Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Therapeutic Approaches for the Treatment of Interstitial Lung Disease: An Exploratory Review on Molecular Mechanisms

Author(s): Revati Amin, Ruchi Pandey, K. Vaishali*, Vishak Acharya, Mukesh Kumar Sinha and Nitesh Kumar*

Volume 24, Issue 6, 2024

Published on: 02 November, 2023

Page: [618 - 633] Pages: 16

DOI: 10.2174/1389557523666230816090112

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Interstitial Lung Diseases (ILDs) are characterized by shortness of breath caused by alveolar wall inflammation and/or fibrosis.

Objective: Our review aims to study the depth of various variants of ILD, diagnostic procedures, pathophysiology, molecular dysfunction and regulation, subject and objective assessment techniques, pharmacological intervention, exercise training and various modes of delivery for rehabilitation.

Method: Articles are reviewed from PubMed and Scopus and search engines.

Results: ILD is a rapidly progressing disease with a high mortality rate. Each variant has its own set of causal agents and expression patterns. Patients often find it challenging to self-manage due to persistent symptoms and a rapid rate of worsening. The present review elaborated on the pathophysiology, risk factors, molecular mechanisms, diagnostics, and therapeutic approaches for ILD will guide future requirements in the quest for innovative and tailored ILD therapies at the molecular and cellular levels.

Conclusion: The review highlights the rationale for conventional and novel therapeutic approaches for better management of ILD.

Keywords: Interstitial lung diseases, molecular dysfunction, pathophysiology, causal agents, molecular mechanisms, pulmonary rehabilitation.

Graphical Abstract
[1]
Antoniou, K.M.; Margaritopoulos, G.A.; Tomassetti, S.; Bonella, F.; Costabel, U. Poletti, V Interstitial lung disease. European respiratory re-view. Eur. Respir. J., 2014, 23(131), 40-50.
[http://dx.doi.org/10.1183/09059180.00009113]
[2]
Ryerson, C.J.; Urbania, T.H.; Richeldi, L.; Mooney, J.J.; Lee, J.S.; Jones, K.D.; Elicker, B.M.; Koth, L.L.; King, T.E., Jr; Wolters, P.J.; Collard, H.R. Prevalence and prognosis of unclassifiable interstitial lung disease. Eur. Respir. J., 2013, 42(3), 750-757.
[http://dx.doi.org/10.1183/09031936.00131912] [PMID: 23222877]
[3]
Cottin, V.; Hirani, N.A.; Hotchkin, D.L.; Nambiar, A.M.; Ogura, T.; Otaola, M. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur. Respir. J., 2018, 27(150), 180076.
[http://dx.doi.org/10.1183/16000617.0076-2018]
[4]
Travis, W.D.; Costabel, U.; Hansell, D.M.; King, T.E., Jr; Lynch, D.A.; Nicholson, A.G.; Ryerson, C.J.; Ryu, J.H.; Selman, M.; Wells, A.U.; Behr, J.; Bouros, D.; Brown, K.K.; Colby, T.V.; Collard, H.R.; Cordeiro, C.R.; Cottin, V.; Crestani, B.; Drent, M.; Dudden, R.F.; Egan, J.; Flaherty, K.; Hogaboam, C.; Inoue, Y.; Johkoh, T.; Kim, D.S.; Kitaichi, M.; Loyd, J.; Martinez, F.J.; Myers, J.; Protzko, S.; Raghu, G.; Richeldi, L.; Sverzellati, N.; Swigris, J.; Valeyre, D. An official american thoracic society/european respiratory society statement: Upda-te of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med., 2013, 188(6), 733-748.
[http://dx.doi.org/10.1164/rccm.201308-1483ST] [PMID: 24032382]
[5]
Cottin, V. Treatment of progressive fibrosing interstitial lung diseases: A milestone in the management of interstitial lung diseases. Eur. Respirat. Soc., 2019, 28(153), 190109.
[6]
Dillingh, M.R.; van den Blink, B.; Moerland, M.; van Dongen, M.G.J.; Levi, M.; Kleinjan, A.; Wijsenbeek, M.S.; Lupher, M.L., Jr; Harper, D.M.; Getsy, J.A.; Hoogsteden, H.C.; Burggraaf, J. Recombinant human serum amyloid P in healthy volunteers and patients with pulmo-nary fibrosis. Pulm. Pharmacol. Ther., 2013, 26(6), 672-676.
[http://dx.doi.org/10.1016/j.pupt.2013.01.008] [PMID: 23380438]
[7]
Glass, D.S.; Grossfeld, D.; Renna, H.A.; Agarwala, P.; Spiegler, P.; DeLeon, J.; Reiss, A.B. Idiopathic pulmonary fibrosis: Current and future treatment. Clin. Respir. J., 2022, 16(2), 84-96.
[http://dx.doi.org/10.1111/crj.13466] [PMID: 35001525]
[8]
Richeldi, L.; Costabel, U.; Selman, M.; Kim, D.S.; Hansell, D.M.; Nicholson, A.G.; Brown, K.K.; Flaherty, K.R.; Noble, P.W.; Raghu, G.; Brun, M.; Gupta, A.; Juhel, N.; Klüglich, M.; du Bois, R.M. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2011, 365(12), 1079-1087.
[http://dx.doi.org/10.1056/NEJMoa1103690] [PMID: 21992121]
[9]
Serra López-Matencio, J.M.; Gómez, M.; Vicente-Rabaneda, E.F.; González-Gay, M.A.; Ancochea, J.; Castañeda, S. Pharmacological inter-actions of nintedanib and pirfenidone in patients with idiopathic pulmonary fibrosis in times of COVID-19 pandemic. Pharmaceuticals, 2021, 14(8), 819.
[http://dx.doi.org/10.3390/ph14080819] [PMID: 34451916]
[10]
Vancheri, C.; Kreuter, M.; Richeldi, L.; Ryerson, C.J.; Valeyre, D.; Grutters, J.C.; Wiebe, S.; Stansen, W.; Quaresma, M.; Stowasser, S.; Wuyts, W.A. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY trial. Am. J. Respir. Crit. Care Med., 2018, 197(3), 356-363.
[http://dx.doi.org/10.1164/rccm.201706-1301OC] [PMID: 28889759]
[11]
O’Riordan, T.G.; Smith, V.; Raghu, G. Development of novel agents for idiopathic pulmonary fibrosis: Progress in target selection and clinical trial design. Chest, 2015, 148(4), 1083-1092.
[http://dx.doi.org/10.1378/chest.14-3218] [PMID: 26020856]
[12]
Friedman, SL; Sheppard, D; Duffield, JS; Violette, S Therapy for fibrotic diseases: Nearing the starting line. Sci. Transl. Med., 2013, 5(167), 167s1.
[http://dx.doi.org/10.1126/scitranslmed.3004700]
[13]
Steele, M.P.; Schwartz, D.A. Molecular mechanisms in progressive idiopathic pulmonary fibrosis. Annu. Rev. Med., 2013, 64(1), 265-276.
[http://dx.doi.org/10.1146/annurev-med-042711-142004] [PMID: 23020878]
[14]
Klingberg, F.; Chow, M.L.; Koehler, A.; Boo, S.; Buscemi, L.; Quinn, T.M.; Costell, M.; Alman, B.A.; Genot, E.; Hinz, B. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol., 2014, 207(2), 283-297.
[http://dx.doi.org/10.1083/jcb.201402006] [PMID: 25332161]
[15]
Sgalla, G.; Cocconcelli, E.; Tonelli, R.; Richeldi, L. Novel drug targets for idiopathic pulmonary fibrosis. Expert Rev. Respir. Med., 2016, 10(4), 393-405.
[http://dx.doi.org/10.1586/17476348.2016.1152186] [PMID: 26854382]
[16]
Mora, A.L.; Bueno, M.; Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Invest., 2017, 127(2), 405-414.
[http://dx.doi.org/10.1172/JCI87440] [PMID: 28145905]
[17]
Bueno, M.; Lai, Y.C.; Romero, Y.; Brands, J.; St Croix, C.M.; Kamga, C.; Corey, C.; Herazo-Maya, J.D.; Sembrat, J.; Lee, J.S.; Duncan, S.R.; Rojas, M.; Shiva, S.; Chu, C.T.; Mora, A.L. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest., 2015, 125(2), 521-538.
[http://dx.doi.org/10.1172/JCI74942] [PMID: 25562319]
[18]
Yu, G.; Tzouvelekis, A.; Wang, R.; Herazo-Maya, J.D.; Ibarra, G.H.; Srivastava, A. Thyroid hormone inhibits lung fibrosis in mice by impro-ving epithelial mitochondrial function. Nat. Med., 2018, 24(1), 39-49.
[http://dx.doi.org/10.1038/nm.4447]
[19]
Larson-Casey, J.L.; Deshane, J.S.; Ryan, A.J.; Thannickal, V.J.; Carter, A.B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity, 2016, 44(3), 582-596.
[http://dx.doi.org/10.1016/j.immuni.2016.01.001] [PMID: 26921108]
[20]
Cheresh, P.; Morales-Nebreda, L.; Kim, S.J.; Yeldandi, A.; Williams, D.B.; Cheng, Y.; Mutlu, G.M.; Budinger, G.R.S.; Ridge, K.; Schuma-cker, P.T.; Bohr, V.A.; Kamp, D.W. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mi-ce. Am. J. Respir. Cell Mol. Biol., 2015, 52(1), 25-36.
[http://dx.doi.org/10.1165/rcmb.2014-0038OC] [PMID: 24918270]
[21]
Kobayashi, K.; Araya, J.; Minagawa, S.; Hara, H.; Saito, N.; Kadota, T. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J. Immunol., 2016, 197(2), 504-516.
[http://dx.doi.org/10.4049/jimmunol.1600265]
[22]
Kreuter, M.; Herth, F.J.; Wacker, M.; Leidl, R.; Hellmann, A.; Pfeifer, M. Exploring clinical and epidemiological characteristics of interstitial lung diseases: Rationale, aims, and design of a nationwide prospective registry-The Exciting-ILD registry. BioMed Res. Int., 2015, 2015, 123876.
[23]
Singh, S.; Collins, B.F.; Sharma, B.B.; Joshi, J.M.; Talwar, D.; Katiyar, S.; Singh, N.; Ho, L.; Samaria, J.K.; Bhattacharya, P.; Gupta, R.; Chaudhari, S.; Singh, T.; Moond, V.; Pipavath, S.; Ahuja, J.; Chetambath, R.; Ghoshal, A.G.; Jain, N.K.; Devi, H.J.G.; Kant, S.; Koul, P.; Dhar, R.; Swarnakar, R.; Sharma, S.K.; Roy, D.J.; Sarmah, K.R.; Jankharia, B.; Schmidt, R.; Katiyar, S.K.; Jindal, A.; Mangal, D.K.; Singh, V.; Raghu, G. Interstitial lung disease in India. Results of a prospective registry. Am. J. Respir. Crit. Care Med., 2017, 195(6), 801-813.
[http://dx.doi.org/10.1164/rccm.201607-1484OC] [PMID: 27684041]
[24]
Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082), 1941-1952.
[http://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PMID: 28365056]
[25]
Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.C.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; Joh-koh, T.; Martinez, F.J.; Myers, J.; Protzko, S.L.; Richeldi, L.; Rind, D.; Selman, M.; Theodore, A.; Wells, A.U.; Hoogsteden, H.; Schünemann, H.J. An official ATS/ERS/JRS/ALAT clinical practice guideline: Treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med., 2015, 192(2), e3-e19.
[http://dx.doi.org/10.1164/rccm.201506-1063ST] [PMID: 26177183]
[26]
Sesé, L.; Nunes, H.; Cottin, V.; Sanyal, S.; Didier, M.; Carton, Z.; Israel-Biet, D.; Crestani, B.; Cadranel, J.; Wallaert, B.; Tazi, A.; Maître, B.; Prévot, G.; Marchand-Adam, S.; Guillot-Dudoret, S.; Nardi, A.; Dury, S.; Giraud, V.; Gondouin, A.; Juvin, K.; Borie, R.; Wislez, M.; Valeyre, D.; Annesi-Maesano, I. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax, 2018, 73(2), 145-150.
[http://dx.doi.org/10.1136/thoraxjnl-2017-209967] [PMID: 28798214]
[27]
Kaur, A.; Mathai, S.K.; Schwartz, D.A. Genetics in idiopathic pulmonary fibrosis pathogenesis, prognosis, and treatment. Front. Med., 2017, 4, 154.
[http://dx.doi.org/10.3389/fmed.2017.00154] [PMID: 28993806]
[28]
Vasakova, M.; Morell, F.; Walsh, S.; Leslie, K.; Raghu, G. Hypersensitivity pneumonitis: Perspectives in diagnosis and management. Am. J. Respir. Crit. Care Med., 2017, 196(6), 680-689.
[http://dx.doi.org/10.1164/rccm.201611-2201PP] [PMID: 28598197]
[29]
Costabel, U.; Miyazaki, Y.; Pardo, A.; Koschel, D.; Bonella, F.; Spagnolo, P.; Guzman, J.; Ryerson, C.J.; Selman, M. Hypersensitivity pneumonitis. Nat. Rev. Dis. Primers, 2020, 6(1), 65.
[http://dx.doi.org/10.1038/s41572-020-0191-z] [PMID: 32764620]
[30]
Joy, G.; Colinet, J.; Landen, D. Coal workers’ pneumoconiosis. Min. Eng., 2012, 64(7), 65-71.
[31]
Deng, C.W.; Zhang, X.X.; Lin, J.H.; Huang, L.F.; Qu, Y.L.; Bai, C. Association between genetic variants of transforming growth factor-β1 and susceptibility of pneumoconiosis: A meta-analysis. Chin. Med. J., 2017, 130(3), 357-364.
[http://dx.doi.org/10.4103/0366-6999.198917] [PMID: 28139521]
[32]
Gulati, M.; Redlich, C.A. Asbestosis and environmental causes of usual interstitial pneumonia. Curr. Opin. Pulm. Med., 2015, 21(2), 1.
[http://dx.doi.org/10.1097/MCP.0000000000000144] [PMID: 25621562]
[33]
Norbet, C.; Joseph, A.; Rossi, S.S.; Bhalla, S.; Gutierrez, F.R. Asbestos-related lung disease: A pictorial review. Curr. Probl. Diagn. Radiol., 2015, 44(4), 371-382.
[http://dx.doi.org/10.1067/j.cpradiol.2014.10.002] [PMID: 25444537]
[34]
Belloli, E.A.; Beckford, R.; Hadley, R.; Flaherty, K.R. Idiopathic non‐specific interstitial pneumonia. Respirology, 2016, 21(2), 259-268.
[http://dx.doi.org/10.1111/resp.12674] [PMID: 26564810]
[35]
Syrjä, P.; Heikkilä, H.P.; Lilja-Maula, L.; Krafft, E.; Clercx, C.; Day, M.J.; Rönty, M.; Myllärniemi, M.; Rajamäki, M.M. The histopatho-logy of idiopathic pulmonary fibrosis in West Highland white terriers shares features of both non-specific interstitial pneumonia and usual interstitial pneumonia in man. J. Comp. Pathol., 2013, 149(2-3), 303-313.
[http://dx.doi.org/10.1016/j.jcpa.2013.03.006] [PMID: 23664319]
[36]
Shaw, M.; Collins, B.F.; Ho, L.A.; Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir. J., 2015, 24(135), 1-16.
[http://dx.doi.org/10.1183/09059180.00008014]
[37]
Chen, J.; Doyle, T.J.; Liu, Y.; Aggarwal, R.; Wang, X.; Shi, Y.; Ge, S.X.; Huang, H.; Lin, Q.; Liu, W.; Cai, Y.; Koontz, D.; Fuhrman, C.R.; Golzarri, M.F.; Liu, Y.; Hatabu, H.; Nishino, M.; Araki, T.; Dellaripa, P.F.; Oddis, C.V.; Rosas, I.O.; Ascherman, D.P. Biomarkers of Rhe-umatoid arthritis-associated interstitial lung disease. Arthritis Rheumatol., 2015, 67(1), 28-38.
[http://dx.doi.org/10.1002/art.38904] [PMID: 25302945]
[38]
Kim, H.C.; Choi, K.H. Prognostic role of blood KL-6 in Rheumatoid arthritis-associated interstitial lung disease. PLoS One, 2020, 15(3), e0229997.
[http://dx.doi.org/10.1371/journal.pone.0229997]
[39]
Solomon, J.J.; Chung, J.H.; Cosgrove, G.P.; Demoruelle, M.K.; Fernandez-Perez, E.R.; Fischer, A.; Frankel, S.K.; Hobbs, S.B.; Huie, T.J.; Ketzer, J.; Mannina, A.; Olson, A.L.; Russell, G.; Tsuchiya, Y.; Yunt, Z.X.; Zelarney, P.T.; Brown, K.K.; Swigris, J.J. Predictors of morta-lity in Rheumatoid arthritis-associated interstitial lung disease. Eur. Respir. J., 2016, 47(2), 588-596.
[http://dx.doi.org/10.1183/13993003.00357-2015] [PMID: 26585429]
[40]
Del Angel-Pablo, A.D.; Buendía-Roldán, I.; Mejía, M.; Pérez-Rubio, G.; Nava-Quiroz, K.J.; Rojas-Serrano, J.; Falfán-Valencia, R. Anti-HLA class II antibodies correlate with C-reactive protein levels in patients with Rheumatoid arthritis associated with interstitial lung disea-se. Cells, 2020, 9(3), 691.
[http://dx.doi.org/10.3390/cells9030691] [PMID: 32168865]
[41]
Winstone, T.A.; Assayag, D.; Wilcox, P.G.; Dunne, J.V.; Hague, C.J.; Leipsic, J.; Collard, H.R.; Ryerson, C.J. Predictors of mortality and progression in Scleroderma-associated interstitial lung disease: A systematic review. Chest, 2014, 146(2), 422-436.
[http://dx.doi.org/10.1378/chest.13-2626] [PMID: 24576924]
[42]
Stock, C.J.W.; De Lauretis, A.; Visca, D.; Daccord, C.; Kokosi, M.; Kouranos, V.; Margaritopoulos, G.; George, P.M.; Molyneaux, P.L.; Nihtyanova, S.; Chua, F.; Maher, T.M.; Ong, V.; Abraham, D.J.; Denton, C.P.; Wells, A.U.; Wain, L.V.; Renzoni, E.A. Defining genetic risk factors for scleroderma-associated interstitial lung disease. Clin. Rheumatol., 2020, 39(4), 1173-1179.
[http://dx.doi.org/10.1007/s10067-019-04922-6] [PMID: 31916109]
[43]
Fan, M.H.; Feghali-Bostwick, C.A.; Silver, R.M. Update on scleroderma-associated interstitial lung disease. Curr. Opin. Rheumatol., 2014, 26(6), 630-636.
[http://dx.doi.org/10.1097/BOR.0000000000000111] [PMID: 25191993]
[44]
Spagnolo, P.; Kropski, J.A.; Jones, M.G.; Lee, J.S.; Rossi, G.; Karampitsakos, T.; Maher, T.M.; Tzouvelekis, A.; Ryerson, C.J. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther., 2021, 222, 107798.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107798] [PMID: 33359599]
[45]
Spagnolo, P.; Bonella, F.; Ryerson, C.J.; Tzouvelekis, A.; Maher, T.M. Shedding light on developmental drugs for idiopathic pulmonary fibrosis. Expert Opin. Investig. Drugs, 2020, 29(8), 797-808.
[http://dx.doi.org/10.1080/13543784.2020.1782885] [PMID: 32538186]
[46]
Mei, Q.; Liu, Z.; Zuo, H.; Yang, Z.; Qu, J. Idiopathic pulmonary fibrosis: An update on pathogenesis. Front. Pharmacol., 2022, 12, 797292.
[http://dx.doi.org/10.3389/fphar.2021.797292] [PMID: 35126134]
[47]
Barnes, H.; Troy, L.; Lee, C.T.; Sperling, A.; Strek, M.; Glaspole, I. Hypersensitivity pneumonitis: Current concepts in pathogenesis, diag-nosis, and treatment. Allergy, 2022, 77(2), 442-453.
[http://dx.doi.org/10.1111/all.15017] [PMID: 34293188]
[48]
Chandra, D.; Cherian, S.V. Hypersensitivity pneumonitis; StatPearls Publishing, 2021.
[49]
Qi, X.M.; Luo, Y.; Song, M.Y.; Liu, Y.; Shu, T.; Liu, Y.; Pang, J.L.; Wang, J.; Wang, C. Pneumoconiosis: Current status and future pros-pects. Chin. Med. J., 2021, 134(8), 898-907.
[http://dx.doi.org/10.1097/CM9.0000000000001461] [PMID: 33879753]
[50]
Liu, G.; Xu, Q.; Zhao, J.; Nie, W.; Guo, Q.; Ma, G. Research status of pathogenesis of pneumoconiosis and dust control technology in mine—A review. Appl. Sci., 2021, 11(21), 10313.
[http://dx.doi.org/10.3390/app112110313]
[51]
Kamp, D.W.; Weitzman, S.A. Asbestosis: Clinical spectrum and pathogenic mechanisms. Exp. Biol. Med., 1997, 214(1), 12-26.
[http://dx.doi.org/10.3181/00379727-214-44065] [PMID: 9012357]
[52]
Shukla, A.; Gulumian, M.; Hei, T.K.; Kamp, D.; Rahman, Q.; Mossman, B.T. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic. Biol. Med., 2003, 34(9), 1117-1129.
[http://dx.doi.org/10.1016/S0891-5849(03)00060-1] [PMID: 12706492]
[53]
Mossman, B.T.; Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med., 1998, 157(5), 1666-1680.
[http://dx.doi.org/10.1164/ajrccm.157.5.9707141] [PMID: 9603153]
[54]
Jumat, M.I.; Hayati, F.; Syed Abdul Rahim, S.S.; Saupin, S.; Lukman, K.A.; Jeffree, M.S.; Lasimbang, H.B.; Kadir, F. Occupational lung disease: A narrative review of lung conditions from the workplace. Ann. Med. Surg., 2021, 64, 102245.
[http://dx.doi.org/10.1016/j.amsu.2021.102245] [PMID: 33854771]
[55]
Tusa, I.; Menconi, A.; Tubita, A.; Rovida, E. Pathophysiological impact of the MEK5/ERK5 pathway in oxidative stress. Cells, 2023, 12(8), 1154.
[http://dx.doi.org/10.3390/cells12081154] [PMID: 37190064]
[56]
Ntiamoah, P.; Purpura, R.; Vehar, S.; Coley, C.J.; Hasvold, J.; Schmidt, L.A. Nonspecific, unclassifiable, and rare idiopathic interstitial pneumonia: Acute interstitial pneumonia, respiratory bronchiolitis interstitial pneumonia, desquamative interstitial pneumonia, nonspecific interstitial pneumonia. Orphan Lung Diseases; Springer, 2023, pp. 589-603.
[http://dx.doi.org/10.1007/978-3-031-12950-6_34]
[57]
Kadura, S.; Raghu, G. Rheumatoid arthritis-interstitial lung disease: Manifestations and current concepts in pathogenesis and management. Eur. Respir. Rev., 2021, 30(160), 210011.
[http://dx.doi.org/10.1183/16000617.0011-2021] [PMID: 34168062]
[58]
Hutchinson, D. Predicting rheumatoid arthritis-associated interstitial lung disease: Filling the void. Lancet Rheumatol., 2023, 5(2), e61-e63.
[http://dx.doi.org/10.1016/S2665-9913(23)00008-5]
[59]
Akter, T.; Silver, R.M.; Bogatkevich, G.S. Recent advances in understanding the pathogenesis of scleroderma-interstitial lung disease. Curr. Rheumatol. Rep., 2014, 16(4), 411.
[http://dx.doi.org/10.1007/s11926-014-0411-1] [PMID: 24523015]
[60]
Volkmann, E.R.; Tashkin, D.P. Treatment of systemic Sclerosis–related interstitial lung disease: A review of existing and emerging thera-pies. Ann. Am. Thorac. Soc., 2016, 13(11), 2045-2056.
[http://dx.doi.org/10.1513/AnnalsATS.201606-426FR] [PMID: 27560196]
[61]
Perelas, A.; Silver, R.M.; Arrossi, A.V.; Highland, K.B. Systemic sclerosis-associated interstitial lung disease. Lancet Respir. Med., 2020, 8(3), 304-320.
[http://dx.doi.org/10.1016/S2213-2600(19)30480-1] [PMID: 32113575]
[62]
Cerro Chiang, G.; Parimon, T. Understanding interstitial lung diseases associated with connective tissue disease (CTD-ILD): Genetics, cellular pathophysiology, and biologic drivers. Int. J. Mol. Sci., 2023, 24(3), 2405.
[http://dx.doi.org/10.3390/ijms24032405] [PMID: 36768729]
[63]
Meyer, K.C. Diagnosis and management of interstitial lung disease. Transl. Respir. Med., 2014, 2(1), 4.
[http://dx.doi.org/10.1186/2213-0802-2-4] [PMID: 25505696]
[64]
Plantier, L.; Cazes, A.; Dinh-Xuan, A.T.; Bancal, C.; Marchand-Adam, S.; Crestani, B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur. Respir. J., 2018, 27(147)
[http://dx.doi.org/10.1183/16000617.0062-2017]
[65]
Rangarajan, S.; Bernard, K.; Thannickal, V.J. Mitochondrial dysfunction in pulmonary fibrosis. Ann. Am. Thorac. Soc., 2017, 14(Suppl. 5), S383-s8.
[66]
Kosmider, B.; Messier, E.M.; Chu, H.W.; Mason, R.J. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One, 2011, 6(12), e26059.
[http://dx.doi.org/10.1371/journal.pone.0026059] [PMID: 22163265]
[67]
Kamp, D.W.; Panduri, V.; Weitzman, S.A.; Chandel, N. Asbestos-induced alveolar epithelial cell apoptosis: Role of mitochondrial dysfunction caused by iron-derived free radicals. Mol. Cell. Biochem., 2002, 234/235(1), 153-160.
[http://dx.doi.org/10.1023/A:1015949118495] [PMID: 12162428]
[68]
Panduri, V.; Weitzman, S.A.; Chandel, N.; Kamp, D.W. The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. Am. J. Respir. Cell Mol. Biol., 2003, 28(2), 241-248.
[http://dx.doi.org/10.1165/rcmb.4903] [PMID: 12540492]
[69]
Liu, G.; Beri, R.; Mueller, A.; Kamp, D.W. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem. Biol. Interact., 2010, 188(2), 309-318.
[http://dx.doi.org/10.1016/j.cbi.2010.03.047] [PMID: 20380827]
[70]
Kim, Y.H.; Fazlollahi, F.; Kennedy, I.M.; Yacobi, N.R.; Hamm-Alvarez, S.F.; Borok, Z.; Kim, K.J.; Crandall, E.D. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. Crit. Care Med., 2010, 182(11), 1398-1409.
[http://dx.doi.org/10.1164/rccm.201002-0185OC] [PMID: 20639441]
[71]
Selman, M.; Pardo, A. Role of epithelial cells in idiopathic pulmonary fibrosis: From innocent targets to serial killers. Proc. Am. Thorac. Soc., 2006, 3(4), 364-372.
[http://dx.doi.org/10.1513/pats.200601-003TK] [PMID: 16738202]
[72]
Thannickal, V.J. Mechanisms of pulmonary fibrosis: Role of activated myofibroblasts and NADPH oxidase. Fibroge. Tiss. Repa., 2012, 5(S1)(Suppl. 1), S23.
[http://dx.doi.org/10.1186/1755-1536-5-S1-S23] [PMID: 23259497]
[73]
Maher, T.M. Idiopathic pulmonary fibrosis: Pathobiology of novel approaches to treatment. Clin. Chest Med., 2012, 33(1), 69-83.
[http://dx.doi.org/10.1016/j.ccm.2011.11.002] [PMID: 22365247]
[74]
Sakai, N.; Tager, A.M. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(7), 911-921.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.001] [PMID: 23499992]
[75]
Blackwell, T.S.; Tager, A.M.; Borok, Z.; Moore, B.B.; Schwartz, D.A.; Anstrom, K.J.; Bar-Joseph, Z.; Bitterman, P.; Blackburn, M.R.; Bradford, W.; Brown, K.K.; Chapman, H.A.; Collard, H.R.; Cosgrove, G.P.; Deterding, R.; Doyle, R.; Flaherty, K.R.; Garcia, C.K.; Hagood, J.S.; Henke, C.A.; Herzog, E.; Hogaboam, C.M.; Horowitz, J.C.; King, T.E., Jr; Loyd, J.E.; Lawson, W.E.; Marsh, C.B.; Noble, P.W.; Noth, I.; Sheppard, D.; Olsson, J.; Ortiz, L.A.; O’Riordan, T.G.; Oury, T.D.; Raghu, G.; Roman, J.; Sime, P.J.; Sisson, T.H.; Tschumperlin, D.; Violette, S.M.; Weaver, T.E.; Wells, R.G.; White, E.S.; Kaminski, N.; Martinez, F.J.; Wynn, T.A.; Thannickal, V.J.; Eu, J.P. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am. J. Respir. Crit. Care Med., 2014, 189(2), 214-222.
[http://dx.doi.org/10.1164/rccm.201306-1141WS] [PMID: 24160862]
[76]
Jaeger, V.K.; Lebrecht, D.; Nicholson, A.G.; Wells, A.; Bhayani, H.; Gazdhar, A.; Tamm, M.; Venhoff, N.; Geiser, T.; Walker, U.A. Mito-chondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Sci. Rep., 2019, 9(1), 5500.
[http://dx.doi.org/10.1038/s41598-019-41933-4] [PMID: 30940853]
[77]
Panduri, V.; Surapureddi, S.; Soberanes, S.; Weitzman, S.A.; Chandel, N.; Kamp, D.W. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am. J. Respir. Cell Mol. Biol., 2006, 34(4), 443-452.
[http://dx.doi.org/10.1165/rcmb.2005-0352OC] [PMID: 16357363]
[78]
Soberanes, S.; Panduri, V.; Mutlu, G.M.; Ghio, A.; Bundinger, G.R.S.; Kamp, D.W. p53 mediates particulate matter-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am. J. Respir. Crit. Care Med., 2006, 174(11), 1229-1238.
[http://dx.doi.org/10.1164/rccm.200602-203OC] [PMID: 16946128]
[79]
Jablonski, R.P.; Kim, S.J.; Cheresh, P.; Williams, D.B.; Morales-Nebreda, L.; Cheng, Y.; Yeldandi, A.; Bhorade, S.; Pardo, A.; Selman, M.; Ridge, K.; Gius, D.; Scott Budinger, G.R.; Kamp, D.W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mi-tochondrial DNA damage and apoptosis. FASEB J., 2017, 31(6), 2520-2532.
[http://dx.doi.org/10.1096/fj.201601077R] [PMID: 28258190]
[80]
Patel, A.S.; Song, J.W.; Chu, S.G.; Mizumura, K.; Osorio, J.C.; Shi, Y.; El-Chemaly, S.; Lee, C.G.; Rosas, I.O.; Elias, J.A.; Choi, A.M.K.; Morse, D. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLoS One, 2015, 10(3), e0121246.
[http://dx.doi.org/10.1371/journal.pone.0121246] [PMID: 25785991]
[81]
Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; Geren-cser, A.A.; Verdin, E.; Campisi, J. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab., 2016, 23(2), 303-314.
[http://dx.doi.org/10.1016/j.cmet.2015.11.011] [PMID: 26686024]
[82]
Uhal, B.D.; Joshi, I.; Hughes, W.F.; Ramos, C.; Pardo, A.; Selman, M. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am. J. Physiol., 1998, 275(6), L1192-L1199.
[PMID: 9843857]
[83]
Bartling, B.; Rehbein, G.; Silber, R.; Simm, A. Senescent fibroblasts induce moderate stress in lung epithelial cells in vitro. Exp. Gerontol., 2006, 41(5), 532-539.
[http://dx.doi.org/10.1016/j.exger.2006.02.006] [PMID: 16600555]
[84]
Carré, P.C.; Mortenson, R.L.; King, T.E., Jr; Noble, P.W.; Sable, C.L.; Riches, D.W. Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fi-brosis. J. Clin. Invest., 1991, 88(6), 1802-1810.
[http://dx.doi.org/10.1172/JCI115501] [PMID: 1752942]
[85]
Kiemle-Kallee, J.; Kreipe, H.; Radzun, H.J.; Parwaresch, M.R.; Auerswald, U.; Magnussen, H.; Barth, J. Alveolar macrophages in idiopat-hic pulmonary fibrosis display a more monocyte-like immunophenotype and an increased release of free oxygen radicals. Eur. Respir. J., 1991, 4(4), 400-406.
[http://dx.doi.org/10.1183/09031936.93.04040400] [PMID: 1855569]
[86]
Kline, J.N.; Schwartz, D.A.; Monick, M.M.; Floerchinger, C.S.; Hunninghake, G.W. Relative release of interleukin-1 beta and interleukin-1 receptor antagonist by alveolar macrophages. A study in asbestos-induced lung disease, sarcoidosis, and idiopathic pulmonary fibrosis. Chest, 1993, 104(1), 47-53.
[http://dx.doi.org/10.1378/chest.104.1.47] [PMID: 8325116]
[87]
Schaberg, T.; Rau, M.; Stephan, H.; Lode, H. Increased number of alveolar macrophages expressing surface molecules of the CD11/CD18 family in sarcoidosis and idiopathic pulmonary fibrosis is related to the production of superoxide anions by these cells. Am. Rev. Respir. Dis., 1993, 147(6_pt_1), 1507-1513.
[http://dx.doi.org/10.1164/ajrccm/147.6_Pt_1.1507] [PMID: 8099261]
[88]
Nakamura, H.; Fujishima, S.; Waki, Y.; Urano, T.; Sayama, K.; Sakamaki, F.; Terashima, T.; Soejima, K.; Tasaka, S.; Ishizaka, A. Priming of alveolar macrophages for interleukin-8 production in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 1995, 152(5), 1579-1586.
[http://dx.doi.org/10.1164/ajrccm.152.5.7582298] [PMID: 7582298]
[89]
Martinet, Y.; Rom, W.N.; Grotendorst, G.R.; Martin, G.R.; Crystal, R.G. Exaggerated spontaneous release of platelet-derived growth factor by alveolar macrophages from patients with idiopathic pulmonary fibrosis. N. Engl. J. Med., 1987, 317(4), 202-209.
[http://dx.doi.org/10.1056/NEJM198707233170404] [PMID: 3600711]
[90]
Ye, Q.; Dalavanga, Y.; Poulakis, N.; Sixt, S.U.; Guzman, J.; Costabel, U. Decreased expression of haem oxygenase-1 by alveolar macrop-hages in idiopathic pulmonary fibrosis. Eur. Respir. J., 2008, 31(5), 1030-1036.
[http://dx.doi.org/10.1183/09031936.00125407] [PMID: 18216050]
[91]
Xue, J.; Kass, D.J.; Bon, J.; Vuga, L.; Tan, J.; Csizmadia, E. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J. Immun., 2013, 191(5), 2089-2095.
[92]
Feghali-Bostwick, C.A.; Tsai, C.G.; Valentine, V.G.; Kantrow, S.; Stoner, M.W.; Pilewski, J.M.; Gadgil, A.; George, M.P.; Gibson, K.F.; Choi, A.M.K.; Kaminski, N.; Zhang, Y.; Duncan, S.R. Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis. J. Immunol., 2007, 179(4), 2592-2599.
[http://dx.doi.org/10.4049/jimmunol.179.4.2592] [PMID: 17675522]
[93]
Kanne, J.P.; Yandow, D.R.; Meyer, C.A. Pneumocystis jiroveci pneumonia: High-resolution CT findings in patients with and without HIV infection. AJR Am. J. Roentgenol., 2012, 198(6), W555-W561.
[http://dx.doi.org/10.2214/AJR.11.7329] [PMID: 22623570]
[94]
Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.C.; Pitta, F.; Sewell, L.; Raskin, J.; Bourbeau, J.; Crouch, R.; Franssen, F.M.E.; Casaburi, R.; Vercoulen, J.H.; Vogiatzis, I.; Gosselink, R.; Clini, E.M.; Effing, T.W.; Maltais, F.; van der Palen, J.; Troosters, T.; Janssen, D.J.A.; Collins, E.; Garcia-Aymerich, J.; Brooks, D.; Fahy, B.F.; Puhan, M.A.; Hoogendoorn, M.; Garrod, R.; Schols, A.M.W.J.; Carlin, B.; Benzo, R.; Meek, P.; Morgan, M.; Rutten-van Mölken, M.P.M.H.; Ries, A.L.; Make, B.; Goldstein, R.S.; Dowson, C.A.; Brozek, J.L.; Donner, C.F.; Wouters, E.F.M. An official American Thoracic So-ciety/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med., 2013, 188(8), e13-e64.
[http://dx.doi.org/10.1164/rccm.201309-1634ST] [PMID: 24127811]
[95]
Dowman, L.; Hill, C.J.; May, A.; Holland, A.E. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst. Rev., 2021, 2(2), CD006322.
[PMID: 34559419]
[96]
Dowman, L.M.; McDonald, C.F.; Hill, C.J.; Lee, A.L.; Barker, K.; Boote, C.; Glaspole, I.; Goh, N.S.L.; Southcott, A.M.; Burge, A.T.; Gi-llies, R.; Martin, A.; Holland, A.E. The evidence of benefits of exercise training in interstitial lung disease: A randomised controlled trial. Thorax, 2017, 72(7), 610-619.
[http://dx.doi.org/10.1136/thoraxjnl-2016-208638] [PMID: 28213592]
[97]
Perez-Bogerd, S.; Wuyts, W.; Barbier, V.; Demeyer, H.; Van Muylem, A.; Janssens, W.; Troosters, T. Short and long-term effects of pul-monary rehabilitation in interstitial lung diseases: A randomised controlled trial. Respir. Res., 2018, 19(1), 182.
[http://dx.doi.org/10.1186/s12931-018-0884-y] [PMID: 30236104]
[98]
Ryerson, C.J.; Cayou, C.; Topp, F.; Hilling, L.; Camp, P.G.; Wilcox, P.G.; Khalil, N.; Collard, H.R.; Garvey, C. Pulmonary rehabilitation improves long-term outcomes in interstitial lung disease: A prospective cohort study. Respir. Med., 2014, 108(1), 203-210.
[http://dx.doi.org/10.1016/j.rmed.2013.11.016] [PMID: 24332409]
[99]
Verma, S.; Cardenas-Garcia, J.; Mohapatra, P.R.; Talwar, A. Depression in pulmonary arterial hypertension and interstitial lung diseases. N. Am. J. Med. Sci., 2014, 6(6), 240-249.
[PMID: 25006558]
[100]
Akhtar, A.A.; Ali, M.A.; Smith, R.P. Depression in patients with idiopathic pulmonary fibrosis. Chron. Respir. Dis., 2013, 10(3), 127-133.
[http://dx.doi.org/10.1177/1479972313493098] [PMID: 23897928]
[101]
Molgat-Seon, Y.; Schaeffer, M.R.; Ryerson, C.J.; Guenette, J.A. Exercise pathophysiology in interstitial lung disease. Clin. Chest Med., 2019, 40(2), 405-420.
[http://dx.doi.org/10.1016/j.ccm.2019.02.011] [PMID: 31078218]
[102]
Santana, P.V.; Cardenas, L.Z.; de Albuquerque, A.L.P.; de Carvalho, C.R.R.; Caruso, P. Diaphragmatic ultrasound findings correlate with dyspnea, exercise tolerance, health-related quality of life and lung function in patients with fibrotic interstitial lung disease. BMC Pulm. Med., 2019, 19(1), 183.
[http://dx.doi.org/10.1186/s12890-019-0936-1] [PMID: 31638951]
[103]
Holland, A.E.; Fiore, J.F., Jr; Bell, E.C.; Goh, N.; Westall, G.; Symons, K.; Dowman, L.; Glaspole, I. Dyspnoea and comorbidity contribute to anxiety and depression in interstitial lung disease. Respirology, 2014, 19(8), 1215-1221.
[http://dx.doi.org/10.1111/resp.12360] [PMID: 25112470]
[104]
Khadawardi, H.; Mura, M. A simple dyspnoea scale as part of the assessment to predict outcome across chronic interstitial lung disease. Respirology, 2017, 22(3), 501-507.
[http://dx.doi.org/10.1111/resp.12945] [PMID: 27862639]
[105]
Lee, A.L.; Hill, C.J.; McDonald, C.F.; Holland, A.E. Pulmonary rehabilitation in individuals with non-cystic fibrosis bronchiectasis: A systematic review. Arch. Phys. Med. Rehabil., 2017, 98(4), 774-782.e1.
[http://dx.doi.org/10.1016/j.apmr.2016.05.017] [PMID: 27320420]
[106]
Mahler, D.A.; Harver, A.; Rosiello, R.; Daubenspeck, J.A. Measurement of respiratory sensation in interstitial lung disease. Evaluation of clinical dyspnea ratings and magnitude scaling. Chest, 1989, 96(4), 767-771.
[http://dx.doi.org/10.1378/chest.96.4.767] [PMID: 2791670]
[107]
Papiris, S.A.; Daniil, Z.D.; Malagari, K.; Kapotsis, G.E.; Sotiropoulou, C.; Milic-Emili, J.; Roussos, C. The medical research council dyspnea scale in the estimation of disease severity in idiopathic pulmonary fibrosis. Respir. Med., 2005, 99(6), 755-761.
[http://dx.doi.org/10.1016/j.rmed.2004.10.018] [PMID: 15878493]
[108]
Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax, 1999, 54(7), 581-586.
[http://dx.doi.org/10.1136/thx.54.7.581] [PMID: 10377201]
[109]
Wilson, C.R. Research Corner: Outcome measures in cardiopulmonary physical therapy: Focus on the university of california, San diego shortness of breath questionnaire. Cardiopulm. Phys. Ther. J., 2007, 18(2), 28-30.
[http://dx.doi.org/10.1097/01823246-200718020-00005]
[110]
Obi, O.N.; Judson, M.A.; Birring, S.S.; Maier, L.A.; Wells, A.U.; Lower, E.E.; Baughman, R.P. Assessment of dyspnea in sarcoidosis using the Baseline Dyspnea Index (BDI) and the Transition Dyspnea Index (TDI). Respir. Med., 2022, 191, 106436.
[http://dx.doi.org/10.1016/j.rmed.2021.106436] [PMID: 33992496]
[111]
Kendrick, K.R.; Baxi, S.C.; Smith, R.M. Usefulness of the modified 0-10 Borg scale in assessing the degree of dyspnea in patients with COPD and asthma. J. Emerg. Nurs., 2000, 26(3), 216-222.
[http://dx.doi.org/10.1016/S0099-1767(00)90093-X] [PMID: 10839848]
[112]
Brown, A.W.; Nathan, S.D. The value and application of the 6-minute-walk test in idiopathic pulmonary fibrosis. Ann. Am. Thorac. Soc., 2018, 15(1), 3-10.
[http://dx.doi.org/10.1513/AnnalsATS.201703-244FR] [PMID: 28933948]
[113]
Ries, A.L. The importance of exercise in pulmonary rehabilitation. Clin. Chest Med., 1994, 15(2), 327-337.
[http://dx.doi.org/10.1016/S0272-5231(21)01076-5] [PMID: 8088096]
[114]
Clini, E.M.; Crisafulli, E. Exercise capacity as a pulmonary rehabilitation outcome. Respiration, 2009, 77(2), 121-128.
[http://dx.doi.org/10.1159/000192773] [PMID: 19246958]
[115]
Hallal, P.C.; Victora, C.G. Reliability and validity of the international physical activity questionnaire (IPAQ). Med. Sci. Sports Exerc., 2004, 36(3), 556.
[http://dx.doi.org/10.1249/01.MSS.0000117161.66394.07] [PMID: 15076800]
[116]
Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel index. Md. State Med. J., 1965, 14(2), 61-65.
[PMID: 14258950]
[117]
Pols, M.A.; Peeters, P.H.M.; Bueno-De-Mesquita, H.B.; Ocké, M.C.; Wentink, C.A.; Kemper, H.C.G.; Collette, H.J.A. Validity and repeata-bility of a modified Baecke questionnaire on physical activity. Int. J. Epidemiol., 1995, 24(2), 381-388.
[http://dx.doi.org/10.1093/ije/24.2.381] [PMID: 7635600]
[118]
Jones, P.W.St. George’s Respiratory Questionnaire: MCID. COPD, 2005, 2(1), 75-79.
[http://dx.doi.org/10.1081/COPD-200050513] [PMID: 17136966]
[119]
Busija, L.; Pausenberger, E.; Haines, T.P.; Haymes, S.; Buchbinder, R.; Osborne, R.H. Adult measures of general health and health-related quality of life: Medical Outcomes Study Short Form 36-Item (SF-36) and Short Form 12-Item (SF-12) Health Surveys, Nottingham Health Profile (NHP), Sickness Impact Profile (SIP). Medical Outcomes Study Sh. Arthritis Care Res., 2011, 63(S11)(Suppl. 11), S383-S412.
[http://dx.doi.org/10.1002/acr.20541] [PMID: 22588759]
[120]
Snaith, R.P. The hospital anxiety and depression scale. Health Qual. Life Outcomes, 2003, 1(1), 29.
[http://dx.doi.org/10.1186/1477-7525-1-29] [PMID: 12914662]
[121]
Schünemann, H.J.; Puhan, M.; Goldstein, R.; Jaeschke, R.; Guyatt, G.H. Measurement properties and interpretability of the Chronic respi-ratory disease questionnaire (CRQ). COPD, 2005, 2(1), 81-89.
[http://dx.doi.org/10.1081/COPD-200050651] [PMID: 17136967]
[122]
Swigris, J.J.; Wilson, S.R.; Green, K.E.; Sprunger, D.B.; Brown, K.K.; Wamboldt, F.S. Development of the ATAQ-IPF: A tool to assess quality of life in IPF. Health Qual. Life Outcomes, 2010, 8(1), 77.
[http://dx.doi.org/10.1186/1477-7525-8-77] [PMID: 20673370]
[123]
Patel, A.S.; Siegert, R.J.; Brignall, K.; Gordon, P.; Steer, S.; Desai, S.R.; Maher, T.M.; Renzoni, E.A.; Wells, A.U.; Higginson, I.J.; Birring, S.S. The development and validation of the King’s Brief Interstitial Lung Disease (K-BILD) health status questionnaire. Thorax, 2012, 67(9), 804-810.
[http://dx.doi.org/10.1136/thoraxjnl-2012-201581] [PMID: 22555278]
[124]
Hanada, M.; Sakamoto, N.; Ishimatsu, Y.; Kakugawa, T.; Obase, Y.; Kozu, R.; Senjyu, H.; Izumikawa, K.; Mukae, H.; Kohno, S. Effect of long-term treatment with corticosteroids on skeletal muscle strength, functional exercise capacity and health status in patients with intersti-tial lung disease. Respirology, 2016, 21(6), 1088-1093.
[http://dx.doi.org/10.1111/resp.12807] [PMID: 27173103]
[125]
Panagiotou, M.; Polychronopoulos, V.; Strange, C. Respiratory and lower limb muscle function in interstitial lung disease. Chron. Respir. Dis., 2016, 13(2), 162-172.
[http://dx.doi.org/10.1177/1479972315626014] [PMID: 26768011]
[126]
Dowman, L.; McDonald, C.F.; Hill, C.J.; Lee, A.; Barker, K.; Boote, C.; Glaspole, I.; Goh, N.; Southcott, A.; Burge, A.; Ndongo, R.; Martin, A.; Holland, A.E. Reliability of the hand held dynamometer in measuring muscle strength in people with interstitial lung disease. Physiotherapy, 2016, 102(3), 249-255.
[http://dx.doi.org/10.1016/j.physio.2015.10.002] [PMID: 26596172]
[127]
Guler, S.A.; Hur, S.A.; Lear, S.A.; Camp, P.G.; Ryerson, C.J. Body composition, muscle function, and physical performance in fibrotic interstitial lung disease: A prospective cohort study. Respir. Res., 2019, 20(1), 56.
[http://dx.doi.org/10.1186/s12931-019-1019-9] [PMID: 30866948]
[128]
Huppmann, P.; Sczepanski, B.; Boensch, M.; Winterkamp, S.; Schönheit-Kenn, U.; Neurohr, C.; Behr, J.; Kenn, K. Effects of inpatient pulmonary rehabilitation in patients with interstitial lung disease. Eur. Respir. J., 2013, 42(2), 444-453.
[http://dx.doi.org/10.1183/09031936.00081512] [PMID: 23100507]
[129]
Rammaert, B.; Leroy, S.; Cavestri, B.; Wallaert, B.; Grosbois, J.M. Home-based pulmonary rehabilitation in idiopathic pulmonary fibrosis. Rev. Mal. Respir., 2011, 28(7), e52-e57.
[http://dx.doi.org/10.1016/j.rmr.2011.06.006] [PMID: 21943547]
[130]
Wallaert, B.; Duthoit, L.; Drumez, E.; Behal, H.; Wemeau, L.; Chenivesse, C.; Grosbois, J.M. Long-term evaluation of home-based pulmo-nary rehabilitation in patients with fibrotic idiopathic interstitial pneumonias. ERJ Open Res., 2019, 5(2), 00045-02019.
[http://dx.doi.org/10.1183/23120541.00045-2019] [PMID: 30972352]
[131]
Yuen, H.K.; Lowman, J.D.; Oster, R.A.; de Andrade, J.A. Home-based pulmonary rehabilitation for patients with idiopathic pulmonary fibrosis. J. Cardiopulm. Rehabil. Prev., 2019, 39(4), 281-284.
[http://dx.doi.org/10.1097/HCR.0000000000000418] [PMID: 31241519]
[132]
Dowman, L.M.; May, A.K. Best practice approach for interstitial lung disease in the rehabilitation setting. J. Clin. Exerc. Physiol., 2020, 9(2), 67-82.
[http://dx.doi.org/10.31189/2165-7629-9.2.67]
[133]
Ries, A.L.; Bauldoff, G.S.; Carlin, B.W.; Casaburi, R.; Emery, C.F.; Mahler, D.A.; Make, B.; Rochester, C.L.; ZuWallack, R.; Herrerias, C. Pulmonary rehabilitation. Chest, 2007, 131(5), 4S-42S.
[http://dx.doi.org/10.1378/chest.06-2418] [PMID: 17494825]
[134]
Dantes, E.; Tudorache, E.; Man, M.A. The Role of Pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis. Interstitial Lung Diseases; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.84283]
[135]
Nakazawa, A.; Cox, N.S.; Holland, A.E. Current best practice in rehabilitation in interstitial lung disease. Ther. Adv. Respir. Dis., 2017, 11(2), 115-128.
[http://dx.doi.org/10.1177/1753465816676048] [PMID: 28150539]
[136]
Keyser, R.E.; Woolstenhulme, J.G.; Chin, L.M.K.; Nathan, S.D.; Weir, N.A.; Connors, G.; Drinkard, B.; Lamberti, J.; Chan, L. Cardiorespi-ratory function before and after aerobic exercise training in patients with interstitial lung disease. J. Cardiopulm. Rehabil. Prev., 2015, 35(1), 47-55.
[http://dx.doi.org/10.1097/HCR.0000000000000083] [PMID: 25313451]
[137]
Wickerson, L.; Brooks, D. Interval aerobic exercise in individuals with advanced interstitial lung disease: A feasibility study. Physiother. Theory Pract., 2021, 37(9), 1034-1042.
[http://dx.doi.org/10.1080/09593985.2019.1678207]
[138]
Holland, A.E.; Hill, C.J.; Glaspole, I.; Goh, N.; McDonald, C.F. Predictors of benefit following pulmonary rehabilitation for interstitial lung disease. Respir. Med., 2012, 106(3), 429-435.
[http://dx.doi.org/10.1016/j.rmed.2011.11.014] [PMID: 22182340]
[139]
Cournoyer, J.; Ramos, C.F.; Sturgill, B.; Tang, F.; DeLuca, N.; Mirsaeidi, M.; Jackson, R.M. Effects of 100% oxygen during exercise in patients with interstitial lung disease. Respir. Physiol. Neurobiol., 2020, 274, 103367.
[http://dx.doi.org/10.1016/j.resp.2019.103367] [PMID: 31911201]
[140]
O’Donnell, D.E.; Ora, J.; Webb, K.A.; Laveneziana, P.; Jensen, D. Mechanisms of activity-related dyspnea in pulmonary diseases. Respir. Physiol. Neurobiol., 2009, 167(1), 116-132.
[http://dx.doi.org/10.1016/j.resp.2009.01.010] [PMID: 19450767]
[141]
Dubé, B.P.; Vermeulen, F.; Laveneziana, P. Exertional dyspnoea in chronic respiratory diseases: From physiology to clinical application. Arch. Bronconeumol., 2017, 53(2), 62-70.
[http://dx.doi.org/10.1016/j.arbr.2016.11.003] [PMID: 27818024]
[142]
Holland, A.E.; Dowman, L.M.; Hill, C.J. Principles of rehabilitation and reactivation: Interstitial lung disease, sarcoidosis and rheumatoid disease with respiratory involvement. Respiration, 2015, 89(2), 89-99.
[http://dx.doi.org/10.1159/000370126] [PMID: 25633076]
[143]
Holland, A.E.; Watson, A.; Glaspole, I. Comprehensive pulmonary rehabilitation for interstitial lung disease: A consensus approach to identify core education topics. Patient Educ. Couns., 2019, 102(6), 1125-1130.
[http://dx.doi.org/10.1016/j.pec.2019.01.010] [PMID: 30683609]
[144]
Morisset, J.; Dubé, B.P.; Garvey, C.; Bourbeau, J.; Collard, H.R.; Swigris, J.J.; Lee, J.S. The unmet educational needs of patients with in-terstitial lung disease. Setting the stage for tailored pulmonary rehabilitation. Ann. Am. Thorac. Soc., 2016, 13(7), 1026-1033.
[http://dx.doi.org/10.1513/AnnalsATS.201512-836OC] [PMID: 27064659]
[145]
McLean, A.E.B.; Webster, S.E.; Fry, M.; Lau, E.M. Priorities and expectations of patients attending a multidisciplinary interstitial lung disease clinic. Respirology, 2021, 26(1), 80-86.
[http://dx.doi.org/10.1111/resp.13913]
[146]
Koopman, W.J.H.; Willems, P.H.G.M.; Smeitink, J.A.M. Monogenic mitochondrial disorders. N. Engl. J. Med., 2012, 366(12), 1132-1141.
[http://dx.doi.org/10.1056/NEJMra1012478] [PMID: 22435372]
[147]
Kelly, N.A.; Ford, M.P.; Standaert, D.G.; Watts, R.L.; Bickel, C.S.; Moellering, D.R. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. J. Appl. Physiol., 2014, 116(5), 582-292.
[http://dx.doi.org/10.1152/japplphysiol.01277.2013]
[148]
Pizzorno, J. Mitochondria-fundamental to life and health. Integr. Med., 2014, 13(2), 8-15.
[PMID: 26770084]
[149]
Kozu, R.; Shingai, K.; Hanada, M.; Oikawa, M.; Nagura, H.; Ito, H.; Kitagawa, C.; Tanaka, T. Respiratory impairment, limited activity, and pulmonary rehabilitation in patients with interstitial lung disease. Phys. Ther. Res., 2021, 24(1), 9-16.
[http://dx.doi.org/10.1298/ptr.R0012] [PMID: 33981523]
[150]
Fuschillo, S.; Felice, A.; Elia, A.; Martucci, M.; Gaudiosi, C.; Vitali, D. Effect of pulmonary rehabilitation on functional exercise capacity and hypoxemia in patients with interstitial lung diseases: A retrospective study. J. WASOG, 2018, 35(3), 245-251.
[http://dx.doi.org/10.1183/13993003.congress-2018.PA4148]
[151]
Hansen, J.E.; Wasserman, K. Pathophysiology of activity limitation in patients with interstitial lung disease. Chest, 1996, 109(6), 1566-1576.
[http://dx.doi.org/10.1378/chest.109.6.1566] [PMID: 8769513]
[152]
Billat, L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med., 2001, 31(1), 13-31.
[http://dx.doi.org/10.2165/00007256-200131010-00002] [PMID: 11219499]
[153]
Åstrand, P-O.; Rodahl, K.; Dahl, H.; Str, Ã.S.B. Textbook of work physiology: Physiological bases of exercise; Human kinetics, 2003.
[154]
Gloeckl, R.; Halle, M.; Kenn, K. Differences in feasibility of interval training between patients with end-stage COPD and interstitial lung disease before lung transplantation-a pilot study. American Thoracic Society 2012 International Conference, May 18-23San Francisco, California 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy