Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

BDNF and Cerebellar Ataxia

Author(s): Robert Lalonde*, Magali Hernandez and Catherine Strazielle

Volume 16, Issue 3, 2024

Published on: 01 September, 2023

Page: [300 - 307] Pages: 8

DOI: 10.2174/2589977515666230811093021

Price: $65

Open Access Journals Promotions 2
Abstract

Brain-derived neurotrophic factor (BDNF) has been proposed as a treatment for neurodegeneration, including diseases of the cerebellum, where BDNF levels or those of its main receptor, TrkB, are often diminished relative to controls, thereby serving as replacement therapy. Experimental evidence indicates that BDNF signaling countered cerebellar degeneration, sensorimotor deficits, or both, in transgenic ATXN1 mice mutated for ataxin-1, Cacna1a knock-in mice mutated for ataxin-6, mice injected with lentivectors encoding RNA sequences against human FXN into the cerebellar cortex, Kcnj6Wv (Weaver) mutant mice with granule cell degeneration, and rats with olivocerebellar transaction, similar to a BDNF-overexpressing transgenic line interbred with Cacng2stg mutant mice. In this regard, this study discusses whether BDNF is effective in cerebellar pathologies where BDNF levels are normal and whether it is effective in cases with combined cerebellar and basal ganglia damage.

Keywords: Neurotrophin, cerebellar development, spinocerebellar ataxia, Friedreich’s ataxia, cerebellar mutants, rotarod.

Graphical Abstract
[1]
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10(3): 209-19.
[http://dx.doi.org/10.1038/nrd3366] [PMID: 21358740]
[2]
Bawari S, Tewari D, Argüelles S, et al. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148: 104458.
[http://dx.doi.org/10.1016/j.phrs.2019.104458] [PMID: 31546015]
[3]
He YY, Zhang XY, Yung WH, Zhu JN, Wang JJ. Role of BDNF in central motor structures and motor diseases. Mol Neurobiol 2013; 48(3): 783-93.
[http://dx.doi.org/10.1007/s12035-013-8466-y] [PMID: 23649659]
[4]
Forouzanfar F, Shojapour M, Aghili ZS, Asgharzade S. Growth factors as tools in photoreceptor cell regeneration and vision recovery. Curr Drug Targets 2020; 21(6): 573-81.
[http://dx.doi.org/10.2174/1389450120666191121103831] [PMID: 31755378]
[5]
Klein R, Martin-Zanca D, Acid MB, Parada LF. Expression of the tyrosine kinase receptor gene TrkB is confined to the murine embryonic and adult nervous system. Development 1990; 109(4): 845-50.
[http://dx.doi.org/10.1242/dev.109.4.845] [PMID: 2171894]
[6]
Lalonde R, Strazielle C. Cerebellum, GABA and ataxia. Curr Psychopharmacol 2022; 11(1): 5-6.
[http://dx.doi.org/10.2174/2211556010666211122155811]
[7]
Rocamora N, García-Ladona FJ, Palacios JM, Mengod G. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Brain Res Mol Brain Res 1993; 17(1-2): 1-8.
[http://dx.doi.org/10.1016/0169-328X(93)90065-W] [PMID: 8381892]
[8]
Neveu I, Arenas E. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J Cell Biol 1996; 133(3): 631-46.
[http://dx.doi.org/10.1083/jcb.133.3.631] [PMID: 8636237]
[9]
Wetmore C, Ernfors P, Persson H, Olson L. Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization. Exp Neurol 1990; 109(2): 141-52.
[http://dx.doi.org/10.1016/0014-4886(90)90068-4] [PMID: 2379553]
[10]
Dugich-Djordjevic MM, Peterson C, Isono F, et al. Immunohistochemical visualization of brain-derived neurotrophic factor in the rat brain. Eur J Neurosci 1995; 7(9): 1831-9.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb00703.x] [PMID: 8528456]
[11]
Friedman WJ, Black IB, Kaplan DR. Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 1998; 84(1): 101-14.
[http://dx.doi.org/10.1016/S0306-4522(97)00526-5] [PMID: 9522366]
[12]
Kawamoto Y, Nakamura S, Nakano S, Oka N, Akiguchi I, Kimura J. Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neuroscience 1996; 74(4): 1209-26.
[http://dx.doi.org/10.1016/0306-4522(96)00245-X] [PMID: 8895887]
[13]
Murer MG, Boissiere F, Yan Q, et al. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 1999; 88(4): 1015-32.
[http://dx.doi.org/10.1016/S0306-4522(98)00219-X] [PMID: 10336117]
[14]
Segal RA, Pomeroy SL, Stiles CD. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci 1995; 15(7): 4970-81.
[http://dx.doi.org/10.1523/JNEUROSCI.15-07-04970.1995] [PMID: 7623126]
[15]
Gao WQ, Zheng JL, Karihaloo M. Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J Neurosci 1995; 15(4): 2656-67.
[http://dx.doi.org/10.1523/JNEUROSCI.15-04-02656.1995] [PMID: 7722620]
[16]
Lindholm D, Dechant G, Heisenberg CP, Thoenen H. Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity. Eur J Neurosci 1993; 5(11): 1455-64.
[http://dx.doi.org/10.1111/j.1460-9568.1993.tb00213.x]
[17]
Qiao X, Hefti F, Knusel B, Noebels JL. Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. J Neurosci 1996; 16(2): 640-8.
[http://dx.doi.org/10.1523/JNEUROSCI.16-02-00640.1996] [PMID: 8551348]
[18]
Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 2002; 22(4): 1316-27.
[http://dx.doi.org/10.1523/JNEUROSCI.22-04-01316.2002] [PMID: 11850459]
[19]
Rico B, Xu B, Reichardt LF. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 2002; 5(3): 225-33.
[http://dx.doi.org/10.1038/nn808] [PMID: 11836532]
[20]
Schwartz PM, Levy RL, Borghesani PR, Segal RA. Cerebellar pathology in BDNF −/− mice: the classic view of neurotrophins is changing. Mol Psychiatry 1998; 3(2): 116-8.
[http://dx.doi.org/10.1038/sj.mp.4000359] [PMID: 9577835]
[21]
Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA. Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning. Neuron 1997; 19(2): 269-81.
[http://dx.doi.org/10.1016/S0896-6273(00)80938-1] [PMID: 9292718]
[22]
Borghesani PR, Peyrin JM, Klein R, et al. BDNF stimulates migration of cerebellar granule cells. Development 2002; 129(6): 1435-42.
[http://dx.doi.org/10.1242/dev.129.6.1435] [PMID: 11880352]
[23]
Jones KR, Fariñas I, Backus C, Reichardt LF. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 1994; 76(6): 989-99.
[http://dx.doi.org/10.1016/0092-8674(94)90377-8] [PMID: 8137432]
[24]
Minichiello L, Klein R. TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev 1996; 10(22): 2849-58.
[http://dx.doi.org/10.1101/gad.10.22.2849] [PMID: 8918886]
[25]
Johnson EM, Craig ET, Yeh HH. TrkB is necessary for pruning at the climbing fibre-Purkinje cell synapse in the developing murine cerebellum. J Physiol 2007; 582(2): 629-46.
[http://dx.doi.org/10.1113/jphysiol.2007.133561] [PMID: 17463037]
[26]
Hashimoto H, Kawabe T, Fukuda T, Kusakabe M. A novel ataxic mutant mouse line having sensory neuropathy shows heavy iron deposition in kidney. Neurodegener Dis 2017; 17(4-5): 181-98.
[http://dx.doi.org/10.1159/000457126] [PMID: 28490024]
[27]
Sadakata T, Kakegawa W, Mizoguchi A, et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 2007; 27(10): 2472-82.
[http://dx.doi.org/10.1523/JNEUROSCI.2279-06.2007] [PMID: 17344385]
[28]
Qiu CH, Shimokawa N, Iwasaki T, Parhar IS, Koibuchi N. Alteration of cerebellar neurotropin messenger ribonucleic acids and the lack of thyroid hormone receptor augmentation by staggerer-type retinoic acid receptor-related orphan receptor-α mutation. Endocrinology 2007; 148(4): 1745-53.
[http://dx.doi.org/10.1210/en.2006-1131] [PMID: 17218417]
[29]
Rabacchi SA, Kruk B, Hamilton J, et al. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. J Neurobiol 1999; 40(2): 254-69.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199908)40:2<254::AID-NEU11>3.0.CO;2-4] [PMID: 10413455]
[30]
Montcouquiol ME, Sans NA, Travo C, Sans A, Valat J. Detection and localization of BDNF in vestibular nuclei during the postnatal development of the rat. Neuroreport 2000; 11(7): 1401-5.
[http://dx.doi.org/10.1097/00001756-200005150-00010] [PMID: 10841346]
[31]
Quartu M, Serra MP, Manca A, Follesa P, Lai ML, Del Fiacco M. Neurotrophin‐like immunoreactivity in the human pre‐term newborn, infant, and adult cerebellum. Int J Dev Neurosci 2003; 21(1): 23-33.
[http://dx.doi.org/10.1016/S0736-5748(02)00110-7] [PMID: 12565693]
[32]
Quartu M, Serra MP, Boi M, Melis T, Ambu R, Del Fiacco M. Brain-derived neurotrophic factor (BDNF) and polysialylated-neural cell adhesion molecule (PSA-NCAM): codistribution in the human brainstem precerebellar nuclei from prenatal to adult age. Brain Res 2010; 1363: 49-62.
[http://dx.doi.org/10.1016/j.brainres.2010.09.106] [PMID: 20932956]
[33]
Takahashi M, Ishikawa K, Sato N, et al. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum. Neuropathology 2012; 32(6): 595-603.
[http://dx.doi.org/10.1111/j.1440-1789.2012.01302.x] [PMID: 22393909]
[34]
Evert BO, Vogt IR, Vieira-Saecker AM, et al. Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J Neuropathol Exp Neurol 2003; 62(10): 1006-18.
[http://dx.doi.org/10.1093/jnen/62.10.1006] [PMID: 14575237]
[35]
Hall HN, Williamson KA, FitzPatrick DR. The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2019; 138(8-9): 881-98.
[http://dx.doi.org/10.1007/s00439-018-1934-8] [PMID: 30242502]
[36]
Hourez R, Servais L, Orduz D, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 2011; 31(33): 11795-807.
[http://dx.doi.org/10.1523/JNEUROSCI.0905-11.2011] [PMID: 21849540]
[37]
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1). Front Cell Neurosci 2019; 12: 509.
[http://dx.doi.org/10.3389/fncel.2018.00509] [PMID: 30718999]
[38]
Cook AA, Jayabal S, Sheng J, et al. Activation of TrkB-Akt signaling rescues deficits in a mouse model of SCA6. Sci Adv 2022; 8(37): eabh3260.
[http://dx.doi.org/10.1126/sciadv.abh3260] [PMID: 36112675]
[39]
Olson JM, Asakura A, Snider L, et al. NeuroD2 is necessary for development and survival of central nervous system neurons. Dev Biol 2001; 234(1): 174-87.
[http://dx.doi.org/10.1006/dbio.2001.0245] [PMID: 11356028]
[40]
Hyman C, Hofer M, Barde YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350(6315): 230-2.
[http://dx.doi.org/10.1038/350230a0] [PMID: 2005978]
[41]
Murer MG, Raisman-Vozari R, Yan Q, Ruberg M, Agid Y, Michel PP. Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons. Neuroreport 1999; 10(4): 801-5.
[http://dx.doi.org/10.1097/00001756-199903170-00025] [PMID: 10208551]
[42]
Parain K, Murer MG, Yan Q, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinsonʼs disease substantia nigra. Neuroreport 1999; 10(3): 557-61.
[http://dx.doi.org/10.1097/00001756-199902250-00021] [PMID: 10208589]
[43]
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 2001; 63(1): 71-124.
[http://dx.doi.org/10.1016/S0301-0082(00)00014-9] [PMID: 11040419]
[44]
Scalzo P, Kümmer A, Bretas TL, Cardoso F, Teixeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010; 257(4): 540-5.
[http://dx.doi.org/10.1007/s00415-009-5357-2] [PMID: 19847468]
[45]
Wang Y, Liu H, Du XD, et al. Association of low serum BDNF with depression in patients with Parkinson’s disease. Parkinsonism Relat Disord 2017; 41: 73-8.
[http://dx.doi.org/10.1016/j.parkreldis.2017.05.012] [PMID: 28576603]
[46]
Grigoruţă M, Martínez-Martínez A, Dagda RY, Dagda RK. Psychological stress phenocopies brain mitochondrial dysfunction and motor deficits as observed in a Parkinsonian rat model. Mol Neurobiol 2020; 57(4): 1781-98.
[http://dx.doi.org/10.1007/s12035-019-01838-9] [PMID: 31836946]
[47]
Spina MB, Hyman C, Squinto S, Lindsay RM. Brain-derived neurotrophic factor protects dopaminergic cells from 6-hydroxydopamine toxicity. Ann N Y Acad Sci 1992; 648(1 Neurotoxins a): 348-50.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb24578.x] [PMID: 1637069]
[48]
Pearce RKB, Costa S, Jenner P, Marsden CD. Chronic supranigral infusion of BDNF in normal and MPTP-treated common marmosets. J Neural Transm (Vienna) 1999; 106(7-8): 663-83.
[http://dx.doi.org/10.1007/s007020050188] [PMID: 10907726]
[49]
Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser 1985; 19: 225-32.
[PMID: 3864937]
[50]
Gatti RA, Becker-Catania S, Chun HH, et al. The pathogenesis of ataxia-telangiectasia. Learning from a Rosetta Stone. Clin Rev Allergy Immunol 2001; 20(1): 87-108.
[http://dx.doi.org/10.1385/CRIAI:20:1:87] [PMID: 11269230]
[51]
Li J, Chen J, Ricupero CL, et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 2012; 18(5): 783-90.
[http://dx.doi.org/10.1038/nm.2709] [PMID: 22466704]
[52]
Chen J, Chen Y, Vail G, et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Mol Neurodegener 2016; 11(1): 60.
[http://dx.doi.org/10.1186/s13024-016-0127-y] [PMID: 27538496]
[53]
Galron R, Gruber R, Lifshitz V, et al. Astrocyte dysfunction associated with cerebellar attrition in a Nijmegen breakage syndrome animal model. J Mol Neurosci 2011; 45(2): 202-11.
[http://dx.doi.org/10.1007/s12031-011-9494-6] [PMID: 21279473]
[54]
Conti V, Gandaglia A, Galli F, et al. MeCP2 affects skeletal muscle growth and morphology through non cell-autonomous mechanisms. PLoS One 2015; 10(6): e0130183.
[http://dx.doi.org/10.1371/journal.pone.0130183] [PMID: 26098633]
[55]
Wang H, Chan S, Ogier M, et al. Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice. J Neurosci 2006; 26(42): 10911-5.
[http://dx.doi.org/10.1523/JNEUROSCI.1810-06.2006] [PMID: 17050729]
[56]
Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 2006; 49(3): 341-8.
[http://dx.doi.org/10.1016/j.neuron.2005.12.027] [PMID: 16446138]
[57]
Murakami JW, Courchesne E, Haas RH, Press GA, Yeung-Courchesne R. Cerebellar and cerebral abnormalities in Rett syndrome: a quantitative MR analysis. AJR Am J Roentgenol 1992; 159(1): 177-83.
[http://dx.doi.org/10.2214/ajr.159.1.1609693] [PMID: 1609693]
[58]
D’Mello SR III. MECP2 and the biology of MECP2 duplication syndrome. J Neurochem 2021; 159(1): 29-60.
[http://dx.doi.org/10.1111/jnc.15331] [PMID: 33638179]
[59]
Castrén ML, Castrén E. BDNF in fragile X syndrome. Neuropharmacology 2014; 76(Pt C): 729-36.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.018] [PMID: 23727436]
[60]
Reiss AL, Abrams MT, Greenlaw R, Freund L, Denckla MB. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat Med 1995; 1(2): 159-67.
[http://dx.doi.org/10.1038/nm0295-159] [PMID: 7585014]
[61]
Lightbody AA, Reiss AL. Gene, brain, and behavior relationships in fragile X syndrome: Evidence from neuroimaging studies. Dev Disabil Res Rev 2009; 15(4): 343-52.
[http://dx.doi.org/10.1002/ddrr.77] [PMID: 20014368]
[62]
Uutela M, Lindholm J, Louhivuori V, et al. Reduction of BDNF expression in Fmr1 knockout mice worsens cognitive deficits but improves hyperactivity and sensorimotor deficits. Genes Brain Behav 2012; 11(5): 513-23.
[http://dx.doi.org/10.1111/j.1601-183X.2012.00784.x] [PMID: 22435671]
[63]
Rajendran R, Rajendran V, Giraldo-Velasquez M, et al. Oligodendrocyte-specific deletion of FGFR1 reduces cerebellar inflammation and neurodegeneration in MOG35-55-induced EAE. Int J Mol Sci 2021; 22(17): 9495.
[http://dx.doi.org/10.3390/ijms22179495] [PMID: 34502405]
[64]
Meng H, Larson SK, Gao R, Qiao X. BDNF transgene improves ataxic and motor behaviors in stargazer mice. Brain Res 2007; 1160: 47-57.
[http://dx.doi.org/10.1016/j.brainres.2007.05.048] [PMID: 17588548]
[65]
Qiao X, Chen L, Gao H, et al. Cerebellar brain-derived neurotrophic factor-TrkB defect associated with impairment of eyeblink conditioning in Stargazer mutant mice. J Neurosci 1998; 18(17): 6990-9.
[http://dx.doi.org/10.1523/JNEUROSCI.18-17-06990.1998] [PMID: 9712667]
[66]
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and lurcher cerebellar mutant mice. Neurosci Lett 2020; 725: 134870.
[http://dx.doi.org/10.1016/j.neulet.2020.134870] [PMID: 32109557]
[67]
Letts VA, Felix R, Biddlecome GH, et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat Genet 1998; 19(4): 340-7.
[http://dx.doi.org/10.1038/1228] [PMID: 9697694]
[68]
Babuska V, Houdek Z, Tuma J, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum 2015; 14(6): 632-41.
[http://dx.doi.org/10.1007/s12311-015-0656-x] [PMID: 25700681]
[69]
Leitch B, Shevtsova O, Kerr JR. Selective reduction in synaptic proteins involved in vesicle docking and signalling at synapses in the ataxic mutant mouse stargazer. J Comp Neurol 2009; 512(1): 52-73.
[http://dx.doi.org/10.1002/cne.21890] [PMID: 18972569]
[70]
Meng H, Walker N, Su Y, Qiao X. Stargazin mutation impairs cerebellar synaptogenesis, synaptic maturation and synaptic protein distribution. Brain Res 2006; 1124(1): 197-207.
[http://dx.doi.org/10.1016/j.brainres.2006.09.086] [PMID: 17070505]
[71]
Richardson CA, Leitch B. Cerebellar Golgi, Purkinje, and basket cells have reduced gamma-aminobutyric acid immunoreactivity in stargazer mutant mice. J Comp Neurol 2002; 453(1): 85-99.
[http://dx.doi.org/10.1002/cne.10406] [PMID: 12357434]
[72]
Hashimoto K, Fukaya M, Qiao X, Sakimura K, Watanabe M, Kano M. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J Neurosci 1999; 19(14): 6027-36.
[http://dx.doi.org/10.1523/JNEUROSCI.19-14-06027.1999] [PMID: 10407040]
[73]
Bao S, Chen L, Qiao X, Knusel B, Thompson RF. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency. Learn Mem 1998; 5(4): 355-64.
[http://dx.doi.org/10.1101/lm.5.4.355] [PMID: 10454360]
[74]
Chen L, Bao S, Qiao X, Thompson RF. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel γ subunit. Proc Natl Acad Sci USA 1999; 96(21): 12132-7.
[http://dx.doi.org/10.1073/pnas.96.21.12132] [PMID: 10518588]
[75]
Lin DS, Hsiao CD, Lee AYL, et al. Mitigation of cerebellar neuropathy in globoid cell leukodystrophy mice by AAV-mediated gene therapy. Gene 2015; 571(1): 81-90.
[http://dx.doi.org/10.1016/j.gene.2015.06.049] [PMID: 26115766]
[76]
Burn DJ, Jaros E. Multiple system atrophy: cellular and molecular pathology. Mol Pathol 2001; 54(6): 419-26.
[PMID: 11724918]
[77]
Kawamoto Y, Nakamura S, Akiguchi I, Kimura J. Increased brain-derived neurotrophic factor-containing axons in the basal ganglia of patients with multiple system atrophy. J Neuropathol Exp Neurol 1999; 58(7): 765-72.
[http://dx.doi.org/10.1097/00005072-199907000-00010] [PMID: 10411346]
[78]
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 2005; 6(12): 919-30.
[http://dx.doi.org/10.1038/nrn1806] [PMID: 16288298]
[79]
Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 2007; 81(5-6): 294-330.
[http://dx.doi.org/10.1016/j.pneurobio.2007.01.003] [PMID: 17379385]
[80]
Ciammola A, Sassone J, Cannella M, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet 2007; 144B(4): 574-7.
[http://dx.doi.org/10.1002/ajmg.b.30501] [PMID: 17427191]
[81]
Ferrer I, Goutan E, Marín C, Rey MJ, Ribalta T. Brain-derived neurotrophic factor in Huntington disease. Brain Res 2000; 866(1-2): 257-61.
[http://dx.doi.org/10.1016/S0006-8993(00)02237-X] [PMID: 10825501]
[82]
Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001; 293(5529): 493-8.
[http://dx.doi.org/10.1126/science.1059581] [PMID: 11408619]
[83]
Zhang Y, Li M, Drozda M, et al. Depletion of wild-type huntingtin in mouse models of neurologic diseases. J Neurochem 2003; 87(1): 101-6.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01980.x] [PMID: 12969257]
[84]
Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci USA 2003; 100(5): 2911-6.
[http://dx.doi.org/10.1073/pnas.0536856100] [PMID: 12589027]
[85]
Blázquez C, Chiarlone A, Sagredo O, et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 2011; 134(1): 119-36.
[http://dx.doi.org/10.1093/brain/awq278] [PMID: 20929960]
[86]
Li JY, Popovic N, Brundin P. The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies. NeuroRx 2005; 2(3): 447-64.
[http://dx.doi.org/10.1602/neurorx.2.3.447] [PMID: 16389308]
[87]
Canals JM, Pineda JR, Torres-Peraza JF, et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 2004; 24(35): 7727-39.
[http://dx.doi.org/10.1523/JNEUROSCI.1197-04.2004] [PMID: 15342740]
[88]
Li Y, Yui D, Luikart BW, et al. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci USA 2012; 109(38): 15491-6.
[http://dx.doi.org/10.1073/pnas.1212899109] [PMID: 22949667]
[89]
Ijiro T, Yaguchi A, Yokoyama A, Abe Y, Kiguchi S. Ameliorating effect of rovatirelin on the ataxia in rolling mouse Nagoya. Eur J Pharmacol 2020; 882: 173271.
[http://dx.doi.org/10.1016/j.ejphar.2020.173271] [PMID: 32534077]
[90]
Li J, Yu L, Gu X, et al. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci USA 2013; 110(26): E2410-9.
[http://dx.doi.org/10.1073/pnas.1305010110] [PMID: 23674688]
[91]
Rodrigues AF, Biasibetti H, Zanotto BS, et al. D-Galactose causes motor coordination impairment, and histological and biochemical changes in the cerebellum of rats. Mol Neurobiol 2017; 54(6): 4127-37.
[http://dx.doi.org/10.1007/s12035-016-9981-4] [PMID: 27324790]
[92]
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2‐CCL2‐BDNF‐TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48(4): e12799.
[http://dx.doi.org/10.1111/nan.12799] [PMID: 35152448]
[93]
Izquierdo-Altarejos P, Martínez-García M, Felipo V. Extracellular vesicles from hyperammonemic rats induce neuroinflammation in cerebellum of normal rats: role of increased TNFα content. Front Immunol 2022; 13: 921947.
[http://dx.doi.org/10.3389/fimmu.2022.921947] [PMID: 35911759]
[94]
Sheeler C, Rosa JG, Borgenheimer E, Mellesmoen A, Rainwater O, Cvetanovic M. Post-symptomatic delivery of brain-derived neurotrophic factor (BDNF) ameliorates spinocerebellar ataxia type 1 (SCA1) pathogenesis. Cerebellum 2021; 20(3): 420-9.
[http://dx.doi.org/10.1007/s12311-020-01226-3] [PMID: 33394333]
[95]
Mendonça LS, Nóbrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain 2015; 138(2): 320-35.
[http://dx.doi.org/10.1093/brain/awu352] [PMID: 25527827]
[96]
Duarte-Neves J, Gonçalves N, Cunha-Santos J, et al. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Hum Mol Genet 2015; 24(19): 5451-63.
[http://dx.doi.org/10.1093/hmg/ddv271] [PMID: 26220979]
[97]
Ocana-Santero G, Díaz-Nido J, Herranz-Martín S. Future prospects of gene therapy for Friedreich’s ataxia. Int J Mol Sci 2021; 22(4): 1815.
[http://dx.doi.org/10.3390/ijms22041815] [PMID: 33670433]
[98]
Jones J, Estirado A, Redondo C, Martinez S. Stem cells from wildtype and Friedreich’s ataxia mice present similar neuroprotective properties in dorsal root ganglia cells. PLoS One 2013; 8(5): e62807.
[http://dx.doi.org/10.1371/journal.pone.0062807] [PMID: 23671637]
[99]
Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, et al. A Comprehensive transcriptome analysis identifies FXN and BDNF as novel targets of miRNAs in Friedreich’s ataxia patients. Mol Neurobiol 2020; 57(6): 2639-53.
[http://dx.doi.org/10.1007/s12035-020-01899-1] [PMID: 32291635]
[100]
Jones J, Estirado A, Redondo C, Bueno C, Martínez S. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev 2012; 21(15): 2817-26.
[http://dx.doi.org/10.1089/scd.2012.0029] [PMID: 22548386]
[101]
Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich׳s ataxia. Exp Cell Res 2015; 335(1): 51-61.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.013] [PMID: 25929520]
[102]
Jones J, Estirado A, Redondo C, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther 2015; 23(1): 130-8.
[http://dx.doi.org/10.1038/mt.2014.143] [PMID: 25070719]
[103]
Katsu-Jiménez Y, Loría F, Corona JC, Díaz-Nido J. Gene transfer of brain-derived neurotrophic factor (BDNF) prevents neurodegeneration triggered by FXN deficiency. Mol Ther 2016; 24(5): 877-89.
[http://dx.doi.org/10.1038/mt.2016.32] [PMID: 26849417]
[104]
Lizarraga SB, Ma L, Maguire AM, et al. Human neurons from Christianson syndrome iPSCs reveal mutation-specific responses to rescue strategies. Sci Transl Med 2021; 13(580): eaaw0682.
[http://dx.doi.org/10.1126/scitranslmed.aaw0682] [PMID: 33568516]
[105]
Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 2010; 40(2): 415-23.
[http://dx.doi.org/10.1016/j.nbd.2010.07.001] [PMID: 20638477]
[106]
Willson ML, McElnea C, Mariani J, Lohof AM, Sherrard RM. BDNF increases homotypic olivocerebellar reinnervation and associated fine motor and cognitive skill. Brain 2008; 131(4): 1099-112.
[http://dx.doi.org/10.1093/brain/awn024] [PMID: 18299295]
[107]
Klintsova AY, Dickson E, Yoshida R, Greenough WT. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 2004; 1028(1): 92-104.
[http://dx.doi.org/10.1016/j.brainres.2004.09.003] [PMID: 15518646]
[108]
Vazquez-Sanroman D, Sanchis-Segura C, Toledo R, Hernandez ME, Manzo J, Miquel M. The effects of enriched environment on BDNF expression in the mouse cerebellum depending on the length of exposure. Behav Brain Res 2013; 243: 118-28.
[http://dx.doi.org/10.1016/j.bbr.2012.12.047] [PMID: 23295397]
[109]
Uhlendorf TL, Van Kummer BH, Yaspelkis BB III, et al. Neuroprotective effects of moderate aerobic exercise on the spastic Han–Wistar rat, a model of ataxia. Brain Res 2011; 1369: 216-22.
[http://dx.doi.org/10.1016/j.brainres.2010.10.094] [PMID: 21062622]
[110]
Van Kummer BH, Cohen RW. Exercise-induced neuroprotection in the spastic Han Wistar rat: the possible role of brain-derived neurotrophic factor. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/834543] [PMID: 25710032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy