Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Discovery Phenolic Profiles and in vitro Antioxidants, Neuroprotective, Anti-diabetic Activities of Extracts from of Algerian Plant: Calendula monardii Boiss. & Reut

Author(s): Zakaria Samai, Nadia Toudert, Noureddine Dadda, Tarek Hamel, Farida Zakkad, Chaima Zerrad, Sihem Boutemedjet, Chawki Bensouici and Salah Eddine Djilani*

Volume 20, Issue 1, 2024

Published on: 06 September, 2023

Page: [30 - 39] Pages: 10

DOI: 10.2174/1573408019666230810115245

Price: $65

Abstract

The present study examines the potential effect of Calendula monardii (Boiss. & Reut.) on inhibiting various enzymes involved in many diseases.

Background: Calendula suffruticosa subsp. monardii (Boiss. & Reut.) Ohle, a medicinal plant from the Mediterranean region and, more precisely, from the extreme northeast of Algeria, is characterized by its wide use in the traditional medicine of the local population. This is what prompted us to investigate some pharmacological benefits such as anti-diabetes and Alzheimer's activities, in addition to antioxidant activity.

The effects of extraction methods and solvents on the amount of phenolic profiles and the biological activity of the different parts of this plant were studied, where the aim was to obtain a high extraction yield of bioactive compounds and consequently high biological activities.

Methods: In vitro standard procedures were used to assess enzyme inhibitory activity (AChE, BChE, α- Amylase and α-Glucosidase) of Calendula monadii, and the antioxidant activity was assessed using the DPPH, ABTS, CUPRAC, Reducing power and Ferrous ions assays.

Results: When using ultrasound, a significant increase in the amounts of (TPC, TFC and TFlas) and antioxidant activity (DPPH, ABTS, CUPRAC, Reducing power and Ferrous ions cheating assay) in addition to the inhibitory activity of enzymes (AChE, BChE, α-Amylase α-Glucosidase) was found, compared to the results of conventional extraction. Furthermore, the aqueous solvent of ethanol 70% is the very effective solvent for extraction compared to methanol 70% aqueous solvent.

Conclusion: Based on these results, it can be said that this plant contains important biological activities, so it can be used in phytotherapy.

Keywords: Anticholinesterase, antioxidant activities, anti-diabetic, C. monardii Boiss. & Reut, phenolic profiles, ultrasound.

Graphical Abstract
[1]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[2]
Sarikurkcu C, Kirkan B, Ozer MS, et al. Chemical characterization and biological activity of Onosma gigantea extracts. Ind Crops Prod 2018; 115: 323-9.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.040]
[3]
Shen Y, Zhang H, Cheng L, Wang L, Qian H, Qi X. in vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem 2016; 194: 1003-12.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.083] [PMID: 26471646]
[4]
Sun Y, Tsao R, Chen F, et al. The phytochemical composition, metabolites, bioavailability and in vivo antioxidant activity of Tetrastigma hemsleyanum leaves in rats. J Funct Foods 2017; 30: 179-93.
[http://dx.doi.org/10.1016/j.jff.2017.01.004]
[5]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[6]
Maritim AC, Sanders RA, Watkins JB III. Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 2003; 17(1): 24-38.
[http://dx.doi.org/10.1002/jbt.10058] [PMID: 12616644]
[7]
Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
[8]
Ohle H. Contributions to the taxonomy and evolution of the genus Calendula L. IV. Revision of the algerian-tunisian perennial calendula genera considering some moroccan-algerian annuals and the moroccan and southern european perennial taxa mit 5 plates and 3 illustrations. Feddes Repert 1975; 86(9-10): 525-41.
[http://dx.doi.org/10.1002/fedr.19750860908]
[9]
Sofiane I, Seridi R, Cortes MDM, et al. Phytochemical composition and evaluation of the antioxidant activity of the ethanolic extract of calendula suffruticosa subsp. suffruticosa Vahl. Pharmacogn J 2018; 10(1): 64-70.
[10]
Zakaria S, Nadia T, Salah Eddine D, et al. Chemical composition and in vitro antioxidant, anti‐alzheimer, anti‐diabetic, anti‐tyrosinase, and antimicrobial properties of essential oils and extracts derived from various parts of the algerian calendula suffruticosa vahlsubsp. boissieri Lanza. Chem Biodivers 2023; 20(1): e202200620..
[11]
Arora D, Rani A, Sharma A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn Rev 2013; 7(14): 179-87.
[http://dx.doi.org/10.4103/0973-7847.120520] [PMID: 24347926]
[12]
Grainger Bisset N, Wichtl M. Herbal drugs and phytopharmaceuticals. Stuttgart, Germany: CRC Press 2001.
[13]
De Tommasi N, Pizza C, Conti C, Orsi N, Stein ML. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis. J Nat Prod 1990; 53(4): 830-5.
[14]
Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo PJ. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci OA 2018; 4(4): FSO283.
[http://dx.doi.org/10.4155/fsoa-2017-0124] [PMID: 29682318]
[15]
Butnariu M, Coradini CZ. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem Cent J 2012; 6(1): 35.
[http://dx.doi.org/10.1186/1752-153X-6-35] [PMID: 22540963]
[16]
Gazim ZC, Rezende CM, Fraga SR, Dias Filho BP, Nakamura CV, Cortez DAG. Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. RBCF Rev Bras Cienc Farm 2008; 44(3): 391-5.
[http://dx.doi.org/10.1590/S1516-93322008000300008]
[17]
Sausserde R, Kampuss K. Composition of carotenoids in calendula (Calendula officinalis L.) flowers. Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being” Jelgava, Latvia 2014; 13-8.
[18]
Tosun G, Yayli B, Arslan T, Yasar A, Karaoglu SA, Yayli N. Comparative essential oil analysis of Calendula arvensis L. Extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian J Chem 2012; 24(5): 1955.
[19]
Wilen RW, Barl B, Slinkard AE, Bandara MS. Feasibility of cultivation calendula as a dual purpose industrial oilseed and medicinal crop. Acta Hortic 2004; (629): 199-206.
[http://dx.doi.org/10.17660/ActaHortic.2004.629.26]
[20]
Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: A review. Int Pharmaceut Sci 2011; 1(1): 98-106.
[21]
Apel C, Lyng JG, Papoutsis K, Harrison SM, Brunton NP. Screening the effect of different extraction methods (ultrasound-assisted extrac-tion and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimisation of the extraction conditions using chemometric tools. Food Bioprod Process 2020; 119: 277-86.
[http://dx.doi.org/10.1016/j.fbp.2019.06.018]
[22]
Rodríguez-Rojo S, Visentin A, Maestri D, Cocero MJ. Assisted extraction of rosemary antioxidants with green solvents. J Food Eng 2012; 109(1): 98-103.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.029]
[23]
Da Porto C, Porretto E, Decorti D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and poly-phenols from grape (Vitis vinifera L.) seeds. Ultrason Sonochem 2013; 20(4): 1076-80.
[http://dx.doi.org/10.1016/j.ultsonch.2012.12.002] [PMID: 23305938]
[24]
Nadeem M, Ubaid N, Qureshi TM, Munir M, Mehmood A. Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrason Sonochem 2018; 45: 1-6.
[http://dx.doi.org/10.1016/j.ultsonch.2018.02.034] [PMID: 29705302]
[25]
Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965; 16(3): 144-58.
[http://dx.doi.org/10.5344/ajev.1965.16.3.144]
[26]
Topçu G, Ay M, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem 2007; 103(3): 816-22.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.028]
[27]
Kumaran A, Joel Karunakaran R. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Lebensm Wiss Technol 2007; 40(2): 344-52.
[http://dx.doi.org/10.1016/j.lwt.2005.09.011]
[28]
Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181(4617): 1199-200.
[http://dx.doi.org/10.1038/1811199a0]
[29]
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation de-colorization assay. Free Radic Biol Med 1999; 26(9-10): 1231-7.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[30]
Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 2004; 52(26): 7970-81.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[31]
Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 1990; 38(3): 674-7.
[http://dx.doi.org/10.1021/jf00093a019]
[32]
Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosa-mine. Eiyogaku Zasshi 1986; 44(6): 307-15.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[33]
Ellman GL, Courtney KD, Andres V Jr. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95.
[34]
Baessa M, Rodrigues MJ, Pereira C, et al. A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea mono-sperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems. S Afr J Bot 2019; 120: 146-56.
[http://dx.doi.org/10.1016/j.sajb.2018.04.006]
[35]
Suwal S, Marciniak A. Technologies for the extraction, separation and purification of polyphenols - A review. Nepal J Biotechnol 2019; 6(1): 74-91.
[http://dx.doi.org/10.3126/njb.v6i1.22341]
[36]
Saha S, Barua B, Sikdar D. Phytochemical screening, phenolic content and antioxidant activity of wild date palm (Phoenix sylvestris Roxb.) fruit extracted with different solvents. Int Food Res J 2017; 24(6): 2534-42.
[37]
Zazouli S, Chigr M, Jouaiti A. Effect of polar and nonpolar solvent on total phenolic and antioxidant activity of roots extracts of Caralluma europaea. Pharma Chem 2016; 8(11): 191-6.
[38]
Do QD, Angkawijaya AE, Tran-Nguyen PL, et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxi-dant activity of Limnophila aromatica. Yao Wu Shi Pin Fen Xi 2014; 22(3): 296-302.
[PMID: 28911418]
[39]
Saleh IA, Vinatoru M, Mason TJ, Abdel-Azim NS, Aboutabl EA, Hammouda FM. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason Sonochem 2016; 31: 330-6.
[http://dx.doi.org/10.1016/j.ultsonch.2016.01.002] [PMID: 26964956]
[40]
Wen C, Zhang J, Zhang H, et al. Advances in ultrasound assisted extraction of bioactive compounds from cash crops - A review. Ultrason Sonochem 2018; 48: 538-49.
[http://dx.doi.org/10.1016/j.ultsonch.2018.07.018] [PMID: 30080583]
[41]
Abid M, Jabbar S, Wu T, et al. Effect of ultrasound on different quality parameters of apple juice. Ultrason Sonochem 2013; 20(5): 1182-7.
[http://dx.doi.org/10.1016/j.ultsonch.2013.02.010] [PMID: 23522904]
[42]
Safdar MN, Kausar T, Jabbar S, Mumtaz A, Ahad K, Saddozai AA. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Yao Wu Shi Pin Fen Xi 2017; 25(3): 488-500.
[PMID: 28911634]
[43]
Oueslati S, Ksouri R, Falleh H, Pichette A, Abdelly C, Legault J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 2012; 132(2): 943-7.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.072]
[44]
Colak N, Primetta AK, Riihinen KR, et al. Phenolic compounds and antioxidant capacity in different-colored and non-pigmented berries of bilberry (Vaccinium myrtillus L.). Food Biosci 2017; 20: 67-78.
[http://dx.doi.org/10.1016/j.fbio.2017.06.004]
[45]
González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A. Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - A response surface approach. Ultrason Sonochem 2014; 21(6): 2176-84.
[http://dx.doi.org/10.1016/j.ultsonch.2014.01.021] [PMID: 24548543]
[46]
Limmongkon A, Nopprang P, Chaikeandee P, Somboon T, Wongshaya P, Pilaisangsuree V. LC-MS/MS profiles and interrelationships between the anti-inflammatory activity, total phenolic content and antioxidant potential of Kalasin 2 cultivar peanut sprout crude extract. Food Chem 2018; 239: 569-78.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.162] [PMID: 28873607]
[47]
Pan Z, Qu W, Ma H, Atungulu GG, McHugh TH. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegran-ate peel. Ultrason Sonochem 2012; 19(2): 365-72.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.015] [PMID: 21784689]
[48]
Cespedes CL, Balbontin C, Avila JG, et al. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilen-sis leaves. Food Chem Toxicol 2017; 109(Pt 2): 984-95.
[http://dx.doi.org/10.1016/j.fct.2017.05.009] [PMID: 28501487]
[49]
Zengin G, Bulut G, Mollica A, Haznedaroglu MZ, Dogan A, Aktumsek A. Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: in vitro and in silico approaches. Food Chem Toxicol 2017; 107(Pt B): 597-608.
[http://dx.doi.org/10.1016/j.fct.2017.03.037] [PMID: 28343034]
[50]
Chen Y, Zhu J, Mo J, et al. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J Enzyme Inhib Med Chem 2018; 33(1): 290-302.
[http://dx.doi.org/10.1080/14756366.2017.1412314] [PMID: 29278947]
[51]
Picot MCN, Zengin G, Mollica A, Stefanucci A, Carradori S, Mahomoodally MF. In vitro and in silico studies of mangiferin from Aphloia theiformis on key enzymes linked to diabetes type 2 and associated complications. Med Chem 2017; 13(7): 633-40.
[PMID: 28290249]
[52]
Mehmood A, Ishaq M, Zhao L, et al. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason Sonochem 2019; 51: 12-9.
[http://dx.doi.org/10.1016/j.ultsonch.2018.10.013] [PMID: 30514481]
[53]
Majid H, Silva F, Processing B. Improvement of butyrylcholinesterase enzyme inhibition and medicinal properties of extracts of Aristotelia serrata leaves by ultrasound extraction. Food Bioprod Proc 2020; 124: 445-54.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy