Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Downregulation of miR-4284 can Inhibit the Apoptosis of Human Arterial Smooth Muscle Cells (HASMCs) in Arteriosclerosis Obliterans (ASO)

Author(s): Fang Wang, Yinghong Yu, Gongjian He, Zhangxia Ren and Sizhe Xu*

Volume 27, Issue 8, 2024

Published on: 21 September, 2023

Page: [1140 - 1148] Pages: 9

DOI: 10.2174/1386207326666230818092922

Price: $65

Abstract

Introduction: The disease arteriosclerosis obliterans (ASO) affects the lower extremities. ASO's mechanism involves the proliferation and migration of vascular smooth muscle cells (VSMCs). The miR-4284 is involved in several biological processes of the cardiovascular system, including VSMC proliferation, migration, and death. However, it is unknown if the miR-4284 gene is involved in the control of ASO. Furthermore, the molecular processes behind the contribution of human arterial smooth muscle cells (HASMCs), one of the most significant components of the arterial wall, to arteriosclerosis obliterans (ASO) pathogenesis remain unknown. Previously, we explored the alterations of miRNAs in the blood of ASO patients, and now we wanted to test further whether these changes also take place in the HASMCs that are responsible for the pathogenesis of ASO.

Methods: The expression levels of miR-29a in arterial walls were analyzed via a real-time polymerase chain reaction. An ASO cell model was established to investigate the expression of miR- 4284 on HASMCs. The Transwell system and CCK-8 detection were used to assess the migration and proliferation of HASMCs. The proportion of apoptotic cells as well as the concentrations of apoptotic signal protein production were assessed using flow cytometry. A Western blot technique was used to identify B cell lymphoma-2 (Bcl2), Bcl2-associated X protein (BAX), as well as Xlinked inhibitors of apoptosis protein (XIAP).

Results: The results showed that PCR confirmed that the qualified production or expression of miR-4284 was significantly reduced in HASMCs after they were cultured without FBS and in an atmosphere of 1% O2 + 5% CO2 + 94% N2 and that glucose had no effect on its expression. MiR- 4284 has no effect on migration and proliferation, but downregulation of miR-4284 can decrease the apoptotic rate of HASMCs, as revealed by flow cytometry. Furthermore, western blot experiments showed that the expression of BAX was low, while the expression of the other two proteins, viz., Bcl2 and XIAP, was over-expressed.

Conclusion: We found that miR-4284 downregulation enhanced Bcl2, as well as XIAP, and decreased Bax. This shows that downregulated miR-4284 regulates apoptosis-related protein expression in HASMCs. The mechanism is not clear, and we need further study to confirm it.

Keywords: Arteriosclerosis obliterans, miR-4284, human aortic smooth muscle cells, migration, proliferation, apoptosis.

Graphical Abstract
[1]
Wang, M.; Li, W.; Chang, G.Q.; Ye, C.S.; Ou, J.S.; Li, X.X.; Liu, Y.; Cheang, T.Y.; Huang, X.L.; Wang, S.M. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 2044-2053.
[http://dx.doi.org/10.1161/ATVBAHA.111.229559] [PMID: 21817107]
[2]
Ji, R.; Cheng, Y.; Yue, J.; Yang, J.; Liu, X.; Chen, H.; Dean, D.B.; Zhang, C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res., 2007, 100(11), 1579-1588.
[http://dx.doi.org/10.1161/CIRCRESAHA.106.141986] [PMID: 17478730]
[3]
Moriya, J.; Minamino, T.; Tateno, K.; Shimizu, N.; Kuwabara, Y.; Sato, Y.; Saito, Y.; Komuro, I. Long-term outcome of therapeutic neovascularization using peripheral blood mononuclear cells for limb ischemia. Circ. Cardiovasc. Interv., 2009, 2(3), 245-254.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.108.799361] [PMID: 20031722]
[4]
Criqui, M.H.; Vargas, V.; Denenberg, J.O.; Ho, E.; Allison, M.; Langer, R.D.; Gamst, A.; Bundens, W.P.; Fronek, A. Ethnicity and peripheral arterial disease: The San Diego Population Study. Circulation, 2005, 112(17), 2703-2707.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.546507] [PMID: 16246968]
[5]
Liu, J.; Li, W.; Wang, S.; Wu, Y.; Li, Z.; Wang, W.; Liu, R.; Ou, J.; Zhang, C.; Wang, S. MiR-142-3p attenuates the migration of CD4+ T cells through regulating actin cytoskeleton via RAC1 and ROCK2 in arteriosclerosis obliterans. PLoS One, 2014, 9(4), e95514.
[http://dx.doi.org/10.1371/journal.pone.0095514] [PMID: 24743945]
[6]
Loyer, X.; Mallat, Z.; Boulanger, C.M.; Tedgui, A. MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 489-496.
[http://dx.doi.org/10.1517/14728222.2014.989835] [PMID: 25464904]
[7]
Hosin, A.A.; Prasad, A.; Viiri, L.E.; Davies, A.H.; Shalhoub, J. MicroRNAs in Atherosclerosis. J. Vasc. Res., 2014, 51(5), 338-349.
[http://dx.doi.org/10.1159/000368193] [PMID: 25500818]
[8]
Huang, B.S.; Luo, Q.I.Z.H.I.; Han, Y.; Li, X.B.; Cao, L.I.J.U.N.; Wu, L.X. microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol. Rep., 2013, 30(5), 2263-2269.
[http://dx.doi.org/10.3892/or.2013.2683] [PMID: 23970099]
[9]
Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta, 2011, 412(1-2), 66-70.
[http://dx.doi.org/10.1016/j.cca.2010.09.029] [PMID: 20888330]
[10]
Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647.
[http://dx.doi.org/10.1172/JCI38864] [PMID: 19690389]
[11]
He, X.; Zheng, Y.; Liu, S.; Liu, Y.; He, Y.; Zhou, X. Altered Plasma MicroRNAs as Novel Biomarkers for Arteriosclerosis Obliterans. J. Atheroscler. Thromb., 2016, 23(2), 196-206.
[http://dx.doi.org/10.5551/jat.30775] [PMID: 26370316]
[12]
Schlenker, T.; Schwake, L.; Voss, A.; Stremmel, W.; Elsing, C. Oxidative stress activates membrane ion channels in human biliary epithelial cancer cells (Mz-Cha-1). Anticancer Res., 2015, 35(11), 5881-5888.
[PMID: 26504011]
[13]
Meloche, J.; Potus, F.; Vaillancourt, M.; Bourgeois, A.; Johnson, I.; Deschamps, L.; Chabot, S.; Ruffenach, G.; Henry, S.; Breuils-Bonnet, S.; Tremblay, È.; Nadeau, V.; Lambert, C.; Paradis, R.; Provencher, S.; Bonnet, S. Bromodomain-Containing Protein 4. Circ. Res., 2015, 117(6), 525-535.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307004] [PMID: 26224795]
[14]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[15]
Rajput, C.; Tauseef, M.; Farazuddin, M.; Yazbeck, P.; Amin, M.R.; Avin BR, V.; Sharma, T.; Mehta, D. MicroRNA-150 suppression of angiopoetin-2 generation and signaling is crucial for resolving vascular injury. Arterioscler. Thromb. Vasc. Biol., 2016, 36(2), 380-388.
[http://dx.doi.org/10.1161/ATVBAHA.115.306997] [PMID: 26743170]
[16]
Liu, X.; Sun, J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials, 2010, 31(32), 8198-8209.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.069] [PMID: 20727582]
[17]
Wu, W.; Zhang, D.; Pan, D.; Zuo, G.; Ren, X.; Chen, S. Downregulation of vascular endothelial growth factor receptor-2 under oxidative stress conditions is mediated by β-transduction repeat-containing protein via glycogen synthase kinase-3β signaling. Int. J. Mol. Med., 2016, 37(4), 911-920.
[http://dx.doi.org/10.3892/ijmm.2016.2493] [PMID: 26935904]
[18]
Chen, A.Y.; Lü, J.M.; Yao, Q.; Chen, C. Entacapone is an antioxidant more potent than vitamin c and vitamin e for scavenging of hypochlorous acid and peroxynitrite, and the inhibition of oxidative stress-induced cell death. Med. Sci. Monit., 2016, 22, 687-696.
[http://dx.doi.org/10.12659/MSM.896462] [PMID: 26927838]
[19]
Zhang, H.B.; Wen, J.K.; Zhang, J.; Miao, S.B.; Ma, G.Y.; Wang, Y.Y.; Zheng, B.; Han, M. Flavonoids from Inula britannica reduces oxidative stress through inhibiting expression and phosphorylation of p47 phox in VSMCs. Pharm. Biol., 2011, 49(8), 815-820.
[http://dx.doi.org/10.3109/13880209.2010.550055] [PMID: 21500971]
[20]
Fetahu, I.S.; Tennakoon, S.; Lines, K.E.; Gröschel, C.; Aggarwal, A.; Mesteri, I.; Baumgartner-Parzer, S.; Mader, R.M.; Thakker, R.V.; Kállay, E. miR-135b- and miR-146b-dependent silencing of calcium-sensing receptor expression in colorectal tumors. Int. J. Cancer, 2016, 138(1), 137-145.
[http://dx.doi.org/10.1002/ijc.29681] [PMID: 26178670]
[21]
Lesniewska, M.A.; Dereziński, P.; Klupczyńska, A.; Kokot, Z.J.; Ostrowski, T.; Zeidler, J.; Muszalska, I. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir. J. AOAC Int., 2015, 98(5), 1240-1247.
[http://dx.doi.org/10.5740/jaoacint.15-014] [PMID: 26525242]
[22]
Li, X.; Yao, N.; Zhang, J.; Liu, Z. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin. Mol. Med. Rep., 2015, 12(1), 561-568.
[http://dx.doi.org/10.3892/mmr.2015.3384] [PMID: 25738314]
[23]
Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev., 2004, 84(3), 767-801.
[http://dx.doi.org/10.1152/physrev.00041.2003] [PMID: 15269336]
[24]
Pyle, A.L.; Young, P.P. Atheromas feel the pressure: Biomechanical stress and atherosclerosis. Am. J. Pathol., 2010, 177(1), 4-9.
[http://dx.doi.org/10.2353/ajpath.2010.090615] [PMID: 20558573]
[25]
Rudijanto, A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones., 2007, 39(2), 86-93.
[PMID: 17933075]
[26]
Mack, C.P. Signaling mechanisms that regulate smooth muscle cell differentiation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(7), 1495-1505.
[http://dx.doi.org/10.1161/ATVBAHA.110.221135] [PMID: 21677292]
[27]
Garat, C.; Van Putten, V.; Refaat, Z.A.; Dessev, C.; Han, S.Y.; Nemenoff, R.A. Induction of smooth muscle alpha-actin in vascular smooth muscle cells by arginine vasopressin is mediated by c-Jun amino-terminal kinases and p38 mitogen-activated protein kinase. J. Biol. Chem., 2000, 275(29), 22537-22543.
[http://dx.doi.org/10.1074/jbc.M003000200] [PMID: 10807920]
[28]
Hautmann, M.B.; Thompson, M.M.; Swartz, E.A.; Olson, E.N.; Owens, G.K. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ. Res., 1997, 81(4), 600-610.
[http://dx.doi.org/10.1161/01.RES.81.4.600] [PMID: 9314842]
[29]
Wang, L.; Zheng, J.; Du, Y.; Huang, Y.; Li, J.; Liu, B.; Liu, C.; Zhu, Y.; Gao, Y.; Xu, Q.; Kong, W.; Wang, X. Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with alpha(7)beta(1) integrin. Circ. Res., 2010, 106(3), 514-525.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.202762] [PMID: 20019333]
[30]
Ghosh, G.; Subramanian, I.V.; Adhikari, N.; Zhang, X.; Joshi, H.P.; Basi, D.; Chandrashekhar, Y.S.; Hall, J.L.; Roy, S.; Zeng, Y.; Ramakrishnan, S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J. Clin. Invest., 2010, 120(11), 4141-4154.
[http://dx.doi.org/10.1172/JCI42980] [PMID: 20972335]
[31]
Kuhnert, F.; Kuo, C.J. miR-17-92 angiogenesis micromanagement. Blood, 2010, 115(23), 4631-4632.
[http://dx.doi.org/10.1182/blood-2010-03-276428] [PMID: 20538815]
[32]
Staszel, T.; Zapała, B.; Polus, A.; Sadakierska-Chudy, A.; Kieć-Wilk, B.; Stępień, E.; Wybrańska, I.; Chojnacka, M.; Dembińska-Kieć, A. Role of microRNAs in endothelial cell pathophysiology. Pol. Arch. Med. Wewn., 2011, 121(10), 361-367.
[http://dx.doi.org/10.20452/pamw.1093] [PMID: 21946298]
[33]
Zheng, D.; Yu, Y.; Li, M.; Wang, G.; Chen, R.; Fan, G.C.; Martin, C.; Xiong, S.; Peng, T. Inhibition of miR-195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J. Infect. Dis., 2016, 213(10), 1661-1670.
[http://dx.doi.org/10.1093/infdis/jiv760] [PMID: 26704614]
[34]
Koukos, G.; Polytarchou, C. A MicroRNA Signature in Pediatric Ulcerative Colitis: Deregulation of the miR-4284/CXCL5 pathway in the Intestinal Epithelium. Inflamm. Bowel Dis., 2015, 21(5), 996-1005.
[35]
Tamaddon, G.; Geramizadeh, B.; Karimi, M.H.; Mowla, S.J.; Abroun, S. miR-4284 and miR-4484 as Putative Biomarkers for Diffuse Large B-Cell Lymphoma. Iran. J. Med. Sci., 2016, 41(4), 334-339.
[PMID: 27365556]
[36]
Yang, F.; Nam, S.; Brown, C.E.; Zhao, R.; Starr, R.; Horne, D.A.; Malkas, L.H.; Jove, R.; Hickey, R.J.; Jove, R.; Hickey, R.J. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling. PLoS One, 2014, 9(4), e94443.
[http://dx.doi.org/10.1371/journal.pone.0094443] [PMID: 24732116]
[37]
Wang, J.; Paris, P.L.; Chen, J.; Ngo, V.; Yao, H.; Frazier, M.L.; Killary, A.M.; Liu, C.G.; Liang, H.; Mathy, C.; Bondada, S.; Kirkwood, K.; Sen, S. Next generation sequencing of pancreatic cyst fluid microRNAs from low grade-benign and high grade-invasive lesions. Cancer Lett., 2015, 356(2)(2 Pt B), 404-409.
[http://dx.doi.org/10.1016/j.canlet.2014.09.029] [PMID: 25304377]
[38]
Villard, A.; Marchand, L.; Thivolet, C.; Rome, S. Diagnostic value of cell-free circulating micrornas for obesity and type 2 diabetes: A meta-analysis. J. Mol. Biomark. Diagn., 2015, 6(6), 251.
[http://dx.doi.org/10.4172/2155-9929.1000251] [PMID: 27308097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy