Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

General Research Article

Microwave Facilitated Discovery of Substituted 1,2,4-triazaspiro[4.5] dec-2-en-3-amines: Biological and Computational Investigations

Author(s): Parth P. Patel, Navin B. Patel*, Manesh S. Tople, Vatsal M. Patel and Mitesh B. Solanki

Volume 10, Issue 2, 2023

Published on: 18 October, 2023

Page: [208 - 222] Pages: 15

DOI: 10.2174/2213335610666230818092826

Price: $65

conference banner
Abstract

Background: Tuberculosis is an effectual infectious disease caused by the spread of tubercular bacteria within the lungs via droplets of coughs and sneezes. In 2021, 1.6 million people died due totuberculosis, which is the 13th leading killer disease and 2nd leading after COVID-19 infectious disease.

Objective: Many drugs are available as antitubercular drug, but still, requires more efficacious drug molecules with lower toxicity, side effects and small-sized molecules. To fulfill said prospective, computational study such as molecular docking and ADMET studies guides towards an ideal drug molecule with small -sized, unique spiro structures.

Methods: Conventional and microwave-initiated Reaction of cyclohexanone, hydrazine carbothioamide, and 2-amino-4-methoxy-6-methyl-1,3,5-triazine affords compound 1, which is subjected to the Schiff base reaction with diverse aldehydes. All structures are defined using IR, 1H NMR, 13C NMR, and mass spectroscopy. The entire series is exposed to in vitro antibacterial and antitubercular and in silico molecular docking and ADMET studies.

Results: Compounds 2c and 2b have been established to be potential antibacterial agents, whereas compounds 2d, 2e, 2j, 2k and 2l are extremely effective against tubercular strains. Furthermore, molecular docking of related molecules is performed, and compounds 2d, 2e, 2j, 2k, and 2l have higher affinities toward antitubercular proteins. ADMET parameters such as water solubility, SA score, PCaco2 value, and TPSA values are satisfactory.

Conclusion: The microwave method has been proven to be a greener method as compared to the conventional heating method. Comparative results of in vitro analysis are obtained with referenced antibacterial drugs and antitubercular drugs. In silico observations supports their in vitro assessments. Appraisal obtained from the ADMET study leads to the formation of ideal drug molecules.

Keywords: ADMET, antitubercular, multicomponent reaction, green synthesis, molecular docking, spiro compounds.

Graphical Abstract
[1]
Ferwanah, A.R.S.; Kandile, N.G.; Awadallah, A.M.; Miqdad, O.A. Reaction of nitrilimines with cycloalkanone oximes. II. synthesis of substituted heterocyclic spiro compounds. Synth. Commun., 2002, 32(13), 2017-2025.
[http://dx.doi.org/10.1081/SCC-120004852]
[2]
Wichmann, J.; Adam, G.; Röver, S.; Hennig, M.; Scalone, M.; Cesura, A.M.; Dautzenberg, F.M.; Jenck, F. Synthesis of (1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur. J. Med. Chem., 2000, 35(9), 839-851.
[http://dx.doi.org/10.1016/S0223-5234(00)00171-9] [PMID: 11006485]
[3]
Gopinatha, V.K.; Swarup, H.A.; Raghavan, S.C.; Mantelingu, K.; Rangappa, K.S. Discovery of novel approach for regioselective synthesis of thioxotriaza-spiro derivatives via oxalic acid. Synlett, 2019, 30(17), 2004-2009.
[http://dx.doi.org/10.1055/s-0039-1690204]
[4]
Khan, G.A.; Naikoo, G.A.; War, J.A.; Sheikh, I.A.; Pandit, U.J.; Khan, I.; Harit, A.K.; Das, R. An efficient green synthesis of some functionalized spiro chromene based scaffolds as potential antitubercular agents. J. Heterocycl. Chem., 2018, 55(3), 699-708.
[http://dx.doi.org/10.1002/jhet.3091]
[5]
Filardo, T.D.; Feng, P.J.; Pratt, R.H.; Price, S.F.; Self, J.L. Tuberculosis - United States, 2021. MMWR Morb Mortal Wkly Rep., 2022, 71(12), 441.
[http://dx.doi.org/10.15585/mmwr.mm7112a1]
[6]
Jain, V.K.; Iyengar, K.P.; Samy, D.A.; Vaishya, R. Tuberculosis in the era of COVID-19 in India. Diabetes Metab. Syndr., 2020, 14(5), 1439-1443.
[http://dx.doi.org/10.1016/j.dsx.2020.07.034] [PMID: 32755848]
[7]
Suárez, I.; Fünger, S.M.; Kröger, S.; Rademacher, J.; Fätkenheuer, G.; Rybniker, J. The diagnosis and treatment of tuberculosis. Dtsch. Arztebl. Int., 2019, 116(43), 729-735.
[PMID: 31755407]
[8]
Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Ibrahim Alaqeel, S.; Siva Krishna, V.; Sriram, D. Anti-tubercular activity of novel class of spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids. Bioorg. Chem., 2020, 99, 103799.
[http://dx.doi.org/10.1016/j.bioorg.2020.103799] [PMID: 32247109]
[9]
Cihan-Üstündağ, G.; Acar, Ç.; Naesens, L.; Erköse-Genç, G.; Şatana, D. Synthesis of new N ‐(3‐oxo‐1‐thia‐4‐azaspiro[4.5]decan‐4‐yl)pyridine‐3‐carboxamide derivatives and evaluation of their antiinfluenza virus and antitubercular activities. Arch. Pharm., 2022, 355(10), 2200224.
[http://dx.doi.org/10.1002/ardp.202200224]
[10]
Güzel, Ö. ; İlhan, E.; Salman, A. Synthesis and antimycobacterial activity of new 2-Hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.4]non-4-yl)/(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide derivatives. Monatsh. Chem., 2006, 137(6), 795-801.
[http://dx.doi.org/10.1007/s00706-006-0475-3]
[11]
Sammelson, R.E.; Gurusinghe, C.D.; Kurth, J.M.; Olmstead, M.M.; Kurth, M.J. Synthesis of spiro-fused (C5)-Isoxazolino-(C4)-pyrazolones (1-Oxa-2,7,8-triazaspiro[4,4]-2,8-dien-6-ones) via 1,3-dipolar cycloaddition and cycloelimination. J. Org. Chem., 2002, 67(3), 876-882.
[http://dx.doi.org/10.1021/jo010895d] [PMID: 11856032]
[12]
Dandia, A.; Singh, R.; Sachdeva, H.; Arya, K. Microwave assisted one pot synthesis of a series of trifluoromethyl substituted spiro [indole–triazoles]. J. Fluor. Chem., 2001, 111(1), 61-67. [indole–triazoles [http://dx.doi.org/10.1016/S0022-1139(01)00429-8
[13]
Kappe, C.O.; Dallinger, D. The impact of microwave synthesis on drug discovery. Nat. Rev. Drug Discov., 2006, 5(1), 51-63.
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[14]
Kappe, C.O.; Doris, D.; Shaun Murphree, S. Practical microwave synthesis for organic chemists. strategies, instruments, and protocols; Wiley-VCH: Weinheim, Germany, 2009.
[15]
Hayes, B.L. Recent advances in microwave-assisted synthesis. Aldrichim Acta, 2004, 37(2), 66-77.
[16]
Dolbois, A.; Bedi, R.K.; Bochenkova, E.; Müller, A.; Moroz-Omori, E.V.; Huang, D.; Caflisch, A. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 Inhibitors. J. Med. Chem., 2021, 64(17), 12738-12760.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00773] [PMID: 34431664]
[17]
Safari, F.; Hosseini, H.; Bayat, M.; Ranjbar, A. Synthesis and evaluation of antimicrobial activity, cytotoxic and pro-apoptotic effects of novel spiro-4 H -pyran derivatives. RSC Adv., 2019, 9(43), 24843-24851.
[http://dx.doi.org/10.1039/C9RA03196K] [PMID: 35528646]
[18]
Elghareeb, F.H.; Kandil, E.M.; Abou-Elzahab, M.; Abdelmoteleb, M.; Abozeid, M.A. Rigid 3D-spiro chromanone as a crux for efficient antimicrobial agents: Synthesis, biological and computational evaluation. RSC Adv., 2021, 11(35), 21301-21314.
[http://dx.doi.org/10.1039/D1RA03497A] [PMID: 35478839]
[19]
Mane, S.G.; Reddy, D.S.; Katagi, K.S.; Kumar, A.; Munnolli, R.S.; Kadam, N.S.; Akki, M.C.; Nagarajaiah, H.; Joshi, S.D. Design, synthesis, molecular docking, anti-proliferative and anti-TB studies of 2H-chromen-8-azaspiro[4.5]decane-7,9-dione conjugates. J. Mol. Struct., 2021, 1227, 129530.
[http://dx.doi.org/10.1016/j.molstruc.2020.129530]
[20]
Kundu, T.; Pramanik, A. Convenient synthesis and evaluation of antioxidant property of functionalized spiro indolinone-dihydroquinazolinones. Bioorg. Chem., 2022, 124, 105830.
[http://dx.doi.org/10.1016/j.bioorg.2022.105830] [PMID: 35500504]
[21]
Acosta-Quiroga, K.; Rojas-Peña, C.; Nerio, L.S.; Gutiérrez, M.; Polo-Cuadrado, E. Spirocyclic derivatives as antioxidants: A review. RSC Adv., 2021, 11(36), 21926-21954.
[http://dx.doi.org/10.1039/D1RA01170G] [PMID: 35480788]
[22]
Barakat, A.; Islam, M.S.; Ali, M.; Al-Majid, A.M.; Alshahrani, S.; Alamary, A.S.; Yousuf, S.; Choudhary, M.I. Regio- and stereoselective synthesis of a new series of spirooxindole pyrrolidine grafted thiochromene scaffolds as potential anticancer agents. Symmetry., 2021, 13(8), 1426.
[http://dx.doi.org/10.3390/sym13081426]
[23]
Kumawat, M.K.; Chetia, D. Synthesis, antimalarial activity evaluation and molecular docking studies of some new substituted spiro-1,2,4,5-tetraoxane derivatives. Pharm. Chem. J., 2021, 55(8), 814-820.
[http://dx.doi.org/10.1007/s11094-021-02500-2]
[24]
Oliveira, L.; Souza-Silva, F.; de Castro Côrtes, L.; Cysne-Finkelstein, L.; de Souza Pereira, M.; de Oliveira, Junior, F.; Pinho, R.; Corte Real, S.; Bourguignon, S.; Ferreira, V.; Alves, C. Antileishmanial activity of 2-methoxy-4H-spiro-[naphthalene-1, 2′-oxiran]-4-one (Epoxymethoxy-lawsone): A promising new drug candidate for leishmaniasis treatment. Molecules., 2018, 23(4), 864.
[http://dx.doi.org/10.3390/molecules23040864] [PMID: 29642584]
[25]
Leañez, J.; Nuñez, J.; García-Marchan, Y.; Sojo, F.; Arvelo, F.; Rodriguez, D.; Buscema, I.; Alvarez-Aular, A.; Bello Forero, J.S.; Kouznetsov, V.V.; Serrano-Martín, X. Anti-leishmanial effect of spiro dihydroquinoline-oxindoles on volume regulation decrease and sterol biosynthesis of Leishmania braziliensis. Exp. Parasitol., 2019, 198, 31-38.
[http://dx.doi.org/10.1016/j.exppara.2019.01.011] [PMID: 30690024]
[26]
Almeida, F.S.; Sousa, G.L.S.; Rocha, J.C.; Ribeiro, F.F.; de Oliveira, M.R.; de Lima Grisi, T.C.S.; Araújo, D.A.M.; de C Nobre, M.S.; Castro, R.N.; Amaral, I.P.G.; Keesen, T.S.L.; de Moura, R.O. In vitro anti-Leishmania activity and molecular docking of spiro-acridine compounds as potential multitarget agents against Leishmania infantum. Bioorg. Med. Chem. Lett., 2021, 49, 128289.
[http://dx.doi.org/10.1016/j.bmcl.2021.128289] [PMID: 34311084]
[27]
Aljohani, G.F.; El-Hag, F.A.A.; Bekheit, M.S.; Ewies, E.F.; El-Manawaty, M.A. An efficient one-pot synthesis of certain stereoselective spiro[pyrazole-4,5′-isoxazoline]-5-one derivatives: In vitro evaluation of antitumor activities, molecular docking and in silico adme predictions. Chem. Res. Chin. Univ., 2022, 38(4), 1073-1082.
[http://dx.doi.org/10.1007/s40242-022-1408-3]
[28]
Dinari, M.; Gharahi, F.; Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct., 2018, 1156, 43-50.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.087]
[29]
Basavarajaiah, S.M. Synthesis, spectral analysis, DFT calculations, biological potential and molecular docking studies of indole appended pyrazolo-triazine. Mol. Divers., 2022, 140, 1-15.
[PMID: 35538381]
[30]
Bashiri, M.; Jarrahpour, A.; Rastegari, B.; Iraji, A.; Irajie, C.; Amirghofran, Z.; Malek-Hosseini, S.; Motamedifar, M.; Haddadi, M.; Zomorodian, K.; Zareshahrabadi, Z.; Turos, E. Synthesis and evaluation of biological activities of tripodal imines and β-lactams attached to the 1,3,5-triazine nucleus. Monatsh. Chem., 2020, 151(5), 821-835.
[http://dx.doi.org/10.1007/s00706-020-02592-8]
[31]
Singh, S.; Mandal, M.K.; Masih, A.; Saha, A.; Ghosh, S.K.; Bhat, H.R.; Singh, U.P. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch. Pharm., 2021, 354(6), 2000363.
[http://dx.doi.org/10.1002/ardp.202000363] [PMID: 33760298]
[32]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[33]
Zaki, R.; Kamal El-Dean, A.; Radwan, S.; Saber, A. A convenient synthesis, reactions and biological activity of some new 6h-pyrazolo[4′,3′:4,5]thieno[3,2-d][1,2,3]triazine compounds as antibacterial, anti-fungal and anti-inflammatory agents. J. Braz. Chem. Soc., 2018, 29, 2482-2495.
[http://dx.doi.org/10.21577/0103-5053.20180127]
[34]
Rusinov, V.L.; Charushin, V.N.; Chupakhin, O.N. Biologically active azolo-1,2,4-triazines and azolopyrimidines. Russ. Chem. Bull., 2018, 67(4), 573-599.
[http://dx.doi.org/10.1007/s11172-018-2113-8]
[35]
Kumbar, S.S.; Hosamani, K.M.; Gouripur, G.C.; Joshi, S.D. Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: an approach to molecular docking and biological studies. R. Soc. Open Sci., 2018, 5(5), 172416.
[http://dx.doi.org/10.1098/rsos.172416] [PMID: 29892427]
[36]
Said, M.A.; Khan, D.J.O.; Al-blewi, F.F.; Al-Kaff, N.S.; Ali, A.A.; Rezki, N.; Aouad, M.R.; Hagar, M. New 1,2,3-triazole scaffold schiff bases as potential anti-COVID-19: Design, synthesis, DFT-Molecular docking, and cytotoxicity aspects. Vaccines, 2021, 9(9), 1012.
[http://dx.doi.org/10.3390/vaccines9091012] [PMID: 34579249]
[37]
Mishra, A.D. Microwave-assisted solvent free synthesis of spiro-indole derivative. J. Nepal Chem. Soc., 1970, 24, 49-52.
[http://dx.doi.org/10.3126/jncs.v24i0.2391]
[38]
Hossain, M.M.; Foysal, M.A.; Mahabub, M.; Amin, A. Microwave-assisted efficient synthesis of isatins and spiro-thiadiazolines under green chemistry protocol. J. Sci. Res., 2010, 2(2), 322-329.
[http://dx.doi.org/10.3329/jsr.v2i2.3731]
[39]
Di Muzio, E.; Toti, D.; Polticelli, F. DockingApp: A user friendly interface for facilitated docking simulations with AutoDock Vina. J. Comput. Aided Mol. Des., 2017, 31(2), 213-218.
[http://dx.doi.org/10.1007/s10822-016-0006-1] [PMID: 28063067]
[40]
Mermer, A.; Demirbas, N.; Demirbas, A.; Colak, N.; Ayaz, F.A.; Alagumuthu, M.; Arumugam, S. Synthesis, biological activity and structure activity relationship studies of novel conazole analogues via conventional, microwave and ultrasound mediated techniques. Bioorg. Chem., 2018, 81, 55-70.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.036] [PMID: 30118986]
[41]
Mermer, A.; Demirbas, N.; Colak, A.; Demir, E.A.; Kulabas, N.; Demirbas, A. One‐pot, four‐component green synthesis, carbonic anhydrase II inhibition and docking studies of 5‐Arylidenerhodanines. ChemistrySelect, 2018, 3(43), 12234-12242.
[http://dx.doi.org/10.1002/slct.201802677]
[42]
Demirci, S.; Mermer, A.; Ak, G.; Aksakal, F.; Colak, N.; Demirbas, A.; Ayaz, F.A.; Demirbas, N. Conventional and microwave‐assisted total synthesis, antioxidant capacity, biological activity, and molecular docking studies of new hybrid compounds. J. Heterocycl. Chem., 2017, 54(3), 1785-1805.
[http://dx.doi.org/10.1002/jhet.2760]
[43]
Schug, A.R.; Bartel, A.; Scholtzek, A.D.; Meurer, M.; Brombach, J.; Hensel, V.; Fanning, S.; Schwarz, S.; Feßler, A.T. Biocide susceptibility testing of bacteria: Development of a broth microdilution method. Vet. Microbiol., 2020, 248, 108791.
[http://dx.doi.org/10.1016/j.vetmic.2020.108791] [PMID: 32827921]
[44]
Grobbelaar, M.; Louw, G.E.; Sampson, S.L.; van Helden, P.D.; Donald, P.R.; Warren, R.M. Evolution of rifampicin treatment for tuberculosis. Infect. Genet. Evol., 2019, 74, 103937.
[http://dx.doi.org/10.1016/j.meegid.2019.103937] [PMID: 31247337]
[45]
Stott, K.E.; Pertinez, H.; Sturkenboom, M.G.G.; Boeree, M.J.; Aarnoutse, R.; Ramachandran, G.; Requena-Méndez, A.; Peloquin, C.; Koegelenberg, C F N.; Alffenaar, J.W.C.; Ruslami, R.; Tostmann, A.; Swaminathan, S.; McIlleron, H.; Davies, G. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: A systematic review and meta-analysis. J. Antimicrob. Chemother., 2018, 73(9), 2305-2313.
[http://dx.doi.org/10.1093/jac/dky152] [PMID: 29701775]
[46]
Jia, C.Y.; Li, J.Y.; Hao, G.F.; Yang, G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov., 2019, 31(2), 213-218.
[PMID: 31705979]
[47]
Ye, J.; Yang, X.; Xu, M.; Chan, P.K.; Ma, C. Novel N-Substituted oseltamivir derivatives as potent influenza neuraminidase inhibitors: Design, synthesis, biological evaluation, ADME prediction and molecular docking studies. Eur. J. Med. Chem., 2019, 182, 111635.
[http://dx.doi.org/10.1016/j.ejmech.2019.111635] [PMID: 31493744]
[48]
Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.A. Structure-based development of novel triazoles and related thiazolotriazoles as anticancer agents and Cdc25A/B phosphatase inhibitors. Synthesis, in vitro biological evaluation, molecular docking and in silico ADME-T studies. Eur. J. Med. Chem., 2017, 139, 263-279.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.053] [PMID: 28803043]
[49]
Yang, X.; Wedajo, W.; Yamada, Y.; Dahlroth, S.L.; Neo, J.J.L.; Dick, T.; Chui, W.K. 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. Eur. J. Med. Chem., 2018, 144, 262-276.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.017] [PMID: 29274493]
[50]
Rauf, MA; Zubair, S ; Azhar, A Ligand docking and binding site analysis with pymol and autodock/vina. Int. j. basic appl. sci., 2015, 4(2), 168.
[51]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy