j.matlet.2019.126891]
[160]
Baudis S, Bomze D, Markovic M, Gruber P, Ovsianikov A, Liska R. Modular material system for the microfabrication of biocompatible hydrogels based on thiol-ene-modified poly(vinyl alcohol). J Polym Sci A Polym Chem 2016; 54(13): 2060-70.
[http://dx.doi.org/10.1002/pola.28073]
[161]
Li QF, Chu S, Li E, Li M, Wang J-T, Wang Z. Lanthanide-based hydrogels with adjustable luminescent properties synthesized by thiol-Michael addition. Dyes Pigm 2020; 174: 108091.
[http://dx.doi.org/10.1016/j.dyepig.2019.108091]
[162]
Chong SF, Smith AAA, Zelikin AN. Microstructured, functional PVA hydrogels through bioconjugation with oligopeptides under physio-logical conditions. Small 2013; 9(6): 942-50.
[http://dx.doi.org/10.1002/smll.201201774] [PMID: 23208951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy