[1]
(a) Hackenberg, F.M. Carbene-metal complexes as anticancer and antibacterial drug candidates; University College Dublin, Ireland, 2013. ;
(b) Kamal, A.; Iqbal, M.A.; Bhatti, H.N. Therapeutic applications of selenium-derived compounds. Rev. Inorg. Chem., 2018, 38(2), 49-76.
[4]
(a) Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.;
(b) Zhao, Q.; Wang, F.; Chen, Y.X.; Chen, S.; Yao, Y.C.; Zeng, Z.L.; Jiang, T.J.; Wang, Y.N.; Wu, C.Y.; Jing, Y. Comprehensive profiling of 1015 patients’ exomes reveals genomic-clinical associations in colorectal cancer. Nat. Commun., 2022, 13(1), 2342.
[5]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[6]
(a) Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. The Lancet Global Health., 2016, 4(9), 609-616.;
(b) Kawai, K.; Okada, J.; Nakae, M.; Tsujimura, T.; Karuo, Y.; Tarui, A.; Sato, K.; Yamashita, S.; Kataoka, M.; Omote, M. Discovery of benzyloxyphenyl-and phenethylphenyl-imidazole derivatives as a new class of ante–drug type boosters. Bioorganic & Medicinal Chemistry Letters, 2022, 72, 128868.;
(c) Deng, C.; Yan, H.; Wang, J.; Liu, B.S.; Liu, K.; Shi, Y.M. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. Arab. J. Chem., 2022, 104242.;
(d) Slassi, S.; Aarjane, M.; Amine, A. Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. J. Mol. Struct., 2023, 1276, 134788.
[7]
(a) Andrei, G.Ş.; Andrei, B.F.; Roxana, P.R. Imidazole derivatives and their antibacterial activity-a mini-review. Mini Rev. Med. Chem., 2021, 21(11), 1380-1392.;
(b) Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther., 2021, 3289-3312.;
(c) Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37.;
(d) Rulhania, S.; Kumar, S.; Nehra, B.; Gupta, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of imidazole. J. Mol. Struct., 2020, 1232, 129982.
[8]
(a) Rossi, R.; Ciofalo, M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety. Molecules., 2020, 25(21), 5133.;
(b) Li, C.G.; Chai, Y.M.; Chai, L.Q.; Xu, L.Y. Novel zinc (II) and nickel (II) complexes of a quinazoline‐based ligand with an imidazole ring: Synthesis, spectroscopic property, antibacterial activities, time‐dependent density functional theory calculations and Hirshfeld surface analysis. Appl. Organomet. Chem., 2022, 36(5), e6622.;
(c) Eftekhari, S.; Foroughifar, N.; Hallajian, S.; Khajeh-Amiri, A. Green Synthesis of Some Novel Imidazole Schiff base Derivatives Under Microwave Irradiation/Reflux Conditions and Evaluations of the Antibacterial Activity. Curr. Microw. Chem., 2020, 7(3), 207-215.
[9]
(a) Yardimci, B.K. Imidazole antifungals: A review of their action mechanisms on cancerous cells. Int. J. Second. Metab., 2020, 7(3), 139-159.;
(b) Zhang, j.; Sun, J.; Liu, Y.; Yu, J.; Guo, X. Immobilized cellulose-based Chiralpak IC chiral stationary phase for Enantioseparation of eight imidazole antifungal drugs in normal-phase, polar organic phase and reversed-phase conditions using high-performance liquid chromatography. Chromatographia, 2019, 82, 649-660.;
(c) Tippannanavar, M.; Verma, A.; Kumar, A.; Gogoi, R.; Kundu, A.; Patanjali, N. Preparation of nanofungicides based on imidazole drugs and their antifungal evaluation. J. Agric. Food Chem., 2020, 68, 16-4566.
[23]
(a) Habib, A.; Iqbal, M.A.; Bhatti, H.N.; Kamal, A.; Kamal, S. Synthesis of alkyl/aryl linked binuclear silver (I)-N-Heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg. Chem. Commun., 2020, 111, 107670.;
(b) Naz, N.; Saqib, S.; Ashraf, R.; Majeed, M.L.; Iqbal, M.A. Synthesis of new organoselenium compounds: characterization and biological studies. Maced. J. Chem. Chem., 2020, 39(1), 1-10.;
(c) Haque, R.A.; Iqbal, M.A.; Mohamad, F.; Razali, M.R. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver (I) and selenium compounds. J. Mol. Struct., 2018, 1155, 362-370.;
(d) Iqbal, M.A.; Haque, R.A.; Budagumpi, S.; Ahamed, M.B.K.; Majid, A.M.A. Short metal–metal separations and in vitro anticancer studies of a new dinuclear silver (I)-N-heterocyclic carbene complex of para-xylyl-linked bis-benzimidazolium salt. Inorg. Chem. Commun., 2018, 28, 64-69.
[24]
(a) Chiang, E.; Bostwick, D.; Waters, D. Selenium form-dependent anti-carcinogenesis: preferential elimination of oxidant-damaged prostate cancer cell populations by methylseleninic acid is not shared by selenite. Vitam. Miner, 2015, 4(1), 2376-1318.;
(b) Verlinden, k.; Buhl, h.; Frank, W.; Ganter, C.; Frank, W.; Frank, W. Determining the ligand properties of N‐heterocyclic carbenes from 77Se NMR parameters. Eur. J. Inorg. Chem., 2015, 2015(14), 2416-2425.