Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Research Article

A Simplified Method for Determining Blood-to-Plasma Ratios in vitro and ex vivo by Matrix Matching with Blank Blood or Plasma

Author(s): Xiaomei Zhang, Gary J. Jenkins, Kelly E. Desino, Jinrong Liu, Mary Larsen and David M. Stresser*

Volume 16, Issue 2, 2023

Published on: 08 September, 2023

Page: [113 - 120] Pages: 8

DOI: 10.2174/2949681016666230817150551

Price: $65

Abstract

Objective: This work describes a simplified, 96-well plate method for determining the blood-to-plasma concentration ratio (BP ratio) for small molecules.

Methods: The need for calibration curves was eliminated using a matrix-matching approach in which blood samples were mixed with blank plasma and plasma samples were mixed with blank blood. As a result, both blood- and plasma-origin samples shared an equivalent matrix ahead of bioanalysis. In the in vitro assay, identical sample matrices were achieved by using the same source of blank plasma and blood.

Results: In humans, a good correlation (R2 = 0.84) was observed between the data obtained in this matrix-matching method and literature values for 11 commercial compounds possessing a wide range of logD values across multiple chemical classes. In addition, this method showed good agreement with in vitro BP ratios for 10 proprietary compounds determined radiometrically (R2 = 0.72) in human and preclinical species. Finally, the in vitro matrix matching method compared favorably to BP ratios determined ex vivo for 13 proprietary and literature compounds (R2 = 0.87) in rat.

Conclusion: This method, suitable for in vitro and ex vivo BP ratio determinations, is operationally efficient, robust, and a useful improvement upon previously published methods.

Keywords: Blood-to-plasma ratio, blood cell partitioning, pharmacokinetics, blood distribution, bioanalysis, radiometrically, blank plasma.

Graphical Abstract
[1]
Wickremsinhe, E.R.; Perkins, E.J. Using dried blood spot sampling to improve data quality and reduce animal use in mouse pharmacokinetic studies. J. Am. Assoc. Lab. Anim. Sci., 2015, 54(2), 139-144.
[PMID: 25836959]
[2]
Patel, S.R.; Bryan, P.; Spooner, N.; Timmerman, P.; Wickremsinhe, E. Microsampling for quantitative bioanalysis, an industry update: output from an AAPS/EBF survey. Bioanalysis, 2019, 11(7), 619-628.
[http://dx.doi.org/10.4155/bio-2019-0019] [PMID: 30973016]
[3]
Deprez, S.; Stove, C.P. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J. Chromatogr. A, 2022, 16, 89463724.
[4]
Skopp, G.; Pötsch, L.; Mauden, M.; Richter, B. Partition coefficient, blood to plasma ratio, protein binding and short-term stability of 11-nor-Δ9-carboxy tetrahydrocannabinol glucuronide. Forensic Sci. Int., 2002, 126(1), 17-23.
[http://dx.doi.org/10.1016/S0379-0738(02)00023-3] [PMID: 11955826]
[5]
Bergqvist, Y.; Domeij-nyberg, B. Distribution of chloroquine and its metabolite desethyl-chloroquine in human blood cells and its implication for the quantitative determination of these compounds in serum and plasma. J. Chromatogr., Biomed. Appl., 1983, 272(1), 137-148.
[http://dx.doi.org/10.1016/S0378-4347(00)86110-1] [PMID: 6841533]
[6]
Jones, A.W.; Larsson, H. Distribution of diazepam and nordiazepam between plasma and whole blood and the influence of hematocrit. Ther. Drug Monit., 2004, 26(4), 380-385.
[http://dx.doi.org/10.1097/00007691-200408000-00007] [PMID: 15257067]
[7]
Liu, X.R.; Wu, K.C.; Huang, Y.; Sun, J.B.; Ke, X.Y.; Wang, J.C.; Lu, W.L.; Zhang, X.; Zhang, Q. In vitro and in vivo studies on plasma-to-blood ratio of paclitaxel in human, rabbit and rat blood fractions. Biol. Pharm. Bull., 2008, 31(6), 1215-1220.
[http://dx.doi.org/10.1248/bpb.31.1215] [PMID: 18520057]
[8]
Sukbuntherng, J.; Martin, D.K.; Pak, Y.; Mayersohn, M. Characterization of the properties of cocaine in blood: Blood clearance, blood to plasma ratio, and plasma protein binding. J. Pharm. Sci., 1996, 85(6), 567-571.
[http://dx.doi.org/10.1021/js960026h] [PMID: 8773950]
[9]
Yu, S.; Li, S.; Yang, H.; Lee, F.; Wu, J.T.; Qian, M.G. A novel liquid chromatography/tandem mass spectrometry based depletion method for measuring red blood cell partitioning of pharmaceutical compounds in drug discovery. Rapid Commun. Mass Spectrom., 2005, 19(2), 250-254.
[http://dx.doi.org/10.1002/rcm.1777] [PMID: 15609367]
[10]
Berezhkovskiy, L.M.; Zhang, X.; Cheong, J. A convenient method to measure blood-plasma concentration ratio using routine plasma collection in in vivo pharmacokinetic studies. J. Pharm. Sci., 2011, 100(12), 5293-5298.
[http://dx.doi.org/10.1002/jps.22709] [PMID: 21780122]
[11]
Novak, J.J.; Burchett, W.; Di, L. Effects of low temperature on blood‐to‐plasma ratio measurement. Biopharm. Drug Dispos., 2021, 42(5), 234-241.
[http://dx.doi.org/10.1002/bdd.2265] [PMID: 33625733]
[12]
Ménochet, K.; Kenworthy, K.E.; Houston, J.B.; Galetin, A. Simultaneous assessment of uptake and metabolism in rat hepatocytes: A comprehensive mechanistic model. J. Pharmacol. Exp. Ther., 2012, 341(1), 2-15.
[http://dx.doi.org/10.1124/jpet.111.187112] [PMID: 22190645]
[13]
Hinderling, P.H. Red blood cells: A neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol. Rev., 1997, 49(3), 279-295.
[PMID: 9311024]
[14]
Chu, K.M.; Shieh, S.M.; Hu, O.Y.P. Pharmacokinetics and pharmacodynamics of enantiomers of pimobendan in patients with dilated cardiomyopathy and congestive heart failure after single and repeated oral dosing. Clin. Pharmacol. Ther., 1995, 57(6), 610-621.
[http://dx.doi.org/10.1016/0009-9236(95)90223-6] [PMID: 7781260]
[15]
Hardman, J.G.; Limbird, L.E.; Molinoff, P.B.; Ruddon, R.W.; Gilman, A.G. Eds. Design and optimization of dosage regimens. pharmacokinetic data. The Pharmacological Basis of Therapeutics, 9th ed; McGraw-Hill: New York, 1996, pp. 1707-1792.
[16]
Riess, W.; Dubey, L.; Fünfgeld, W.E.; Imhof, P.; Hürzeler, H.; Matussek, N.; Rajagopalan, T.G.; Raschdorf, F.; Schmid, K. The pharmacokinetic properties of maprotiline in man. J. Int. Med. Res., 1976, 3, 16-41.
[17]
Meffin, P.J.; Winkle, R.A.; Peters, F.A.; Harrison, D.C. Acebutolol disposition after intravenous administration. Clin. Pharmacol. Ther., 1977, 22, 557-567.
[http://dx.doi.org/10.1002/cpt1977225part1557] [PMID: 913023]
[18]
Taylor, E.A.; Turner, P. The distribution of propranolol, pindolol and atenolol between human erythrocytes and plasma. Br. J. Clin. Pharmacol., 1981, 12(4), 543-548.
[http://dx.doi.org/10.1111/j.1365-2125.1981.tb01263.x] [PMID: 7295488]
[19]
Paixão, P.; Gouveia, L.F.; Morais, J.A.G. Prediction of drug distribution within blood. Eur. J. Pharm. Sci., 2009, 36(4-5), 544-554.
[http://dx.doi.org/10.1016/j.ejps.2008.12.011] [PMID: 19152835]
[20]
Marroum, P.J.; Curry, S.H. Red blood cell partitioning, protein binding and lipophilicity of six phenothiazines. J. Pharm. Pharmacol., 2011, 45(1), 39-42.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb03676.x] [PMID: 8094444]
[21]
Czejka, M.J.; Zwoelfer, N.; Podesser, B. Red blood cell partitioning of gallopamil, verapamil and norverapamil. Farmaco, 1992, 47(3), 387-391.
[PMID: 1503601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy