Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

MiR-301b-3p can be used as a Potential Marker for the Diagnosis of Lung Adenocarcinoma

Author(s): Weibo Qi*, Niu Niu, Junjie Zhao, Haitao Liu and Fan Yang

Volume 27, Issue 8, 2024

Published on: 15 September, 2023

Page: [1131 - 1139] Pages: 9

DOI: 10.2174/1386207326666230821112230

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The involvement of aberrantly expressed miR-301b-3p has been discovered in diverse human tumors. Our study was primarily centered around the role of miR-301b-3p in diagnosing lung adenocarcinoma (LUAD).

Method: We used the TCGA database to download the TCGA-LUAD dataset and selected miR- 301b-3p as the object of our study by differential expression analysis of miRNAs combined with previous studies. The LUAD diagnostic model was constructed utilizing machine learning based on miR-301b-3p expression. The predictive performance of the diagnostic model was found to be excellent by ROC curves combined with the clinical information of the dataset samples. GSEA, GO, and KEGG enrichment analyses demonstrated that miR-301b-3p may mediate the cell cycle by regulating the expression of hormones. Subsequently, combined with tumor immunity and mutation analysis, it was found that patients in the low-expression group had better immune infiltration, indicating that their response rate to immunotherapy may be relatively high. Finally, a mouse xenograft model was constructed to verify how miR-301b-3p affected LUAD progression in mice.

Result: The results illustrated that overexpressed miR-301b-3p could cause faster tumor growth in mice. On the contrary, the growth of LUAD could be impeded by the downregulated miR-301b-3p expression. It was suggested that miR-301b-3p had a crucial part in LUAD progression.

Conclusion: Overall, the diagnostic performance of the LUAD diagnostic model constructed based on miR-301b-3p is great, and the model can be used as a potential diagnostic marker for LUAD to provide new ideas for clinical diagnosis.

Keywords: miR-301b-3p, lung adenocarcinoma, biomarkers, machine learning, IHC, patients.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Sainz de Aja, J.; Dost, A.F.M.; Kim, C.F. Alveolar progenitor cells and the origin of lung cancer. J. Intern. Med., 2021, 289(5), 629-635.
[http://dx.doi.org/10.1111/joim.13201] [PMID: 33340175]
[3]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[4]
Wu, G.; Jochems, A.; Refaee, T.; Ibrahim, A.; Yan, C.; Sanduleanu, S.; Woodruff, H.C.; Lambin, P. Structural and functional radiomics for lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(12), 3961-3974.
[http://dx.doi.org/10.1007/s00259-021-05242-1] [PMID: 33693966]
[5]
Church, T.R.; Black, W.C.; Aberle, D.R.; Berg, C.D.; Clingan, K.L.; Duan, F.; Fagerstrom, R.M.; Gareen, I.F.; Gierada, D.S.; Jones, G.C.; Mahon, I.; Marcus, P.M.; Sicks, J.D.; Jain, A.; Baum, S. Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med., 2013, 368(21), 1980-1991.
[http://dx.doi.org/10.1056/NEJMoa1209120] [PMID: 23697514]
[6]
Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech., 2021, 14(4), dmm047662.
[http://dx.doi.org/10.1242/dmm.047662] [PMID: 33973623]
[7]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[8]
Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; Ludwig, N.; Fasching, P.A.; Strick, R.; Rübner, M.; Beckmann, M.W.; Meese, E.; Keller, A.; Schrauder, M.G. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep., 2018, 8(1), 11584.
[http://dx.doi.org/10.1038/s41598-018-29917-2] [PMID: 30072748]
[9]
Shao, C.; Yang, F.; Qin, Z.; Jing, X.; Shu, Y.; Shen, H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis. BMC Cancer, 2019, 19(1), 1103.
[http://dx.doi.org/10.1186/s12885-019-6297-6] [PMID: 31727002]
[10]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[11]
Yang, F.; Wang, X.; Ma, H.; Li, J. Transformers-sklearn: A toolkit for medical language understanding with transformer-based models. BMC Med. Inform. Decis. Mak., 2021, 21(S2)(Suppl. 2), 90.
[http://dx.doi.org/10.1186/s12911-021-01459-0] [PMID: 34330244]
[12]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[13]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[14]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[15]
Skidmore, Z.L.; Wagner, A.H.; Lesurf, R.; Campbell, K.M.; Kunisaki, J.; Griffith, O.L.; Griffith, M. GenVisR: Genomic Visualizations in R. Bioinformatics, 2016, 32(19), 3012-3014.
[http://dx.doi.org/10.1093/bioinformatics/btw325] [PMID: 27288499]
[16]
Liu, H.; Wang, Y.; Wang, Y.; Wu, D.; Zhang, H. miR-199a-3p plays an anti-tumorigenic role in lung adenocarcinoma by suppressing anterior gradient 2. Bioengineered, 2021, 12(1), 7859-7871.
[http://dx.doi.org/10.1080/21655979.2021.1967009] [PMID: 34632938]
[17]
Chen, J.; Cheng, L.; Zou, W.; Wang, R.; Wang, X.; Chen, Z. ADAMTS9-AS1 constrains breast cancer cell invasion and proliferation via sequestering miR-301b-3p. Front. Cell Dev. Biol., 2021, 9, 719993.
[http://dx.doi.org/10.3389/fcell.2021.719993] [PMID: 34900984]
[18]
Lu, X.; Duan, J.; Zhou, R.; Xu, Y. MiR-301b-3p promotes the occurrence and development of breast cancer cells via targeting HOXA5. Crit. Rev. Eukaryot. Gene Expr., 2021, 31(3), 35-44.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2021038215] [PMID: 34369713]
[19]
Moya, L.; Meijer, J.; Schubert, S.; Matin, F.; Batra, J. Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 Expression as Biomarker for Prostate Cancer Diagnosis. Int. J. Mol. Sci., 2019, 20(5), 1154.
[http://dx.doi.org/10.3390/ijms20051154] [PMID: 30845775]
[20]
Raychaudhuri, M.; Bronger, H.; Buchner, T.; Kiechle, M.; Weichert, W.; Avril, S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat., 2017, 162(3), 511-521.
[http://dx.doi.org/10.1007/s10549-017-4132-9] [PMID: 28181130]
[21]
Xiong, J.; Zhang, L.; Tang, R.; Zhu, Z. MicroRNA-301b-3p facilitates cell proliferation and migration in colorectal cancer by targeting HOXB1. Bioengineered, 2021, 12(1), 5839-5849.
[http://dx.doi.org/10.1080/21655979.2021.1962483] [PMID: 34488545]
[22]
Nave, O. A mathematical model for treatment using chemo-immunotherapy. Heliyon, 2022, 8(4), e09288.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09288] [PMID: 35520602]
[23]
Wang, J.; Zhao, L.; Peng, X.; Liu, K.; Zhang, C.; Chen, X.; Han, Y.; Lai, Y. Evaluation of miR‐130 family members as circulating biomarkers for the diagnosis of bladder cancer. J. Clin. Lab. Anal., 2020, 34(12), e23517.
[http://dx.doi.org/10.1002/jcla.23517] [PMID: 32761678]
[24]
Dias, F.; Teixeira, A.L.; Nogueira, I.; Morais, M.; Maia, J.; Bodo, C.; Ferreira, M.; Silva, A.; Vilhena, M.; Lobo, J.; Sequeira, J.P.; Maurício, J.; Oliveira, J.; Kok, K.; Costa-Silva, B.; Medeiros, R. Extracellular vesicles enriched in hsa-miR-301a-3p and hsa-miR-1293 dynamics in clear cell renal cell carcinoma patients: Potential Biomarkers of Metastatic Disease. Cancers (Basel), 2020, 12(6), 1450.
[http://dx.doi.org/10.3390/cancers12061450] [PMID: 32498409]
[25]
Wang, S.; Chen, Q.; Liu, S.; Zhang, W.; Ji, B.; Liu, Y. The Impact of Aberrant Hepatic Artery on Resection Margin and Outcomes of Laparoscopic Pancreatoduodenectomy: A Single-Center Report. World J. Surg., 2021, 45(10), 3183-3190.
[http://dx.doi.org/10.1007/s00268-021-06231-z] [PMID: 34258649]
[26]
Yang, R.; Liu, Z.; Cao, H.; Shi, Y. LINC01089, suppressed by YY1, inhibits lung cancer progression by targeting miR-301b-3p/HPDG axis. Cell Biol. Toxicol., 2022, 36(6), 1063-1077.
[PMID: 34561789]
[27]
Liu, H.; Ma, X.; Niu, N.; Zhao, J.; Lu, C.; Yang, F.; Qi, W. MIR-301b-3p promotes lung adenocarcinoma cell proliferation, migration and invasion by targeting DLC1. Technol. Cancer Res. Treat., 2021, 20, 1533033821990036.
[http://dx.doi.org/10.1177/1533033821990036] [PMID: 33754907]
[28]
Niu, N.; Ma, X.; Liu, H.; Zhao, J.; Lu, C.; Yang, F.; Qi, W. DLC1 inhibits lung adenocarcinoma cell proliferation, migration and invasion via regulating MAPK signaling pathway. Exp. Lung Res., 2021, 47(4), 173-182.
[http://dx.doi.org/10.1080/01902148.2021.1885524] [PMID: 33678109]
[29]
Dong, X.; Chang, M.; Song, X.; Ding, S.; Xie, L.; Song, X. Plasma MIR ‐1247‐5p, MIR ‐301b‐3p and MIR ‐105‐5p as potential biomarkers for early diagnosis of non‐small cell lung cancer. Thorac. Cancer, 2021, 12(4), 539-548.
[http://dx.doi.org/10.1111/1759-7714.13800] [PMID: 33372399]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy