Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

MiRNAs: Emerging Agents for Therapeutic Effects of Polyphenols on Ovarian Cancer

Author(s): Bita Badehnoosh, Nesa Rajabpoor Nikoo, Reza Asemi, Rana Shafabakhsh and Zatollah Asemi*

Volume 24, Issue 4, 2024

Published on: 12 September, 2023

Page: [440 - 452] Pages: 13

DOI: 10.2174/1389557523666230816090138

Price: $65

Open Access Journals Promotions 2
Abstract

In terms of female reproductive tract cancers, ovarian cancer remains the principal reason for mortality globally and is notably difficult to identify in its early stages. This fact highlights the critical need to establish prevention strategies for patients with ovarian cancer, look for new robust diagnostic and prognostic markers, and identify potential targets of response to treatment. MicroRNAs (miRNAs) are one of the novel treatment targets in cancer treatment. Thus, understanding the part of miRNAs in the pathogenesis and metastasis of ovarian cancer is at the center of researchers' attention. MiRNAs are suggested to play a role in modulating many essential cancer processes, like cell proliferation, apoptosis, differentiation, adhesion, epithelial-mesenchymal transition (EMT), and invasion. In two recent decades, natural polyphenols' anti-cancer features have been a focal point of research. Meanwhile, polyphenols are good research subjects for developing new cancer treatments. Polyphenols can modify miRNA expression and impact the function of transcription factors when used as dietary supplements. Multiple works have indicated the impact of polyphenols, including quercetin, genistein, curcumin, and resveratrol, on miRNA expression in vitro and in vivo. Here, we provide an in-depth description of four polyphenols used as dietary supplements: quercetin, genistein, curcumin, and resveratrol, and we summarize what is currently known about their regulatory abilities on influencing the miRNA functions in ovarian tumors to achieve therapeutic approaches.

Keywords: Ovarian cancer, polyphenols, inflammation, oxidative stress, molecular pathways, miRNAs.

Graphical Abstract
[1]
Vogell, A.; Evans, M.L. Cancer screening in women. Obstet. Gynecol., 2019, 46(3), 485-499.
[PMID: 31378290]
[2]
Brett, M.R; Brett, M.R; Jennifer, B.P; Thomas, A.S; Jennifer, B.P; Thomas, A.S Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Braga, E.A.; Fridman, M.V.; Moscovtsev, A.A.; Filippova, E.A.; Dmitriev, A.A.; Kushlinskii, N.E. LncRNAs in ovarian cancer progression, metastasis, and main pathways: CeRNA and alternative mechanisms. Int. J. Mol. Sci., 2020, 21(22), 8855.
[http://dx.doi.org/10.3390/ijms21228855] [PMID: 33238475]
[5]
Bartel, D.P. Metazoan MicroRNAs. Cell, 2018, 173(1), 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[6]
Citron, F.; Armenia, J.; Franchin, G.; Polesel, J.; Talamini, R.; D’Andrea, S.; Sulfaro, S.; Croce, C.M.; Klement, W.; Otasek, D.; Pastrello, C.; Tokar, T.; Jurisica, I.; French, D.; Bomben, R.; Vaccher, E.; Serraino, D.; Belletti, B.; Vecchione, A.; Barzan, L.; Baldassarre, G. An integrated approach identifies mediators of local recurrence in head and neck squamous carcinoma. Clin. Cancer Res., 2017, 23(14), 3769-3780.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2814] [PMID: 28174235]
[7]
Yoon, A.J.; Wang, S.; Kutler, D.I.; Carvajal, R.D.; Philipone, E.; Wang, T.; Peters, S.M.; LaRoche, D.; Hernandez, B.Y.; McDowell, B.D.; Stewart, C.R.; Momen-Heravi, F.; Santella, R.M. MicroRNA‐based risk scoring system to identify early‐stage oral squamous cell carcinoma patients at high‐risk for cancer‐specific mortality. Head Neck, 2020, 42(8), 1699-1712.
[http://dx.doi.org/10.1002/hed.26089] [PMID: 31981257]
[8]
Macfarlane, L-A.; Murphy, P.R.R.; Murphy, P. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[9]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[10]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[11]
Chan, S.H.; Wang, L.H. Regulation of cancer metastasis by microRNAs. J. Biomed. Sci., 2015, 22(1), 9.
[http://dx.doi.org/10.1186/s12929-015-0113-7] [PMID: 25614041]
[12]
Deb, B.; Uddin, A.; Chakraborty, S. miRNAs and ovarian cancer: An overview. J. Cell. Physiol., 2018, 233(5), 3846-3854.
[http://dx.doi.org/10.1002/jcp.26095] [PMID: 28703277]
[13]
Di Martino, M.T.; Riillo, C.; Scionti, F.; Grillone, K.; Polerà, N.; Caracciolo, D.; Arbitrio, M.; Tagliaferri, P.; Tassone, P. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers, 2021, 13(7), 1587.
[http://dx.doi.org/10.3390/cancers13071587] [PMID: 33808190]
[14]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[15]
Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules, 2010, 15(12), 8602-8617.
[http://dx.doi.org/10.3390/molecules15128602] [PMID: 21116229]
[16]
Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods, 2013, 5(1), 260-266.
[http://dx.doi.org/10.1016/j.jff.2012.10.015]
[17]
Chuammitri, P.; Srikok, S.; Saipinta, D.; Boonyayatra, S. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Vet. World, 2016, 10(4), 403-410.
[http://dx.doi.org/10.14202/vetworld.2017.403-410] [PMID: 28507412]
[18]
Wang, X.; Xue, X.; Wang, H.; Xu, F.; Xin, Z.; Wang, K.; Cui, M.; Qin, W. Quercetin inhibits human microvascular endothelial cells viability, migration and tube-formation in vitro through restraining microRNA-216a. J. Drug Target., 2020, 28(6), 609-616.
[http://dx.doi.org/10.1080/1061186X.2019.1700263] [PMID: 31791158]
[19]
Sun, Q.; Cong, R.; Yan, H.; Gu, H.; Zeng, Y.; Liu, N.; Chen, J.; Wang, B. Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol. Rep., 2009, 22(3), 563-567.
[PMID: 19639204]
[20]
Zheng, Y.; Liu, H.; Liang, Y. Genistein exerts potent antitumour effects alongside anaesthetic, propofol, by suppressing cell proliferation and nuclear factor-κB-mediated signalling and through upregulating microRNA-218 expression in an intracranial rat brain tumour model. J. Pharm. Pharmacol., 2017, 69(11), 1565-1577.
[http://dx.doi.org/10.1111/jphp.12781] [PMID: 28776680]
[21]
Cui, Y.; Song, H.T.; Zhang, P.; Yin, X.; Wang, Y.; Wei, X.; Jia, X.J. Curcumin protects PC12 cells from a high glucose-induced inflammatory response by regulating the miR-218-5p/TLR4 axis. Medicine , 2022, 101(40), e30967.
[http://dx.doi.org/10.1097/MD.0000000000030967] [PMID: 36221434]
[22]
Liu, Y.; Feng, L.; Hou, G.; Yao, L. Curcumin elevates microRNA-183-5p via cathepsin B-mediated phosphatidylinositol 3-Kinase/AKT pathway to strengthen lipopolysaccharide-stimulated immune function of sepsis mice. Contrast Media Mol. Imaging, 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/6217234] [PMID: 35992541]
[23]
Jayaraman, S.; Fathima, S.J.H.; Veeraraghavan, V.P.; Raj, A.T.; Patil, S. Resveratrol and miR-200c: Insights into the prevention of oral squamous cell carcinoma. Future Oncol., 2022, 18(31), 3471-3472.
[http://dx.doi.org/10.2217/fon-2022-0672] [PMID: 36268781]
[24]
Su, N.; Li, L.; Zhou, E.; Li, H.; Wu, S.; Cao, Z. Resveratrol downregulates miR-155-5p to block the malignant behavior of gastric cancer cells. BioMed Res. Int., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/6968641] [PMID: 35789645]
[25]
Toss, A.; De Matteis, E.; Rossi, E.; Casa, L.; Iannone, A.; Federico, M.; Cortesi, L. Ovarian cancer: Can proteomics give new insights for therapy and diagnosis? Int. J. Mol. Sci., 2013, 14(4), 8271-8290.
[http://dx.doi.org/10.3390/ijms14048271] [PMID: 23591842]
[26]
Wen, W.; Han, E.S.; Dellinger, T.H.; Wu, J.; Guo, Y.; Buettner, R.; Horne, D.A.; Jove, R.; Yim, J.H. Increasing anti-tumor activity of JAK inhibitor by simultaneous blocking multiple survival signaling pathways in human ovarian Cancer. Transl. Oncol., 2019, 12(8), 1015-1025.
[http://dx.doi.org/10.1016/j.tranon.2019.05.003] [PMID: 31141756]
[27]
Yousefi, H.; Momeny, M.; Ghaffari, S.H.; Parsanejad, N.; Poursheikhani, A.; Javadikooshesh, S.; Zarrinrad, G.; Esmaeili, F.; Alishahi, Z.; Sabourinejad, Z.; Sankanian, G.; Shamsaiegahkani, S.; Bashash, D.; Shahsavani, N.; Tavakkoly-Bazzaz, J.; Alimoghaddam, K.; Ghavamzadeh, A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori, 2019, 105(1), 84-91.
[http://dx.doi.org/10.1177/0300891618784790] [PMID: 30021477]
[28]
Englert-Golon, M.; Andrusiewicz, M.; Żbikowska, A.; Chmielewska, M.; Sajdak, S.; Kotwicka, M. Altered expression of ESR1, ESR2, PELP1 and c-SRC genes is associated with ovarian cancer manifestation. Int. J. Mol. Sci., 2021, 22(12), 6216.
[http://dx.doi.org/10.3390/ijms22126216] [PMID: 34207568]
[29]
Qiu, Y.; Liu, P.; Ma, X.; Ma, X.; Zhu, L.; Lin, Y.; You, Y.; Yu, W.; Ma, D.; Sun, C.; Qin, Z.; Zhao, Y.; Shi, J.; Han, L. TRIM50 acts as a novel Src suppressor and inhibits ovarian cancer progression. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(9), 1412-1420.
[http://dx.doi.org/10.1016/j.bbamcr.2019.06.002] [PMID: 31176697]
[30]
Lafky, J.M.; Wilken, J.A.; Baron, A.T.; Maihle, N.J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta, 2008, 1785(2), 232-265.
[PMID: 18291115]
[31]
Jung, Y.S.; Kim, H.J.; Seo, S.K.; Choi, Y.S.; Nam, E.J.; Kim, S.; Kim, S.W.; Han, H.D.; Kim, J.W.; Kim, Y.T. Anti-proliferative and apoptotic activities of müllerian inhibiting substance combined with calcitriol in ovarian cancer cell lines. Yonsei Med. J., 2016, 57(1), 33-40.
[http://dx.doi.org/10.3349/ymj.2016.57.1.33] [PMID: 26632380]
[32]
Zeng, X.Y.; Xie, H.; Yuan, J.; Jiang, X.Y.; Yong, J.H.; Zeng, D.; Dou, Y.Y.; Xiao, S.S. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol. Ther., 2019, 20(7), 956-966.
[http://dx.doi.org/10.1080/15384047.2018.1564567] [PMID: 31062668]
[33]
Chen, Y.; Zhang, L.; Liu, W.; Wang, K. VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer. Cell. Mol. Biol. Lett., 2018, 23(1), 2.
[http://dx.doi.org/10.1186/s11658-017-0058-9] [PMID: 29308068]
[34]
Tomasova, K.; Cumova, A.; Seborova, K.; Horak, J.; Koucka, K.; Vodickova, L.; Vaclavikova, R.; Vodicka, P. DNA repair and ovarian carcinogenesis: Impact on risk, prognosis and therapy outcome. Cancers, 2020, 12(7), 1713.
[http://dx.doi.org/10.3390/cancers12071713] [PMID: 32605254]
[35]
Singh, J.; Thota, N.; Singh, S.; Padhi, S.; Mohan, P.; Deshwal, S.; Sur, S.; Ghosh, M.; Agarwal, A.; Sarin, R.; Ahmed, R.; Almel, S.; Chakraborti, B.; Raina, V. DadiReddy, P.K.; Smruti, B.K.; Rajappa, S.; Dodagoudar, C.; Aggarwal, S.; Singhal, M.; Joshi, A.; Kumar, R.; Kumar, A.; Mishra, D.K.; Arora, N.; Karaba, A.; Sankaran, S.; Katragadda, S.; Ghosh, A.; Veeramachaneni, V.; Hariharan, R.; Mannan, A.U. Screening of over 1000 Indian patients with breast and/or ovarian cancer with a multi-gene panel: Prevalence of BRCA1/2 and non-BRCA mutations. Breast Cancer Res. Treat., 2018, 170(1), 189-196.
[http://dx.doi.org/10.1007/s10549-018-4726-x] [PMID: 29470806]
[36]
Ghoneum, A.; Said, N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: Implications for targeted therapeutics. Cancers, 2019, 11(7), 949.
[http://dx.doi.org/10.3390/cancers11070949] [PMID: 31284467]
[37]
Malik, M.Z.; Chirom, K.; Ali, S.; Ishrat, R.; Somvanshi, P.; Singh, R.K.B. Methodology of predicting novel key regulators in ovarian cancer network: A network theoretical approach. BMC Cancer, 2019, 19(1), 1129.
[http://dx.doi.org/10.1186/s12885-019-6309-6] [PMID: 31752757]
[38]
Titone, R.; Morani, F.; Follo, C.; Vidoni, C.; Mezzanzanica, D.; Isidoro, C. Epigenetic control of autophagy by microRNAs in ovarian cancer. BioMed Res. Int., 2014, 2014, 343542.
[http://dx.doi.org/10.1155/2014/343542]
[39]
Bunkholt Elstrand, M.; Dong, H.P.; Ødegaard, E.; Holth, A.; Elloul, S.; Reich, R.; Tropé, C.G.; Davidson, B. Mammalian target of rapamycin is a biomarker of poor survival in metastatic serous ovarian carcinoma. Hum. Pathol., 2010, 41(6), 794-804.
[http://dx.doi.org/10.1016/j.humpath.2009.09.017] [PMID: 20153512]
[40]
Binju, M.; Amaya-Padilla, M.A.; Wan, G.; Gunosewoyo, H.; Suryo Rahmanto, Y.; Yu, Y. Therapeutic inducers of apoptosis in ovarian cancer. Cancers, 2019, 11(11), 1786.
[http://dx.doi.org/10.3390/cancers11111786] [PMID: 31766284]
[41]
Chou, J.L.; Chen, L.Y.; Lai, H.C.; Chan, M.W.Y. TGF-β Friend or foe? The role of TGF-β/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy. Expert Opin. Ther. Targets, 2010, 14(11), 1213-1223.
[http://dx.doi.org/10.1517/14728222.2010.525353] [PMID: 20925461]
[42]
Tian, X.; Guan, W.; Zhang, L.; Sun, W.; Zhou, D.; Lin, Q.; Ren, W.; Nadeem, L.; Xu, G. Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 103.
[http://dx.doi.org/10.1186/s13046-018-0773-8] [PMID: 29751820]
[43]
Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[44]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[45]
Gregory, R.I.; Yan, K.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014), 235-240.
[http://dx.doi.org/10.1038/nature03120] [PMID: 15531877]
[46]
Nguyen, T.A.; Jo, M.H.; Choi, Y.G.; Park, J.; Kwon, S.C.; Hohng, S.; Kim, V.N.; Woo, J.S. Functional anatomy of the human microprocessor. Cell, 2015, 161(6), 1374-1387.
[http://dx.doi.org/10.1016/j.cell.2015.05.010] [PMID: 26027739]
[47]
Lund, E.; Güttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(5654), 95-98.
[http://dx.doi.org/10.1126/science.1090599] [PMID: 14631048]
[48]
Song, J.J.; Smith, S.K.; Hannon, G.J.; Joshua-Tor, L. Crystal structure of argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689), 1434-1437.
[http://dx.doi.org/10.1126/science.1102514] [PMID: 15284453]
[49]
Schwarz, D.S.; Hutvágner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P.D. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115(2), 199-208.
[http://dx.doi.org/10.1016/S0092-8674(03)00759-1] [PMID: 14567917]
[50]
Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet., 2002, 30(4), 363-364.
[http://dx.doi.org/10.1038/ng865] [PMID: 11896390]
[51]
Gagnon, K.T.; Li, L.; Chu, Y.; Janowski, B.A.; Corey, D.R. RNAi factors are present and active in human cell nuclei. Cell Rep., 2014, 6(1), 211-221.
[http://dx.doi.org/10.1016/j.celrep.2013.12.013] [PMID: 24388755]
[52]
Liu, H.; Lei, C.; He, Q.; Pan, Z.; Xiao, D.; Tao, Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol. Cancer, 2018, 17(1), 64.
[http://dx.doi.org/10.1186/s12943-018-0765-5] [PMID: 29471827]
[53]
Pedroza-Torres, A.; Romero-Córdoba, S.L.; Justo-Garrido, M.; Salido-Guadarrama, I.; Rodríguez-Bautista, R.; Montaño, S.; Muñiz-Mendoza, R.; Arriaga-Canon, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; Hernández, G.; Herrera, L.A. MicroRNAs in tumor cell metabolism: Roles and therapeutic opportunities. Front. Oncol., 2019, 9, 1404.
[http://dx.doi.org/10.3389/fonc.2019.01404] [PMID: 31921661]
[54]
Shiah, S.G.; Chou, S.T.; Chang, J.Y. MicroRNAs: Their role in metabolism, tumor microenvironment, and therapeutic implications in head and neck squamous cell carcinoma. Cancers, 2021, 13(22), 5604.
[http://dx.doi.org/10.3390/cancers13225604] [PMID: 34830755]
[55]
Balacescu, O.; Visan, S.; Baldasici, O.; Balacescu, L.; Vlad, C.; Achimas-Cadariu, P. MiRNA-based therapeutics in oncology, realities, and challenges.In: Antisense Therapy; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.81847]
[56]
Svoronos, A.A.; Engelman, D.M.; Slack, F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res., 2016, 76(13), 3666-3670.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0359] [PMID: 27325641]
[57]
Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA therapeutics in cancer—an emerging concept. EBioMedicine, 2016, 12, 34-42.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.017] [PMID: 27720213]
[58]
Li, C.; Feng, Y.; Coukos, G.; Zhang, L. Therapeutic microRNA strategies in human cancer. AAPS J., 2009, 11(4), 747-757.
[http://dx.doi.org/10.1208/s12248-009-9145-9] [PMID: 19876744]
[59]
Zhang, J.Y.; Lin, M.T.; Zhou, M.J.; Yi, T.; Tang, Y.N.; Tang, S.L.; Yang, Z.J.; Zhao, Z.Z.; Chen, H.B. Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules, 2015, 20(6), 11524-11534.
[http://dx.doi.org/10.3390/molecules200611524] [PMID: 26111180]
[60]
Su, J.; Zhou, X.; Wang, L.; Yin, X.; Wang, Z. Curcumin inhibits cell growth and invasion and induces apoptosis through down-regulation of Skp2 in pancreatic cancer cells. Am. J. Cancer Res., 2016, 6(9), 1949-1962.
[PMID: 27725901]
[61]
Sharma, V.; Pathak, K. Effect of hydrogen bond formation/replacement on solubility characteristics, gastric permeation and pharmacokinetics of curcumin by application of powder solution technology. Acta Pharm. Sin. B, 2016, 6(6), 600-613.
[http://dx.doi.org/10.1016/j.apsb.2016.05.015] [PMID: 27818928]
[62]
Fan, Y.; Liu, Y.; Zhang, L.; Cai, F.; Zhu, L.; Xu, J. C0818, a novel curcumin derivative, interacts with Hsp90 and inhibits Hsp90 ATPase activity. Acta Pharm. Sin. B, 2017, 7(1), 91-96.
[http://dx.doi.org/10.1016/j.apsb.2016.05.014] [PMID: 28119813]
[63]
Sun, S.; Fang, H. Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis. J. Ovarian Res., 2021, 14(1), 158.
[http://dx.doi.org/10.1186/s13048-021-00916-8] [PMID: 34784955]
[64]
Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A. Plant derived anti-cancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[65]
Zhang, J.Y.; Lin, M.T.; Tung, H.Y.; Tang, S.L.; Yi, T.; Zhang, Y.Z.; Tang, Y.N.; Zhao, Z.Z.; Chen, H.B. Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway. Am. J. Cancer Res., 2016, 6(4), 819-826.
[PMID: 27186433]
[66]
Zhang, J.; Tao, L.; Liang, Y.; Chen, L.; Mi, Y.; Zheng, L.; Wang, F.; She, Z.; Lin, Y.; To, K.K.W.; Fu, L. Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar. Drugs, 2010, 8(4), 1469-1481.
[http://dx.doi.org/10.3390/md8041469] [PMID: 20479985]
[67]
Ravindran, F.; Koroth, J.; Manjunath, M.; Narayan, S.; Choudhary, B. Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci. Rep., 2021, 11(1), 23025.
[http://dx.doi.org/10.1038/s41598-021-02454-1] [PMID: 34837026]
[68]
Zhang, J.; Liu, J.; Xu, X.; Li, L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother. Pharmacol., 2017, 79(3), 479-487.
[http://dx.doi.org/10.1007/s00280-017-3238-4] [PMID: 28175963]
[69]
Zhao, S.F.; Zhang, X.; Zhang, X.J.; Shi, X.Q.; Yu, Z.J.; Kan, Q.C. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. APJCP, 2014, 15(8), 3363-3368.
[PMID: 24870723]
[70]
Zhao, J.; Pan, Y.; Li, X.; Zhang, X.; Xue, Y.; Wang, T. Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells via upregulation of MiR-124 targeting midkine. Cell. Physiol. Biochem., 2017, 43, 589-601.
[http://dx.doi.org/10.1159/000480531]
[71]
Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol., 1976, 9(1), 77-86.
[http://dx.doi.org/10.1016/0048-4059(76)90077-1]
[72]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[73]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-2840.
[PMID: 15517885]
[74]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[75]
Hurst, W.J.; Glinski, J.A.; Miller, K.B.; Apgar, J.; Davey, M.H.; Stuart, D.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem., 2008, 56(18), 8374-8378.
[http://dx.doi.org/10.1021/jf801297w] [PMID: 18759443]
[76]
Baek, S.H.; Ko, J.H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Lee, S.G.; Shim, B.S.; Sethi, G.; Kim, S.H.; Yang, W.M.; Um, J.Y.; Ahn, K.S. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 2016, 23(5), 566-577.
[http://dx.doi.org/10.1016/j.phymed.2016.02.011] [PMID: 27064016]
[77]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268.
[PMID: 19908231]
[78]
Yao, S.; Gao, M.; Wang, Z.; Wang, W.; Zhan, L.; Wei, B. Upregulation of microRNA-34a sensitizes ovarian cancer cells to resveratrol by targeting bcl-2. Yonsei Med. J., 2021, 62(8), 691-701.
[http://dx.doi.org/10.3349/ymj.2021.62.8.691] [PMID: 34296546]
[79]
Ferraresi, A.; Phadngam, S.; Morani, F.; Galetto, A.; Alabiso, O.; Chiorino, G.; Isidoro, C. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol. Carcinog., 2017, 56(3), 1164-1181.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[80]
El-kott, A.F.; Shati, A.A.; Ali Al-kahtani, M.; Alharbi, S.A The apoptotic effect of resveratrol in ovarian cancer cells is associated with downregulation of galectin‐3 and stimulating miR‐424‐3p transcription. J. Food Biochem., 2019, 43(12), e13072.
[http://dx.doi.org/10.1111/jfbc.13072] [PMID: 31603261]
[81]
Stavric, B. Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin. Biochem., 1994, 27(4), 245-248.
[http://dx.doi.org/10.1016/0009-9120(94)90025-6] [PMID: 8001284]
[82]
Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr., 2011, 93(6), 1220-1228.
[http://dx.doi.org/10.3945/ajcn.110.007096] [PMID: 21490142]
[83]
Ovaskainen, M.L.; Törrönen, R.; Koponen, J.M.; Sinkko, H.; Hellström, J.; Reinivuo, H.; Mattila, P. Dietary intake and major food sources of polyphenols in Finnish adults. J. Nutr., 2008, 138(3), 562-566.
[http://dx.doi.org/10.1093/jn/138.3.562] [PMID: 18287367]
[84]
Rothwell, JA; Perez-Jimenez, J; Neveu, V; Medina-Remon, A; M'hiri, N; García-Lobato, P Phenol-Explorer 3.0: A major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database: J. Biol.Databases Curation 2013, 2013, bat070..
[http://dx.doi.org/10.1093/database/bat070]
[85]
Rothwell, JA; Urpi-Sarda, M; Boto-Ordonez, M; Knox, C; Llorach, R; Eisner, R Phenol-Explorer 2.0: A major update of the Phenol- Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database: J. Biol. Databases Curation 2012, 2012, bas031.
[http://dx.doi.org/10.1093/database/bas031]
[86]
Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database, 2010, 2010, bap024.
[http://dx.doi.org/10.1093/database/bap024]
[87]
Hertog, M.G.; Hollman, P.C. Potential health effects of the dietary flavonol quercetin. Eur. J. Clin. Nutr., 1996, 50(2), 63-71.
[PMID: 8641249]
[88]
Carrasco-Pozo, C.; Tan, K.N.; Reyes-Farias, M.; De La Jara, N.; Ngo, S.T.; Garcia-Diaz, D.F.; Llanos, P.; Cires, M.J.; Borges, K. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: in vitro and in vivo studies. Redox Biol., 2016, 9, 229-243.
[http://dx.doi.org/10.1016/j.redox.2016.08.007] [PMID: 27591402]
[89]
Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem., 2017, 9(1), 79-93.
[http://dx.doi.org/10.4155/fmc-2016-0186] [PMID: 27995808]
[90]
Badolato, M.; Carullo, G.; Perri, M.; Cione, E.; Manetti, F.; Di Gioia, M.L.; Brizzi, A.; Caroleo, M.C.; Aiello, F. Quercetin/oleic acid-based G-protein-coupled receptor 40 ligands as new insulin secretion modulators. Future Med. Chem., 2017, 9(16), 1873-1885.
[http://dx.doi.org/10.4155/fmc-2017-0113] [PMID: 29064290]
[91]
Carullo, G.; Perri, M.; Manetti, F.; Aiello, F.; Caroleo, M.C.; Cione, E. Quercetin-3-oleoyl derivatives as new GPR40 agonists: Molecular docking studies and functional evaluation. Bioorg. Med. Chem. Lett., 2019, 29(14), 1761-1764.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.018] [PMID: 31104992]
[92]
Saponara, S.; Sgaragli, G.; Fusi, F. Quercetin as a novel activator of L-type Ca 2+ channels in rat tail artery smooth muscle cells. Br. J. Pharmacol., 2002, 135(7), 1819-1827.
[http://dx.doi.org/10.1038/sj.bjp.0704631] [PMID: 11934824]
[93]
Yarahmadi, A.; Khademi, F.; Mostafavi-Pour, Z.; Zal, F. In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (diabetes and cancer connection). Nutr. Cancer, 2018, 70(5), 770-775.
[http://dx.doi.org/10.1080/01635581.2018.1470654] [PMID: 29781726]
[94]
Jana, N. Břetislav, G; Pavel, S; Pavla, U Potential of the flavonoid quercetin to prevent and treat cancer-current status of research. Klin. Onkol., 2018, 31(3), 184-190.
[95]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[96]
Zhou, J.; Gong, J.; Ding, C.; Chen, G. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145. Mol. Med. Rep., 2015, 12(2), 3127-3131.
[http://dx.doi.org/10.3892/mmr.2015.3679] [PMID: 25937243]
[97]
Hua, M.; Qin, Y.; Sheng, M.; Cui, X.; Chen, W.; Zhong, J.; Yan, J.; Chen, Y. miR 145 suppresses ovarian cancer progression via modulation of cell growth and invasion by targeting CCND2 and E2F3. Mol. Med. Rep., 2019, 19(5), 3575-3583.
[http://dx.doi.org/10.3892/mmr.2019.10004] [PMID: 30864742]
[98]
Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA database for the flavonoid content of selected foods, release 3; US Department of Agriculture: Beltsville, MD, USA, 2011, p. 159.
[99]
Messina, M.; Nagata, C.; Wu, A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer, 2006, 55(1), 1-12.
[http://dx.doi.org/10.1207/s15327914nc5501_1] [PMID: 16965235]
[100]
van Erp-Baart, M.A.J.; Brants, H.A.M.; Kiely, M.; Mulligan, A.; Turrini, A.; Sermoneta, C.; Kilkkinen, A.; Valsta, L.M. Isoflavone intake in four different European countries: The VENUS approach. Br. J. Nutr., 2003, 89(Suppl. 1), S25-S30.
[http://dx.doi.org/10.1079/BJN2002793] [PMID: 12725653]
[101]
Xu, L.; Xiang, J.; Shen, J.; Zou, X.; Zhai, S.; Yin, Y.; Li, P.; Wang, X.; Sun, Q. Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer. Agents Med. Chem., 2013, 13(7), 1126-1132.
[http://dx.doi.org/10.2174/18715206113139990006] [PMID: 23438830]
[102]
Parker, L.P.; Taylor, D.D.; Kesterson, J.; Metzinger, D.S.; Gercel-Taylor, C. Modulation of microRNA associated with ovarian cancer cells by genistein. Eur. J. Gynaecol. Oncol., 2009, 30(6), 616-621.
[PMID: 20099489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy