Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Biosynthesized Silver Nanoparticles from Cyperus conglomeratus Root Extract Inhibit Osteogenic Differentiation of Immortalized Mesenchymal Stromal Cells

Author(s): Mohamed A. H. Alshamsi, Kareem A. Mosa*, Amir Ali Khan*, Muath Mousa, Muna A. Ali, Sameh S.M. Soliman and Mohammad H. Semreen

Volume 25, Issue 10, 2024

Published on: 23 August, 2023

Page: [1333 - 1347] Pages: 15

DOI: 10.2174/1389201024666230823094412

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Silver nanoparticles (AgNPs) are a focus of huge interest in biological research, including stem cell research. AgNPs synthesized using Cyperus conglomeratus root extract have been previously reported but their effects on mesenchymal stromal cells have yet to be investigated.

Objectives: The aim of this study is to investigate the effects of C. conglomeratus-derived AgNPs on adipogenesis and osteogenesis of mesenchymal stromal cells.

Methods: AgNPs were synthesized using C. conglomeratus root extract, and the phytochemicals involved in AgNPs synthesis were analyzed using gas chromatography-mass spectrometry (GCMS). The cytotoxicity of the AgNPs was tested on telomerase-transformed immortalized human bone marrow-derived MSCs-hTERT (iMSC3) and human osteosarcoma cell line (MG-63) using MTT and apoptosis assays. The uptake of AgNPs by both cells was confirmed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Furthermore, the effect of AgNPs on iMSC3 adipogenesis and osteogenesis was analyzed using stain quantification and reverse transcription- quantitative polymerase chain reaction (RT-qPCR).

Results: The phytochemicals predominately identified in both the AgNPs and C. conglomeratus root extract were carbohydrates. The AgNP concentrations tested using MTT and apoptosis assays (0.5-64 µg/ml and 1,4 and 32 µg/ml, respectively) showed no significant cytotoxicity on iMSC3 and MG-63. The AgNPs were internalized in a concentration-dependent manner in both cell types. Additionally, the AgNPs exhibited a significant negative effect on osteogenesis but not on adipogenesis.

Conclusion: C. conglomeratus-derived AgNPs had an impact on the differentiation capacity of iMSC3. Our results indicated that C. conglomeratus AgNPs and the associated phytochemicals could exhibit potential medical applications.

Keywords: Silver nanoparticles, green nanotechnology, Cyperus conglomeratus, mesenchymal stromal cells, adipogenic, osteogenic.

« Previous
Graphical Abstract
[1]
Thiruvengadam, M.; Rajakumar, G.; Chung, I. M. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech, 2018, 1(1), 74.
[http://dx.doi.org/10.1007/s13205-018-1104-7] [PMID: 29354385]
[2]
Butler, C. Climate change, health and existential risks to civilization: A comprehensive review (1989–2013). Int. J. Environ. Res. Public Health, 2018, 15(10), 2266.
[http://dx.doi.org/10.3390/ijerph15102266] [PMID: 30332777]
[3]
Iavicoli, I.; Leso, V.; Ricciardi, W.; Hodson, L.L.; Hoover, M.D. Opportunities and challenges of nanotechnology in the green economy. Environ. Health, 2014, 13(1), 78.
[http://dx.doi.org/10.1186/1476-069X-13-78] [PMID: 25294341]
[4]
Matthews, N.E.; Cizauskas, C.A.; Layton, D.S.; Stamford, L.; Shapira, P. Collaborating constructively for sustainable biotechnology. Sci. Rep., 2019, 9(1), 19033.
[http://dx.doi.org/10.1038/s41598-019-54331-7] [PMID: 31836745]
[5]
Verma, A.; Gautam, S.; Bansal, K.; Prabhakar, N.; Rosenholm, J. Green nanotechnology: Advancement in phytoformulation research. Medicines, 2019, 6(1), 39.
[http://dx.doi.org/10.3390/medicines6010039] [PMID: 30875823]
[6]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[7]
Rasmussen, K.; Rauscher, H.; Mech, A.; Riego Sintes, J.; Gilliland, D.; González, M.; Kearns, P.; Moss, K.; Visser, M.; Groenewold, M.; Bleeker, E.A.J. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul. Toxicol. Pharmacol., 2018, 92, 8-28.
[http://dx.doi.org/10.1016/j.yrtph.2017.10.019] [PMID: 29074277]
[8]
Hofmann, M.C. Stem cells and nanomaterials. Adv. Exp. Med. Biol., 2014, 811, 255-275.
[http://dx.doi.org/10.1007/978-94-017-8739-0_13] [PMID: 24683036]
[9]
Robert, A.W.; Marcon, B.H.; Dallagiovanna, B.; Shigunov, P. Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: A comparative transcriptome approach. Front. Cell Dev. Biol., 2020, 8, 561.
[http://dx.doi.org/10.3389/fcell.2020.00561] [PMID: 32733882]
[10]
He, W.; Kienzle, A.; Liu, X.; Müller, W.E.G.; Feng, Q. In vitro 30 nm silver nanoparticles promote chondrogenesis of human mesenchymal stem cells. RSC Advances, 2015, 5(61), 49809-49818.
[http://dx.doi.org/10.1039/C5RA06386H]
[11]
Sengstock, C.; Diendorf, J.; Epple, M.; Schildhauer, T.A.; Köller, M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J. Nanotechnol., 2014, 5, 2058-2069.
[http://dx.doi.org/10.3762/bjnano.5.214] [PMID: 25551033]
[12]
Yamada, S.; Yamazaki, D.; Kanda, Y. Silver nanoparticles inhibit neural induction in human induced pluripotent stem cells. Nanotoxicology, 2018, 12(8), 836-846.
[http://dx.doi.org/10.1080/17435390.2018.1481238] [PMID: 29902946]
[13]
Zhang, R.; Lee, P.; Lui, V.C.H.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.K.; Wong, K.K.Y. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine, 2015, 11(8), 1949-1959.
[http://dx.doi.org/10.1016/j.nano.2015.07.016] [PMID: 26282383]
[14]
Gomez-Salazar, M.; Gonzalez-Galofre, Z.N.; Casamitjana, J.; Crisan, M.; James, A.W.; Péault, B. Five Decades Later, Are mesenchymal stem cells still relevant? Front. Bioeng. Biotechnol., 2020, 8, 148.
[http://dx.doi.org/10.3389/fbioe.2020.00148] [PMID: 32185170]
[15]
Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ. Med. J., 2018, 18(3), 264.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[16]
Ullah, I.; Subbarao, R.B.; Rho, G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep., 2015, 35(2), e00191.
[http://dx.doi.org/10.1042/BSR20150025] [PMID: 25797907]
[17]
Skårn, M.; Noordhuis, P.; Wang, M.Y.; Veuger, M.; Kresse, S.H.; Egeland, E.V.; Micci, F.; Namløs, H.M.; Håkelien, A.M.; Olafsrud, S.M.; Lorenz, S.; Haraldsen, G.; Kvalheim, G.; Meza-Zepeda, L.A.; Myklebost, O. Generation and characterization of an immortalized human mesenchymal stromal cell line. Stem Cells Dev., 2014, 23(19), 2377-2389.
[http://dx.doi.org/10.1089/scd.2013.0599] [PMID: 24857590]
[18]
Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; Xu, C.; Zhang, L.; Yang, H.; Hou, J.; Wang, Y.; Shi, Y. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ., 2016, 23(7), 1128-1139.
[http://dx.doi.org/10.1038/cdd.2015.168] [PMID: 26868907]
[19]
Han, L.; Wang, B.; Wang, R.; Gong, S.; Chen, G.; Xu, W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res. Ther., 2019, 10(1), 377.
[http://dx.doi.org/10.1186/s13287-019-1498-0] [PMID: 31805987]
[20]
Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. PharmacoEconomics, 2015, 33(7), 673-689.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[21]
Fruh, S.M. Obesity. J. Am. Assoc. Nurse Pract., 2017, 29(S1), S3-S14.
[http://dx.doi.org/10.1002/2327-6924.12510] [PMID: 29024553]
[22]
Lim, J.; Grafe, I.; Alexander, S.; Lee, B. Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone, 2017, 102, 40-49.
[http://dx.doi.org/10.1016/j.bone.2017.02.004] [PMID: 28232077]
[23]
Zimmerman, S.M.; Dimori, M.; Heard-Lipsmeyer, M.E.; Morello, R. The osteocyte transcriptome is extensively dysregulated in mouse models of osteogenesis imperfecta. JBMR Plus, 2019, 3(7), e10171.
[http://dx.doi.org/10.1002/jbm4.10171] [PMID: 31372585]
[24]
Al-Nuairi, A.G.; Mosa, K.A.; Mohammad, M.G.; El-Keblawy, A.; Soliman, S.; Alawadhi, H. Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from Cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biol. Trace Elem. Res., 2020, 194(2), 560-569.
[http://dx.doi.org/10.1007/s12011-019-01791-7] [PMID: 31267442]
[25]
Gliga, A.R.; Edoff, K.; Caputo, F.; Källman, T.; Blom, H.; Karlsson, H.L.; Ghibelli, L.; Traversa, E.; Ceccatelli, S.; Fadeel, B. Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Sci. Rep., 2017, 7(1), 9284.
[http://dx.doi.org/10.1038/s41598-017-09430-8] [PMID: 28839176]
[26]
Wigner, P.; Zielinski, K.; Michlewska, S.; Danielska, P.; Marczak, A.; Ricci, E.J.; Santos-Oliveira, R.; Szwed, M. Disturbance of cellular homeostasis as a molecular risk evaluation of human endothelial cells exposed to nanoparticles. Sci. Rep., 2021, 11(1), 3849.
[http://dx.doi.org/10.1038/s41598-021-83291-0] [PMID: 33589697]
[27]
Ali, M.A.; Soliman, S.S.M.; Bajou, K.; El-Keblawy, A.; Mosa, K.A. Identification of phytochemicals capping the exogenously biosynthesized silver nanoparticles by T. apollinea (Delile) DC. living plants and evaluation of their cytotoxic activity. Biocatal. Agric. Biotechnol., 2022, 42, 102336.
[http://dx.doi.org/10.1016/j.bcab.2022.102336]
[28]
Abdulwahab, M.; Khan, A.A.; Abdallah, S.H.; Khattak, M.N.K.; Workie, B.; Chehimi, M.M.; Mohamed, A.A. Arylated gold nanoparticles have no effect on the adipogenic differentiation of MG-63 cells nor regulate any key signaling pathway during the differentiation. BMC Res. Notes, 2021, 14(1), 192.
[http://dx.doi.org/10.1186/s13104-021-05594-9] [PMID: 34011402]
[29]
Fayyad, A.; Khan, A.; Abdallah, S.; Alomran, S.; Bajou, K.; Khattak, M. Rosiglitazone enhances browning adipocytes in association with MAPK and PI3-K pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int. J. Mol. Sci., 2019, 20(7), 1618.
[http://dx.doi.org/10.3390/ijms20071618] [PMID: 30939750]
[30]
Gregory, C.A.; Grady Gunn, W.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem., 2004, 329(1), 77-84.
[http://dx.doi.org/10.1016/j.ab.2004.02.002] [PMID: 15136169]
[31]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[32]
Hyun Jin, S. Enhancement of osteogenic differentiation by combination treatment with 5-azacytidine and thyroid-stimulating hormone in human osteoblast cells. Int J Thyroidol, 2017, 10(2), 71-76.
[http://dx.doi.org/10.11106/ijt.2017.10.2.71]
[33]
Wang, B.; Wood, I.S.; Trayhurn, P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch., 2007, 455(3), 479-492.
[http://dx.doi.org/10.1007/s00424-007-0301-8] [PMID: 17609976]
[34]
Flores-Opazo, M.; Boland, E.; Garnham, A.; Murphy, R.M.; McGee, S.L.; Hargreaves, M. Exercise and GLUT4 in human subcutaneous adipose tissue. Physiol. Rep., 2018, 6(22), e13918.
[http://dx.doi.org/10.14814/phy2.13918] [PMID: 30450826]
[35]
Shin, J.H.; Kim, J.H.; Lee, W.Y.; Shim, J.Y. The expression of adiponectin receptors and the effects of adiponectin and leptin on airway smooth muscle cells. Yonsei Med. J., 2008, 49(5), 804-810.
[http://dx.doi.org/10.3349/ymj.2008.49.5.804] [PMID: 18972601]
[36]
Wang, J.; Zhao, Y.; Wu, X.; Yin, S.; Chuai, Y.; Wang, A. The utility of human fallopian tube mucosa as a novel source of multipotent stem cells for the treatment of autologous reproductive tract injury. Stem Cell Res. Ther., 2015, 6(1), 98.
[http://dx.doi.org/10.1186/s13287-015-0094-1] [PMID: 25994820]
[37]
Bernstein, E.F.; Brown, D.B.; Schwartz, M.D.; Kaidbey, K.; Ksenzenko, S.M. The polyhydroxy acid gluconolactone protects against ultraviolet radiation in an in vitro model of cutaneous photoaging. Dermatol. Surg., 2004, 30(2 Pt 1), 189-195.
[PMID: 14756648]
[38]
Kuwano, T.; Kawano, S.; Kagawa, D.; Yasuda, Y.; Inoue, Y.; Murase, T. Dietary intake of glucono-δ-lactone attenuates skin inflammation and contributes to maintaining skin condition. Food Funct., 2018, 9(3), 1524-1531.
[http://dx.doi.org/10.1039/C7FO01548H] [PMID: 29431785]
[39]
Ishchuk, O.P.; Sterner, O.; Strevens, H.; Ellervik, U.; Manner, S. The use of polyhydroxylated carboxylic acids and lactones to diminish biofilm formation of the pathogenic yeast Candida albicans. RSC Advances, 2019, 9(19), 10983-10989.
[http://dx.doi.org/10.1039/C9RA01204D] [PMID: 35515281]
[40]
Gunputh, U.F.; Le, H.; Handy, R.D.; Tredwin, C. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Mater. Sci. Eng. C, 2018, 91, 638-644.
[http://dx.doi.org/10.1016/j.msec.2018.05.074] [PMID: 30033297]
[41]
Sun, C.; Gao, Y.; Zhong, Q. Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes self-assembled during a pH cycle. Food Hydrocoll., 2018, 82, 173-185.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.007]
[42]
Ogata, H.; Ogiyama, K. Chemical compositions and antipathogenic activities of constituent fatty acids from neutral wax in foliage of Cryptomeria japonica D. Don. Mokuzai Gakkaishi/JWRS, 2000, 46, 54-62.
[43]
Söderlind, F.; Pedersen, H.; Petoral, R.M., Jr; Käll, P.O.; Uvdal, K. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci., 2005, 288(1), 140-148.
[http://dx.doi.org/10.1016/j.jcis.2005.02.089] [PMID: 15927572]
[44]
Oluwafemi, O.S.; Lucwaba, Y.; Gura, A.; Masabeya, M.; Ncapayi, V.; Olujimi, O.O.; Songca, S.P. A facile completely ‘green’ size tunable synthesis of maltose-reduced silver nanoparticles without the use of any accelerator. Colloids Surf. B Biointerfaces, 2013, 102, 718-723.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.001] [PMID: 23104035]
[45]
Hassanzadeh, F.; Jafari, E.; Mohammadi, T.; Jahanian-Najafabadi, A. Synthesis and antimicrobial evaluation of some 2,5 disubstituted 1,3,4-oxadiazole derivatives. Res. Pharm. Sci., 2017, 12(4), 330-336.
[http://dx.doi.org/10.4103/1735-5362.212051] [PMID: 28855945]
[46]
Hayashi, K.; Tomonaga, H.; Matsuyama, T.; Ida, J. Facile synthesis, characterization of various polymer immobilized on magnetite nanoparticles applying the coprecipitation method. J. Appl. Polym. Sci., 2022, 139(5), 51581.
[http://dx.doi.org/10.1002/app.51581]
[47]
Xu, C.; Wu, P.; Gao, J.; Zhang, L.; Ma, T.; Ma, B.; Yang, S.; Shao, G.; Yu, Y.; Huang, X.; Yang, X.; Zhang, B. Heptadecanoic acid inhibits cell proliferation in PC-9 non-small-cell lung cancer cells with acquired gefitinib resistance. Oncol. Rep., 2019, 41(6), 3499-3507.
[http://dx.doi.org/10.3892/or.2019.7130] [PMID: 31002344]
[48]
Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis., 2019, 10(4), 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[49]
Liu, Y.; Jia, Y.; Yang, K.; Tong, Z.; Shi, J.; Li, R.; Xiao, X.; Ren, W.; Hardeland, R.; Reiter, R.J.; Wang, Z. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Theranostics, 2020, 10(23), 10697-10711.
[http://dx.doi.org/10.7150/thno.45951] [PMID: 32929375]
[50]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[51]
Khan, T.; Ali, G.S. Variation in surface properties, metabolic capping, and antibacterial activity of biosynthesized silver nanoparticles: Comparison of bio-fabrication potential in phytohormone-regulated cell cultures and naturally grown plants. RSC Advances, 2020, 10(64), 38831-38840.
[http://dx.doi.org/10.1039/D0RA08419K] [PMID: 35518444]
[52]
Sheshadri, S.A.; Sriram, S.; Balamurugan, P.; Anupriya, R.; Princy, S.A.; Brindha, P.; Bindu, S. Melatonin improves bioreductant capacity and silver nanoparticles synthesis using Catharanthus roseus leaves. RSC Advances, 2015, 5(59), 47548-47554.
[http://dx.doi.org/10.1039/C5RA01848J]
[53]
Riaz, H. R.; Hashmi, S. S.; Khan, T.; Hano, C.; Giglioli-Guivarc'h, N.; Abbasi, B. H. Melatonin-stimulated biosynthesis of anti-microbial ZnONPs by enhancing bio-reductive prospective in callus cultures of Catharanthus roseus var. Artif Cells Nanomed Biotechnol, 2018, 46(Sup-2)
[http://dx.doi.org/10.1080/21691401.2018.1473413]
[54]
den Hartog, G.J.M.; Boots, A.W.; Adam-Perrot, A.; Brouns, F.; Verkooijen, I.W.C.M.; Weseler, A.R.; Haenen, G.R.M.M.; Bast, A. Erythritol is a sweet antioxidant. Nutrition, 2010, 26(4), 449-458.
[http://dx.doi.org/10.1016/j.nut.2009.05.004] [PMID: 19632091]
[55]
Kawano, R.; Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Asano, M.; Yamazaki, M.; Takakuwa, H.; Sasano, R.; Nakanishi, N.; Hamaguchi, M.; Fukui, M. Erythritol ameliorates small intestinal inflammation induced by high-fat diets and improves glucose Tolerance. Int. J. Mol. Sci., 2021, 22(11), 5558.
[http://dx.doi.org/10.3390/ijms22115558] [PMID: 34074061]
[56]
de Cock, P.; Mäkinen, K.; Honkala, E.; Saag, M.; Kennepohl, E.; Eapen, A. Erythritol is more effective than xylitol and sorbitol in managing oral health endpoints. Int. J. Dent., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/9868421] [PMID: 27635141]
[57]
Unsworth, A.J.; Flora, G.D.; Sasikumar, P.; Bye, A.P.; Sage, T.; Kriek, N.; Crescente, M.; Gibbins, J.M. RXR ligands negatively regulate thrombosis and hemostasis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), 812-822.
[http://dx.doi.org/10.1161/ATVBAHA.117.309207] [PMID: 28254816]
[58]
Choi, S.J.; Park, C.K.; Shin, D.H. Protective effects of radish extract against neurotoxicity in mice and PC12 Cells. J. Med. Food, 2020, 23(5), 523-534.
[http://dx.doi.org/10.1089/jmf.2019.4563] [PMID: 32119811]
[59]
Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol., 2018, 56, 179-185.
[http://dx.doi.org/10.1016/j.intimp.2018.01.032] [PMID: 29414648]
[60]
Ohba, Y.; Kanao, Y.; Morita, N.; Fujii, E.; Hohrai, M.; Takatsuji, M.; Hirose, H.; Miura, D.; Watari, A.; Yutsudo, M.; Zhao, H.; Yabuta, N.; Ito, A.; Kita, Y.; Nojima, H. Oleamide derivatives suppress the spontaneous metastasis by inhibiting connexin 26. Int. J. Cancer, 2007, 121(1), 47-54.
[http://dx.doi.org/10.1002/ijc.22608] [PMID: 17290388]
[61]
Anand, K.; Rajamanikandan, R.; Selva Sharma, A.; Ilanchelian, M.; Khan, F.I.; Tiloke, C.; Katari, N.K.; Boomi, P.; Balakumar, C.; Saravanan, M.; Palanisamy, S.; Ramesh, M.; Lai, D.; Chuturgoon, A.A. Human serum albumin interaction, in silico and anticancer evaluation of Pine-Gold nanoparticles. Process Biochem., 2020, 89, 98-109.
[http://dx.doi.org/10.1016/j.procbio.2019.09.036]
[62]
Wojtczak, L.; Slyshenkov, V.S. Protection by pantothenic acid against apoptosis and cell damage by oxygen free radicals - The role of glutathione. Biofactors, 2003, 17(1-4), 61-73.
[http://dx.doi.org/10.1002/biof.5520170107] [PMID: 12897429]
[63]
Gonzalez-Calderon, J.A.; Vallejo-Montesinos, J.; Mata-Padilla, J.M.; Pérez, E.; Almendarez-Camarillo, A. Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J. Mater. Sci., 2015, 50(24), 7998-8006.
[http://dx.doi.org/10.1007/s10853-015-9365-6]
[64]
Li, S.; Liu, H.; Wang, W.; Wang, X.; Zhang, C.; Zhang, J.; Jing, H.; Ren, Z.; Gao, Z.; Song, X.; Jia, L. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by agaricus bisporus. Int. J. Biol. Macromol., 2018, 106, 1297-1306.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.135] [PMID: 28855134]
[65]
Tomsik, P.; Soukup, T.; Cermakova, E.; Micuda, S.; Niang, M.; Sucha, L.; Rezacova, M. L-rhamnose and L-fucose suppress cancer growth in mice. Open Life Sci., 2011, 6(1)
[http://dx.doi.org/10.2478/s11535-010-0087-0]
[66]
Kang, F.; Alvarez, P.J.; Zhu, D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ. Sci. Technol., 2014, 48(1), 316-322.
[http://dx.doi.org/10.1021/es403796x] [PMID: 24328348]
[67]
Seifert, J.G.; Subudhi, A.W.; Fu, M.X.; Riska, K.L.; John, J.C.; Shecterle, L.M.; Cyr, J.A.S. The role of ribose on oxidative stress during hypoxic exercise: A pilot study. J. Med. Food, 2009, 12(3), 690-693.
[http://dx.doi.org/10.1089/jmf.2008.0065] [PMID: 19627222]
[68]
Chung, D.; Kim, H.; Ko, J.; Lee, J.; Hwang, B.; Chang, S.; Kim, B.; Chung, S-J. Microwave synthesis of silver nanoparticles using different pentose carbohydrates as reducing agents. J. Chem. Chem. Eng., 2018, 12(1)
[http://dx.doi.org/10.17265/1934-7375/2018.01.001]
[69]
Faraji, H.; Lindsay, R.C. Characterization of the antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J. Agric. Food Chem., 2004, 52(23), 7164-7171.
[http://dx.doi.org/10.1021/jf035291k] [PMID: 15537333]
[70]
Lu, X.; Li, C.; Wang, Y.K.; Jiang, K.; Gai, X.D. Sorbitol induces apoptosis of human colorectal cancer cells via p38 MAPK signal transduction. Oncol. Lett., 2014, 7(6), 1992-1996.
[http://dx.doi.org/10.3892/ol.2014.1994] [PMID: 24932277]
[71]
Nasir, G.; Kareem, M.P.; Samir, H. Biosynthesis and characterization of silver nanoparticles using olive leaves extract and sorbitol. Iran. J. Biotechnol., 2016, 15, 22-32.
[72]
Xiao, M.; Yang, H.; Xu, W.; Ma, S.; Lin, H.; Zhu, H.; Liu, L.; Liu, Y.; Yang, C.; Xu, Y.; Zhao, S.; Ye, D.; Xiong, Y.; Guan, K.L. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev., 2012, 26(12), 1326-1338.
[http://dx.doi.org/10.1101/gad.191056.112] [PMID: 22677546]
[73]
Parani, M.; Kumar, R.; Chandar, B. Use of succinic & oxalic acid in reducing the dosage of colistin against New Delhi metallo-β-lactamase-1 bacteria. Indian J. Med. Res., 2018, 147(1), 97-101.
[http://dx.doi.org/10.4103/ijmr.IJMR_1407_16] [PMID: 29749367]
[74]
Kasarci, G.; Ertugrul, B.; Iplik, E.S.; Cakmakoglu, B. The apoptotic efficacy of succinic acid on renal cancer cell lines. Med. Oncol., 2021, 38(12), 144.
[http://dx.doi.org/10.1007/s12032-021-01577-9] [PMID: 34687367]
[75]
Kotelnikova, S.V.; Suslonov, V.V.; Voznesenskiy, M.A.; Bobrysheva, N.P.; Osmolowsky, M.G.; Rajabi, F.; Osmolovskaya, O.M. Effect of capping agents on Co polyol particles morphology, magnetic and catalytic properties. Mater. Chem. Phys., 2019, 223, 745-750.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.046]
[76]
Han, L.; Zhou, X.; Wan, L.; Deng, Y.; Zhan, S. Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng., 2014, 2(1), 123-130.
[http://dx.doi.org/10.1016/j.jece.2013.11.031]
[77]
Moshtaghi, S.; Hamadanian, M.; Amiri, O.; Goli, M.; Salavati-Niasari, M. Controllable synthesis and characterization of Mg 2 SiO 4 nanostructures via a simple hydrothermal route using carboxylic acid as capping agent and their photocatalytic performance for photodegradation of azo dyes. RSC Advances, 2021, 11(35), 21588-21599.
[http://dx.doi.org/10.1039/D1RA02244J] [PMID: 35478802]
[78]
Petukhova, Y.V.; Kudinova, A.A.; Bobrysheva, N.P.; Osmolowsky, M.G.; Alekseeva, E.V.; Levin, O.V.; Osmolovskaya, O.M. Capping agents as a novel approach to control VO2 nanoparticles morphology in hydrothermal process: Mechanism of morphology control and influence on functional properties. Mater. Sci. Eng. B, 2020, 255, 114519.
[http://dx.doi.org/10.1016/j.mseb.2020.114519]
[79]
Amanulla, B.; Palanisamy, S.; Chen, S.M.; Chiu, T.W.; Velusamy, V.; Hall, J.M.; Chen, T.W.; Ramaraj, S.K. Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci. Rep., 2017, 7(1), 14182.
[http://dx.doi.org/10.1038/s41598-017-14584-6] [PMID: 29079840]
[80]
Cheudjeu, A. Correlation of D-xylose with severity and morbidity-related factors of COVID-19 and possible therapeutic use of D-xylose and antibiotics for COVID-19. Life Sci., 2020, 260, 118335.
[http://dx.doi.org/10.1016/j.lfs.2020.118335] [PMID: 32846167]
[81]
Pettegrew, C.; Dong, Z.; Muhi, M.Z.; Pease, S.; Mottaleb, M.A.; Islam, M.R. Silver nanoparticle synthesis using monosaccharides and their growth inhibitory activity against gram-negative and positive bacteria. ISRN Nanotechnology, 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/480284]
[82]
Mehlem, A.; Hagberg, C.E.; Muhl, L.; Eriksson, U.; Falkevall, A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc., 2013, 8(6), 1149-1154.
[http://dx.doi.org/10.1038/nprot.2013.055] [PMID: 23702831]
[83]
Zhanghao, K.; Liu, W.; Li, M.; Wu, Z.; Wang, X.; Chen, X.; Shan, C.; Wang, H.; Chen, X.; Dai, Q.; Xi, P.; Jin, D. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun., 2020, 11(1), 5890.
[http://dx.doi.org/10.1038/s41467-020-19747-0] [PMID: 33208737]
[84]
Grotheer, V.; Skrynecki, N.; Oezel, L.; Windolf, J.; Grassmann, J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci. Rep., 2021, 11(1), 11968.
[http://dx.doi.org/10.1038/s41598-021-91501-y] [PMID: 34099837]
[85]
Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516.
[http://dx.doi.org/10.1080/10408347.2018.1451299] [PMID: 29601210]
[86]
Carvalho, A.; Fernandes, A.R.; Baptista, P.V. Nanoparticles as delivery systems in cancer therapy: focus on gold nanoparticles and drugs.Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K; Thomas, S., Ed.; Elsevier, 2019, pp. 257-295.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00010-7]
[87]
Velgosová, O.; Mražíková, A.; Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett., 2016, 180, 336-339.
[http://dx.doi.org/10.1016/j.matlet.2016.04.045]
[88]
Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 2011, 27(1), 264-271.
[http://dx.doi.org/10.1021/la103190n] [PMID: 21133391]
[89]
Ravichandran, S.; Paluri, V.; Kumar, G.; Loganathan, K.; Kokati Venkata, B.R. A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. J. Exp. Nanosci., 2016, 11(6), 445-458.
[http://dx.doi.org/10.1080/17458080.2015.1077534]
[90]
Huet, O.; Petit, J.M.; Ratinaud, M.H.; Julien, R. NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry, 1992, 13(5), 532-539.
[http://dx.doi.org/10.1002/cyto.990130513] [PMID: 1633732]
[91]
Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci., 2021, 22(23), 12827.
[http://dx.doi.org/10.3390/ijms222312827] [PMID: 34884632]
[92]
Liu, T.; Zhu, W.; Yang, X.; Chen, L.; Yang, R.; Hua, Z.; Li, G. Detection of apoptosis based on the interaction between annexin V and phosphatidy lserine. Anal. Chem., 2009, 81(6), 2410-2413.
[http://dx.doi.org/10.1021/ac801267s] [PMID: 19219984]
[93]
Rieger, A. M.; Nelson, K. L.; Konowalchuk, J. D.; Barreda, D. R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp, 2011, 24(50), 2597.
[94]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2018, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[95]
Shen, M.H.; Zhou, X.X.; Yang, X.Y.; Chao, J.B.; Liu, R.; Liu, J.F. Exposure medium: Key in identifying free Ag+ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci. Rep., 2015, 5(1), 9674.
[http://dx.doi.org/10.1038/srep09674] [PMID: 25858866]
[96]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[http://dx.doi.org/10.3349/ymj.2014.55.2.283] [PMID: 24532494]
[97]
Rohde, M.M.; Snyder, C.M.; Sloop, J.; Solst, S.R.; Donati, G.L.; Spitz, D.R.; Furdui, C.M.; Singh, R. The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Part. Fibre Toxicol., 2021, 18(1), 37.
[http://dx.doi.org/10.1186/s12989-021-00430-1] [PMID: 34649580]
[98]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[99]
Kennedy, D.C.; Orts-Gil, G.; Lai, C.H.; Müller, L.; Haase, A.; Luch, A.; Seeberger, P.H. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. J. Nanobiotechnology, 2014, 12(1), 59.
[http://dx.doi.org/10.1186/s12951-014-0059-z] [PMID: 25524171]
[100]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[101]
Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol., 2019, 20(4), 242-258.
[http://dx.doi.org/10.1038/s41580-018-0093-z] [PMID: 30610207]
[102]
Jakab, J.; Miškić, B.; Mikšić, Š.; Juranić, B.; Ćosić, V.; Schwarz, D.; Včev, A. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural Products. Diabetes Metab. Syndr. Obes., 2021, 14, 67-83.
[http://dx.doi.org/10.2147/DMSO.S281186] [PMID: 33447066]
[103]
Liu, P.; Hsieh, P.; Lin, H.; Liu, T.; Wu, H.; Chen, C.; Chen, Y. Grail is involved in adipocyte differentiation and diet-induced obesity. Cell Death Dis., 2018, 9(5), 525.
[http://dx.doi.org/10.1038/s41419-018-0596-8] [PMID: 29743578]
[104]
Du, J.; Zhao, L.; Kang, Q.; He, Y.; Bi, Y. An optimized method for oil red O staining with the salicylic acid ethanol solution. Adipocyte, 2023, 12(1), 2179334.
[http://dx.doi.org/10.1080/21623945.2023.2179334] [PMID: 36779587]
[105]
Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N. Crystal structure of the human glucose transporter GLUT1. Nature, 2014, 510(7503), 121-125.
[http://dx.doi.org/10.1038/nature13306] [PMID: 24847886]
[106]
Yuan, Y.; Kong, F.; Xu, H.; Zhu, A.; Yan, N.; Yan, C. Cryo-EM structure of human glucose transporter GLUT4. Nat. Commun., 2022, 13(1), 2671.
[http://dx.doi.org/10.1038/s41467-022-30235-5] [PMID: 35562357]
[107]
Iwabu, M.; Okada-Iwabu, M.; Yamauchi, T.; Kadowaki, T. Adiponectin/adiponectin receptor in disease and aging. NPJ Aging Mech. Dis., 2015, 1(1), 15013.
[http://dx.doi.org/10.1038/npjamd.2015.13] [PMID: 28721260]
[108]
Farmer, S.R. Regulation of PPARγ activity during adipogenesis. Int. J. Obes., 2005, 29(S1), S13-S16.
[http://dx.doi.org/10.1038/sj.ijo.0802907] [PMID: 15711576]
[109]
Samberg, M.E.; Loboa, E.G.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine, 2012, 7(8), 1197-1209.
[http://dx.doi.org/10.2217/nnm.12.18] [PMID: 22583572]
[110]
Bernar, A.; Gebetsberger, J.V.; Bauer, M.; Streif, W.; Schirmer, M. Optimization of the alizarin red s assay by enhancing mineralization of osteoblasts. Int. J. Mol. Sci., 2022, 24(1), 723.
[http://dx.doi.org/10.3390/ijms24010723] [PMID: 36614166]
[111]
Golub, E.E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop., 2007, 18(5), 444-448.
[http://dx.doi.org/10.1097/BCO.0b013e3282630851]
[112]
Chen, Y.; Yang, S.; Lovisa, S.; Ambrose, C.G.; McAndrews, K.M.; Sugimoto, H.; Kalluri, R. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat. Commun., 2021, 12(1), 7199.
[http://dx.doi.org/10.1038/s41467-021-27563-3] [PMID: 34893625]
[113]
Amarasekara, D.S.; Kim, S.; Rho, J. Regulation of osteoblast differentiation by cytokine networks. Int. J. Mol. Sci., 2021, 22(6), 2851.
[http://dx.doi.org/10.3390/ijms22062851] [PMID: 33799644]
[114]
Carvalho, M.S.; Poundarik, A.A.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis. Sci. Rep., 2018, 8(1), 14388.
[http://dx.doi.org/10.1038/s41598-018-32794-4] [PMID: 30258220]
[115]
He, W.; Elkhooly, T.A.; Liu, X.; Cavallaro, A.; Taheri, S.; Vasilev, K.; Feng, Q. Silver nanoparticle based coatings enhance adipogenesis compared to osteogenesis in human mesenchymal stem cells through oxidative stress. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(8), 1466-1479.
[http://dx.doi.org/10.1039/C5TB02482J] [PMID: 32263113]
[116]
Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A.L.; Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5), 747-754.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[117]
Xie, H.; Wang, P.; Wu, J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: Uptake, retention and osteogenic activity. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 260-267.
[http://dx.doi.org/10.1080/21691401.2018.1552594] [PMID: 30663398]
[118]
Aimaiti, A.; Maimaitiyiming, A.; Boyong, X.; Aji, K.; Li, C.; Cui, L. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res. Ther., 2017, 8(1), 282.
[http://dx.doi.org/10.1186/s13287-017-0726-8] [PMID: 29254499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy