Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Antimicrobial and Antioxidant Activity of Some New Pyrazolines Containing Azo Linkages

Author(s): Awaz Jamil Hussein*

Volume 21, Issue 7, 2024

Published on: 19 September, 2023

Page: [903 - 916] Pages: 14

DOI: 10.2174/1570179420666230815124516

Price: $65

Abstract

Background: Pyrazolines and azo-pyrazolines are influential groups of heterocyclic compounds with two nitrogen atoms inside the five-membered ring. They play an important role in a wide range of biological processes, such as antifungal, antioxidant, antimalarial and other antimicrobial activities.

Objective: The main objective of this study is to synthesize some new heterocyclic compounds with antioxidant and antimicrobial activity

Methods: One-pot three components and traditional synthesis of new azo-pyrazoline compounds were achieved in this work. The preparation process has been started by diazotizing 4-(6-methylbenzothiazol-2-yl) benzamine and its coupling reaction with 4-hydroxy acetophenone producing azo-acetophenone, followed by benzylation with benzyl chloride to form the starting material, azo-benzyloxy acetophenone. A series of substituted benzaldehydes were reacted with the latter compound via one pot and classical methods, forming new chalcones containing azo linkages and benzyloxy moieties, which were then converted into new target azo-pyrazoline derivatives.

Results: The structures of the synthesized compounds were confirmed by spectroscopic techniques using FT-IR, 1H-NMR, 13C-NMR, and 13C- DEPT- 135 spectra. Finally, the synthesized compounds were screened for their antioxidant and antimicrobial activities against Staphylococcus aureus and Escherichia coli.

Conclusion: Overall, the one-pot three-component synthesis of pyrazoline compounds generally provides advantages in terms of efficiency, simplicity, and time-consumption compared to classical synthesis methods. Hence, the study advocates the one-pot method because it eliminates the tedious process of making chalcones, which takes time, materials, and unnecessary effort. Therefore, this is the most convenient and effective approach to green chemistry.

Keywords: Chalcones, azo-pyrazoline, antibacterial, antioxidants, benzyloxy, anti-malarial.

Graphical Abstract
[1]
Hawaiz, F.E.; Samad, M.K.; Hamad, P.A. Synthesis and antibacterial evaluation of some new azo-pyrazoline compounds derived from p-aminoacetophenone. Zanco J. Pure Appl. Sci., 2014, 26(1), 1-10.
[2]
Hawaiz, F.E.; Hussein, A.J.; Samad, M.K. One-pot three-component synthesis of some new azo-pyrazoline derivatives. Eur. J. Chem., 2014, 5(2), 233-236.
[http://dx.doi.org/10.5155/eurjchem.5.2.233-236.979]
[3]
Murafuji, T.; Hafizur Rahman, A.F.M.; Magarifuchi, D.; Narita, M.; Miyakawa, I.; Ishiguro, K.; Kamijo, S. One-pot synthesis of hypervalent diaryl(iodo)bismuthanes from o -carbonyl iodoarenes by zincation. Heteroatom Chem., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/2385064]
[4]
Ayoob, M.M.; Hussein, A.J.; Samad, M.K.; Dege, N.; Hawaiz, F.E.; Mohamed, S.K.; Hussain, F.H. Synthesis, anti-bacterial and anti-oxidant activity of azo-oxazolone and their ring opening azo-benzamide derivatives. Curr. Org. Synth., 2021, 18(5), 493-505.
[http://dx.doi.org/10.2174/1570179417666201218163435]
[5]
Bhosle, M.R.; Mali, J.R.; Pratap, U.R.; Mane, R.A. An efficient synthesis of new pyrazolines and isoxazolines bearing thiazolyl and etheral pharmacophores. Bull. Korean Chem. Soc., 2012, 33(6), 2012-2015.
[http://dx.doi.org/10.5012/bkcs.2012.33.6.2012]
[6]
Hussein, A.J. Synthesis and characterization of some new pyrazoline compounds derived from azo-benzaldehyde. ZANCO J. Pure Appl. Sci., 2014, 24(1), 51-58.
[7]
Kumar, B.; Pathak, V.; Rani, S.; Kant, R. Synthesis and spectral characterization of some bromo-benzothiazolo pyrazolines. Int. J. Chem. Res., 2010, 2(1), 25-27.
[8]
Sid, A.; Ziani, N.; Demmen-Debbih, O.; Mokhtari, M.; Lamara, K. Synthesis, characterization and antimicrobial evaluation of 1-((5, 3-diaryl)-4, 5-dihydro-1H-pyrazol-1-yl) propan-1-one. Eur. J. Chem., 2013, 4(3), 268-271.
[http://dx.doi.org/10.5155/eurjchem.4.3.268-271.824]
[9]
Ahmad, A.; Husain, A.; Khan, S.A.; Mujeeb, M.; Bhandari, A. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-584.
[http://dx.doi.org/10.1016/j.jscs.2014.12.004]
[10]
He, H.Y.; Niikura, H.; Du, Y.L.; Ryan, K.S. Synthetic and biosynthetic routes to nitrogen–nitrogen bonds. Chem. Soc. Rev., 2022, 51(8), 2991-3046.
[http://dx.doi.org/10.1039/C7CS00458C] [PMID: 35311838]
[11]
Hawaiz, E Synthesis and spectroscopic characterization of some new biological active azo–pyrazoline derivatives. Europ.J.chem., 2012, 9(3), 1613-1622.
[12]
Li, R.; Kenyon, G.L.; Cohen, F.E.; Chen, X.; Gong, B.; Dominguez, J.N.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O. In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem., 1995, 38(26), 5031-5037.
[http://dx.doi.org/10.1021/jm00026a010]
[13]
Prasad, Y.R.; Kumar, P.P.; Kumar, P.R. and; Rao, A.S., Synthesis and antimicrobial activity of some new chalcones of 2-acetyl pyridine. E Journal of chemistry, 2008, 5(1), 144-148.
[http://dx.doi.org/10.1155/2008/602458]
[14]
Panchal, A.D.; and Patel, P.M. , 2012. Synthesis, anti-bacterial and anti-fungal evaluation of pyrazoline derivatives. Journal of Chemistry,9, pp; 1801-1809.
[http://dx.doi.org/10.1155/2012/458035]
[15]
Wang, B.; Chen, W.-T.; Min, L.-J.; Han, L.; Sun, N.-B.; Liu, X.-H. Synthesis, structure, and antifungal activities of 3-(difluoromethyl)-pyrazole-4-carboxylic oxime ester derivatives. Heteroatom Chem., 2022, 2022
[http://dx.doi.org/10.1155/2022/6078017]
[16]
Maria, K.; Dimitra, H-L.; Maria, G. Synthesis and anti-inflammatory activity of chalcones and related Mannich bases. Med. Chem., 2008, 4(6), 586-596.
[http://dx.doi.org/10.2174/157340608786242070]
[17]
Sahu, S.; Banerjee, M.; Samantray, A.; Behera, C.; Azam, M. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. Trop. J. Pharma. Res., 2008, 7(2), 961-968.
[http://dx.doi.org/10.4314/tjpr.v7i2.14664]
[18]
Chikhalia, K.H.; Patel, M.J.; Vashi, D.B. Design, synthesis and evaluation of novel quinolinyl chalcones as antibacterial agents. ARKIVOC, 2008, 2008(13), 189-197.
[http://dx.doi.org/10.3998/ark.5550190.0009.d21]
[19]
Siddiqui, A.A.; Rahman, M.A.; Shaharyar, M.; Mishra, R. Synthesis and anticonvulsant activity of some substituted 3, 5-diphenyl-2-pyrazoline-1-carboxamide derivatives. Chem. Sci. J., 2010, 1(1), CSJ-8.
[http://dx.doi.org/10.4172/2150-3494.1000006]
[20]
Hamzacebi, M.C.; Rollas, S.; Küçükgüzel, S.; Kaymakçıoğlu, B. Synthesis and structure elucidation of hydrazones derived from N-(2, 4-dimethylphenyl)-3-oxobutanamide. ARKIVOC, 2008, 12, 188-194.
[http://dx.doi.org/10.3998/ark.5550190.0009.c20]
[21]
Baluja, S.; Nikunj, K.; Asif, S. Synthesis of some pyrazoline derivatives by conventional, microwaves and ultrasound waves: A step to eco-friendly synthesis. Open J. Org. Chem., 2013, 1(1), 1-1.
[http://dx.doi.org/10.12966/ojoc.04.01.2013]
[22]
Suthakaran, R.; Somasekhar, G.; Sridevi, C.; Marikannan, M.; Suganthi, K.; Nagarajan, G. Synthesis, antiinflammatory, antioxidant and antibacterial activities of 7-methoxy benzofuran pyrazoline derivatives. Asian J. Chem., 2007, 19(5), 3353.
[23]
Zelelew, D.; Endale, M.; Melaku, Y.; Kedir, F.; Demissie, T.B.; Ombito, J.O.; Eswaramoorthy, R. Synthesis, antibacterial, and antioxidant activities of thiazolyl-pyrazoline schiff base hybrids: A combined experimental and computational study. J. Chem., 2022, 2022
[http://dx.doi.org/10.1155/2022/3717826]
[24]
Bhandare, R.R.; Munikrishnappa, C.S.; Kumar, G.S.; Konidala, S.K.; Sigalapalli, D.K.; Vaishnav, Y.; Chinnam, S.; Yasin, H.; Al-karmalawy, A.A.; Shaik, A.B. Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. J. Saudi Chem. Soc., 2022, 26(3), 101447.
[http://dx.doi.org/10.1016/j.jscs.2022.101447]
[25]
Patel, N.B.; Shaikh, F.M.; Patel, H.R.; Rajani, D. Synthesis of 2-pyrazolines from pyridine based chalcone by conventional and microwave techniques: Their comparison and antimicrobial studies. J. Saudi Chem. Soc., 2016, 20, S451-S456.
[http://dx.doi.org/10.1016/j.jscs.2013.01.008]
[26]
Yusuf, M.; Solanki, I. Synthesis and antimicrobial studies of furyl based new bispyrazolines linked via aliphatic chains. J. Saudi Chem. Soc., 2017, 20, S451-S456.
[http://dx.doi.org/10.1016/j.jscs.2015.02.002]
[27]
Özdemir, A. Novel analogues of 2-pyrazoline: Synthesis, characterization, and antimycobacterial evaluation. Turk. J. Chem., 2008, 32(5), 529-538.
[28]
Shah Shailesh, H.; Patel Pankaj, S. Synthesis and antimicrobial activity of azetidin-2-one containing pyrazoline derivatives. Res. J. Chem. Sci., 2012, 2231, 606X.
[29]
Kumar, R.; Srivastava, Y. Microwave induced synthesis and antimicrobial activities of some derivatives of 3, 5-diaryl-2-pyrazoline-1-carbaldehyde. E-Journal of Chem., 2010, 7(2), 496-500.
[http://dx.doi.org/10.1155/2010/160570]
[30]
Nagaini, Z.; Siti, M.; Fadzillah, H.; Hussain, H.; Kamaruddin, K. Synthesis and antimicrobial studies of (E)-3-(4-Alkyloxyphenyl)-1-(2-hydroxyphenyl) prop-2-ene-1-one,(E)-3-(4-Alkyloxyphenyl)-1-(4-hydroxyphenyl) prop-2-ene-1-one and their analogues. World J. Chem., 2009, 4, 9-14.
[31]
Kalirajan, R.; Sivakumar, S.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chem Tech. Res., 2009, 1(1), 27-34.
[32]
Mamand, S.O.; Abdul, D.A.; Hawaiz, F.E. Traditional, one-pot three-component synthesis and antibacterial evaluations of some new pyrazoline derivatives. Egyptian J. Chem., 2022, 62(10), 239-248.
[33]
Ayoob, M.M.; Hawaiz, F.E.; Hussein, A.; Samad, M.K.; Hussain, F.; Mohamed, S.K. Synthesis, spectroscopic investigation, anti-bacterial and antioxidant activites of some new azo-benzofuran derivatives. Egyptian J. Chem., 2020, 63(7), 2617-2629.
[34]
Rababah, T.M.; Banat, F.; Rababah, A.; Ereifej, K.; Yang, W. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate. J. Food Sci., 2010, 75(7), C626-C632.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01756.x]
[35]
Burton, G.; Ingold, K. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Amer. Chem. Soc., 1981, 103(21), 6472-6477.
[http://dx.doi.org/10.1021/ja00411a035]
[36]
Saleh, A.; Elrefaie, H.; Hashem, A. Optimization studies and chemical investigations of aspergillus terreus-18 showing antioxidant activity. Egyptian J. Chem., 2019, 62(2), 215-230.
[37]
El-Sayed, M.M.; Mahmoud, M.; El-Nahas, H.A.; El-Toumy, S.; El-Wakil, E.A.; Ghareeb, M. Chemical constituents, antischistosomal and antioxidant activities of the methanolic extract of Azadirachta indica. Egyptian J. Chem., 2011, 54(1), 99-113.
[http://dx.doi.org/10.21608/ejchem.2011.1382]
[38]
Othman, S.; El-Hashash, M.; Hussein, S.; El-Mesallamy, A.; Rizk, S.; Elabbar, F.A. Phenolic content as antioxidant and antimicrobial activities of pistacia atlantica desf.(anacardiaceae) extract from libya. Egypt. J. Chem., 2019, 62(1), 21-28.
[39]
Salih, R.H.H.; Hasan, A.H.; Hussein, A.J.; Samad, M.K.; Shakya, S.; Jamalis, J.; Hawaiz, F.E.; Pratama, M.R.F. One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Res. Chem. Intermed., 2022, 48(11), 4729-4751.
[http://dx.doi.org/10.1007/s11164-022-04831-5]
[40]
Samad, M.K.; Hawaiz, F.E. Synthesis, characterization, antioxidant power and acute toxicity of some new azo-benzamide and azo-imidazolone derivatives with in vivo and in vitro antimicrobial evaluation. Bioorg. Chem., 2019, 85, 431-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.014] [PMID: 30685693]
[41]
Ali, D.O.; Hawaiz, F.E. A stepwise synthetic approach and antibacterial assessment of some new pyrazoline derivatives containing azo and benzyloxy moieties. Zanco J. Pure Appl. Sci., 2023, 35(1), 165-176.
[42]
Ayoob, M.M.; Hawaiz, F.E. In Design, synthesis, and spectroscopic study of some new flavones containing two azo linkages AIP Conference ProceedingsAIP Publishing LLC, 2017, 1888, p. 020017.
[http://dx.doi.org/10.1063/1.5004294]
[43]
Salih, R.H.H.; Hasan, A.H.; Hussen, N.H.; Hawaiz, F.E.; Hadda, T.B.; Jamalis, J.; Almalki, F.A.; Adeyinka, A.S.; Coetzee, L.C.C.; Oyebamiji, A.K. Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis. J. Mol. Struct., 2023, 1282, 135191.
[http://dx.doi.org/10.1016/j.molstruc.2023.135191]
[44]
Kitawat, B.S.; Singh, M. Synthesis, characterization, antibacterial, antioxidant, DNA binding and SAR study of a novel pyrazine moiety bearing 2-pyrazoline derivatives. Food Res. Int., 2014, 40(1), 7-14.
[http://dx.doi.org/10.1039/C4NJ00594E]
[45]
Gülşen, A.; Makris, D.P.; Kefalas, P. Biomimetic oxidation of quercetin: Isolation of a naturally occurring quercetin heterodimer and evaluation of its in vitro antioxidant properties. Ind. Crops Prod., 2007, 51, 130-137.
[46]
Ray, A.; Dutta Gupta, S. A panoptic study of antioxidant potential of foliar gel at different harvesting regimens of Aloe vera L. Ind. Crops Prod., 2013, 51, 130-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.09.003]
[47]
Rangaswamy, J.; Kumar, H. V.; Harini, S. T.; Naik, N. Synthesis of benzofuran based 1, 3, 5-substituted pyrazole derivatives: As a new class of potent antioxidants and antimicrobials-A novel accost to amend biocompatibility. Bioorg. med. chem. let., 2012, 22(14), 4773-4777.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy