Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Dietary Phytoactives in the Management of Gastric Cancer - A Mini Review

Author(s): Vivek Sharma*, Mahendra Singh Ashawat and Pravin Kumar

Volume 19, Issue 4, 2024

Published on: 22 August, 2023

Page: [376 - 384] Pages: 9

DOI: 10.2174/1574885518666230809121536

Price: $65

Abstract

Gastric cancer is the fourth leading cause of morbidity worldwide and is known to affect various gastric organs, including the esophagus, intestine, colon, and pancreas. There are variable factors responsible for the development of gastric tumors, such as environmental factors, EPV, hepatitis B and C, and other genetic factors. Phytoactives, or secondary metabolites of plants, have a wide range of biological impacts, including the capacity to prevent cancer in humans. They have this anticancerous impact because of their multi-target mechanism of action, which also includes antioxidant, anti-proliferative, cell apoptosis, and anti-mutagenic effects. To epitomize the role of vital dietary phytoactives as a new approach for treating gastric cancer and explains various mechanisms for their anticancerous activity. H. pylori-associated gastric tumors are the most common, and Phytoactives such as curcumin, piperine, walnut oil, tea, and others possess anticancer properties. They have shown anticancer activity against gastric tumor cell lines via different mechanisms like cell cycle arrest, apoptosis, inhibition of cell proliferation, adhesion, colonization of cancer cells, inhibition of inflammatory mediators, tumor cell bioenergetics, up and down-regulation of various gene and protein expression, and chelation and scavenging of ROS.

Keywords: Gastric cancer, phytoconstituents, phytochemicals, bioactives, anti-cancerous, H. pylori, ROS.

Graphical Abstract
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancerstatistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021; 149(4): 778-89.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[3]
Fitzmaurice C, Abate D, Abbasi N, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncol 2019; 5(12): 1749-68.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[4]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[5]
Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet 2016; 388(10060): 2654-64.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3] [PMID: 27156933]
[6]
Asplund J, Kauppila JH, Mattsson F, Lagergren J. Survival trends in gastric adenocarcinoma: A population-based study in Sweden. Ann Surg Oncol 2018; 25(9): 2693-702.
[http://dx.doi.org/10.1245/s10434-018-6627-y] [PMID: 29987609]
[7]
Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 2006; 12(3): 354-62.
[http://dx.doi.org/10.3748/wjg.v12.i3.354] [PMID: 16489633]
[8]
Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 2012; 4(7): 156-69.
[http://dx.doi.org/10.4251/wjgo.v4.i7.156] [PMID: 22844547]
[9]
AL-Ishaq RK. Overy AJ, Büsselberg D. Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression. Biomolecules 2020; 10(1): 105.
[http://dx.doi.org/10.3390/biom10010105] [PMID: 31936288]
[10]
Catalano E. Role of phytochemicals in the chemoprevention of tumors. arXiv 2016; 2016: 04519.
[11]
Kim J, Cho YA, Choi WJ, Jeong SH. Gene-diet interactions in gastric cancer risk: A systematic review. World J Gastroenterol 2014; 20(28): 9600-10.
[http://dx.doi.org/10.3748/wjg.v20.i28.9600] [PMID: 25071358]
[12]
Zhang Z, Zhang X. Salt taste preference, sodium intake and gastric cancer in China. Asian Pac J Cancer Prev 2011; 12(5): 1207-10.
[PMID: 21875268]
[13]
Machlowska J, Baj J, Sitarz M, Maciejewski R, Sitarz R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci 2020; 21(11): 4012.
[http://dx.doi.org/10.3390/ijms21114012] [PMID: 32512697]
[14]
Keszei AP, Goldbohm RA, Schouten LJ, Jakszyn P, van den Brandt PA. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am J Clin Nutr 2013; 97(1): 135-46.
[http://dx.doi.org/10.3945/ajcn.112.043885] [PMID: 23193003]
[15]
IARC Working Group. IARC monographs on the evaluation of the carcinogenic risks to humans - alcohol drinking. IARC Monogr Eval Carcinog Risks Hum 1988; 44: 1-378.
[16]
Baan R, Straif K, Grosse Y, et al. Carcinogenicity of alcoholic beverages. Lancet Oncol 2007; 8(4): 292-3.
[http://dx.doi.org/10.1016/S1470-2045(07)70099-2] [PMID: 17431955]
[17]
Salaspuro M. Key role of local acetaldehyde in upper GI tract carcinogenesis. Best Pract Res Clin Gastroenterol 2017; 31(5): 491-9.
[http://dx.doi.org/10.1016/j.bpg.2017.09.016] [PMID: 29195668]
[18]
Vanella G, Archibugi L, Stigliano S, Capurso G. Alcohol and gastrointestinal cancers. Curr Opin Gastroenterol 2019; 35(2): 107-13.
[http://dx.doi.org/10.1097/MOG.0000000000000502] [PMID: 30550381]
[19]
Harpaz T, Abumock H, Beery E, et al. The effect of ethanol on telomere dynamics and regulation in human cells. Cells 2018; 7(10): 169.
[http://dx.doi.org/10.3390/cells7100169] [PMID: 30326633]
[20]
Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 2007; 7(8): 599-612.
[http://dx.doi.org/10.1038/nrc2191] [PMID: 17646865]
[21]
Li W, Zhou J, Chen L, Luo Z, Zhao Y. Lysyl oxidase, a critical intra- and extra-cellular target in the lung for cigarette smoke pathogenesis. Int J Environ Res Public Health 2011; 8(1): 161-84.
[http://dx.doi.org/10.3390/ijerph8010161] [PMID: 21318022]
[22]
Zhang L, Ren JW, Wong CC, et al. Effects of cigarette smoke and its active components on ulcer formation and healing in the gastrointestinal mucosa. Curr Med Chem 2012; 19(1): 63-9.
[http://dx.doi.org/10.2174/092986712803413926] [PMID: 22300077]
[23]
Li LF, Chan RLY, Lu L, et al. Cigarette smoking and gastrointestinal diseases: The causal relationship and underlying molecular mechanisms (Review). Int J Mol Med 2014; 34(2): 372-80.
[http://dx.doi.org/10.3892/ijmm.2014.1786] [PMID: 24859303]
[24]
Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: A state of the art review. Gastroenterol Hepatol Bed Bench 2015; 8 (Suppl. 1): S6-S14.
[PMID: 26171139]
[25]
Khatoon J, Rai RP, Prasad KN. Role of Helicobacter pylori in gastric cancer: Updates. World J Gastrointest Oncol 2016; 8(2): 147-58.
[http://dx.doi.org/10.4251/wjgo.v8.i2.147] [PMID: 26909129]
[26]
Chang WL, Yeh YC, Sheu BS. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 2018; 25(1): 68.
[http://dx.doi.org/10.1186/s12929-018-0466-9] [PMID: 30205817]
[27]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[28]
Ogbonna J, Kenechukwu F, Attama A, Chime S. Different approaches to formulation of herbal extracts/phytopharmaceuti- cals/bioactive phytochstituents-a review. Int J Pharm Sci Rev Res 2012; 16(1): 1-8.
[29]
Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: From folklore to practice. Front Plant Sci 2015; 6: 799.
[http://dx.doi.org/10.3389/fpls.2015.00799] [PMID: 26483815]
[30]
Key TJ, Appleby PN, Spencer EA, et al. Cancer incidence in British vegetarians. Br J Cancer 2009; 101(1): 192-7.
[http://dx.doi.org/10.1038/sj.bjc.6605098] [PMID: 19536095]
[31]
Richardson MA, Sanders T, Palmer JL, Greisinger A, Singletary SE. Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology. J Clin Oncol 2000; 18(13): 2505-14.
[http://dx.doi.org/10.1200/JCO.2000.18.13.2505] [PMID: 10893280]
[32]
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-61.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[33]
Lee WL, Huang JY, Shyur LF. Phytoagents for cancer management: Regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxid Med Cell Longev 2013; 2013: 1-22.
[http://dx.doi.org/10.1155/2013/925804] [PMID: 24454991]
[34]
Lu L, Zhao Z, Liu L, Gong W, Dong J. Combination of baicalein and docetaxel additively inhibits the growth of non-small cell lung cancer in vivo. Trad Med Modern Med 2018; 1(3): 213-8.
[http://dx.doi.org/10.1142/S2575900018500131]
[35]
Yan XB, Xie T, Wang SD, Wang Z, Li HY, Ye ZM. Apigenin inhibits proliferation of human chondrosarcoma cells via cell cycle arrest and mitochondrial apoptosis induced by ROS generation-an in vitro and in vivo study. Int J Clin Exp Med 2018; 11(3): 1615-31.
[36]
Slattery ML, Benson J, Curtin K, Ma KN, Schaeffer D, Potter JD. Carotenoids and colon cancer. Am J Clin Nutr 2000; 71(2): 575-82.
[http://dx.doi.org/10.1093/ajcn/71.2.575] [PMID: 10648274]
[37]
Palozza P, Calviello G, Serini S, et al. β-carotene at high concentrations induces apoptosis by enhancing oxy-radical production in human adenocarcinoma cells. Free Radic Biol Med 2001; 30(9): 1000-7.
[http://dx.doi.org/10.1016/S0891-5849(01)00488-9] [PMID: 11316580]
[38]
Malila N, Virtamo J, Virtanen M, Pietinen P, Albanes D, Teppo L. Dietary and serum α-tocopherol, β-carotene and retinol, and risk for colorectal cancer in male smokers. Eur J Clin Nutr 2002; 56(7): 615-21.
[http://dx.doi.org/10.1038/sj.ejcn.1601366] [PMID: 12080400]
[39]
Smith-Warner SA, Elmer PJ, Tharp TM, et al. Increasing vegetable and fruit intake: Randomized intervention and monitoring in an at-risk population. Cancer Epidemiol Biomarkers Prev 2000; 9(3): 307-17.
[PMID: 10750670]
[40]
Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet 2012; 379(9827): 1728-38.
[http://dx.doi.org/10.1016/S0140-6736(12)60282-7] [PMID: 22559899]
[41]
Perry A, Rasmussen H, Johnson EJ. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal 2009; 22(1): 9-15.
[http://dx.doi.org/10.1016/j.jfca.2008.07.006]
[42]
Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev 2014; 72(9): 605-12.
[http://dx.doi.org/10.1111/nure.12133] [PMID: 25109868]
[43]
Akuffo KO, Nolan J, Stack J, et al. Prevalence of age-related macular degeneration in the Republic of Ireland. Br J Ophthalmol 2015; 99(8): 1037-44.
[http://dx.doi.org/10.1136/bjophthalmol-2014-305768] [PMID: 25712825]
[44]
Kim J, Lee J, Oh JH, et al. Dietary Lutein plus zeaxanthin intake and DICER1 rs3742330 a >G polymorphism relative to colorectal cancer risk. Sci Rep 2019; 9(1): 3406.
[http://dx.doi.org/10.1038/s41598-019-39747-5] [PMID: 30833603]
[45]
Femia AP, Tarquini E, Salvadori M, et al. K-ras mutations and mucin profile in preneoplastic lesions and colon tumors induced in rats by 1,2-dimethylhydrazine. Int J Cancer 2008; 122(1): 117-23.
[http://dx.doi.org/10.1002/ijc.23065] [PMID: 17847023]
[46]
Gali-Muhtasib HU, Younes IH, Karchesy JJ, El-Sabban ME. Plant tannins inhibit the induction of aberrant crypt foci and colonic tumors by 1,2-dimethylhydrazine in mice. Nutr Cancer 2001; 39(1): 108-16.
[http://dx.doi.org/10.1207/S15327914nc391_15] [PMID: 11588891]
[47]
Reynoso-Camacho R, González-Jasso E, Ferriz-Martínez R, et al. Dietary supplementation of lutein reduces colon carcinogenesis in DMH-treated rats by modulating K-ras, PKB, and β-catenin proteins. Nutr Cancer 2011; 63(1): 39-45.
[PMID: 21128180]
[48]
Satia-Abouta J, Galanko JA, Martin CF, Potter JD, Ammerman A, Sandler RS. Associations of micronutrients with colon cancer risk in African Americans and whites: Results from the north carolina colon cancer study. Cancer Epidemiol Biomarkers Prev 2003; 12(8): 747-54.
[PMID: 12917206]
[49]
Santocono M, Zurria M, Berrettini M, Fedeli D, Falcioni G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J Photochem Photobiol B 2006; 85(3): 205-15.
[http://dx.doi.org/10.1016/j.jphotobiol.2006.07.009] [PMID: 16962787]
[50]
Trejo-Solís C, Pedraza-Chaverrí J, Torres-Ramos M, et al. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid Based Complement Alternat Med 2013; 2013: 1-17.
[http://dx.doi.org/10.1155/2013/705121] [PMID: 23970935]
[51]
Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 2010; 1(1): 189-210.
[http://dx.doi.org/10.1146/annurev.food.102308.124120] [PMID: 22129335]
[52]
Boehm F, Edge R, Truscott TG, Witt C. A dramatic effect of oxygen on protection of human cells against γ-radiation by lycopene. FEBS Lett 2016; 590(8): 1086-93.
[http://dx.doi.org/10.1002/1873-3468.12134] [PMID: 26991327]
[53]
Slattery ML, Lundgreen A, Welbourn B, Wolff RK, Corcoran C. Oxidative balance and colon and rectal cancer: Interaction of lifestyle factors and genes. Mutat Res 2012; 734(1-2): 30-40.
[http://dx.doi.org/10.1016/j.mrfmmm.2012.04.002] [PMID: 22531693]
[54]
Lin MC, Wang FY, Kuo YH, Tang FY. Cancer chemopreventive effects of lycopene: Suppression of MMP-7 expression and cell invasion in human colon cancer cells. J Agric Food Chem 2011; 59(20): 11304-18.
[http://dx.doi.org/10.1021/jf202433f] [PMID: 21923160]
[55]
Cha JH, Kim WK, Ha AW, Kim MH, Chang MJ. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr Res Pract 2017; 11(2): 90-6.
[http://dx.doi.org/10.4162/nrp.2017.11.2.90] [PMID: 28386381]
[56]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[57]
AL-Ishaq RK. Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9(9): 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[58]
Abotaleb M, Samuel S, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[59]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[60]
Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019; 8(5): 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[61]
Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett 2008; 269(2): 315-25.
[http://dx.doi.org/10.1016/j.canlet.2008.03.046] [PMID: 18467024]
[62]
Wang K, Liu R, Li J, et al. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy 2011; 7(9): 966-78.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[63]
Dajas F. Life or death: Neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 2012; 143(2): 383-96.
[http://dx.doi.org/10.1016/j.jep.2012.07.005] [PMID: 22820241]
[64]
Bi Y, Shen C, Li C, et al. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol 2016; 37(3): 3549-60.
[http://dx.doi.org/10.1007/s13277-015-4125-4] [PMID: 26454746]
[65]
Valentová K, Ulrichová J, Cvak L, Šimánek V. Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem 2007; 101(3): 912-7.
[http://dx.doi.org/10.1016/j.foodchem.2006.02.038]
[66]
Thomasset S, Berry DP, Cai H, et al. Pilot study of oral anthocyanins for colorectal cancer chemoprevention. Cancer Prev Res 2009; 2(7): 625-33.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0201] [PMID: 19584076]
[67]
Esselen M, Fritz J, Hutter M, et al. Anthocyanin-rich extracts suppress the DNA-damaging effects of topoisomerase poisons in human colon cancer cells. Mol Nutr Food Res 2011; 55(S1): S143-53.
[http://dx.doi.org/10.1002/mnfr.201000315] [PMID: 21280204]
[68]
Chau I, Cunningham D. Adjuvant therapy in colon cancer-what, when and how? Ann Oncol 2006; 17(9): 1347-59.
[http://dx.doi.org/10.1093/annonc/mdl029] [PMID: 16524974]
[69]
Lala G, Malik M, Zhao C, et al. Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutr Cancer 2006; 54(1): 84-93.
[http://dx.doi.org/10.1207/s15327914nc5401_10] [PMID: 16800776]
[70]
Zhang X, Jiang A, Qi B, et al. Resveratrol protects against helicobacter pylori-associated gastritis by combating oxidative stress. Int J Mol Sci 2015; 16(11): 27757-69.
[http://dx.doi.org/10.3390/ijms161126061] [PMID: 26610474]
[71]
Jing X, Cheng W, Wang S, Li P, He L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol Rep 2016; 35(1): 472-8.
[http://dx.doi.org/10.3892/or.2015.4384] [PMID: 26530632]
[72]
Lao LJ, Song XJ, Xu J. Effect of resveratrol in regulating proliferation and apoptosis of rectal cancer cells via up-regulating PTEN. Zhongguo Zhongyao Zazhi 2017; 42(9): 1730-5.
[PMID: 29082697]
[73]
Dave A, Parande F, Park EJ, Pezzuto JM. Phytochemicals and cancer chemoprevention. J Cancer Metastasis Treat 2020; 6(46): 2-36.
[74]
Onoda C, Kuribayashi K, Nirasawa S, et al. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int J Oncol 2011; 38(5): 1403-8.
[PMID: 21344159]
[75]
Cai XZ, Wang J, Xiao-Dong L, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther 2009; 8(14): 1360-8.
[http://dx.doi.org/10.4161/cbt.8.14.8720] [PMID: 19448398]
[76]
Wang L, Chen X, Du Z, et al. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. J Exp Clin Cancer Res 2017; 36(1): 47.
[http://dx.doi.org/10.1186/s13046-017-0513-5] [PMID: 28359291]
[77]
Xue X, Yu JL, Sun DQ, et al. Curcumin induces apoptosis in SGC-7901 gastric adenocarcinoma cells via regulation of mitochondrial signaling pathways. Asian Pac J Cancer Prev 2014; 15(9): 3987-92.
[http://dx.doi.org/10.7314/apjcp.2014.15.9.3987] [PMID: 24935585]
[78]
Guo L, Yang Y, Sheng Y, Wang J, Ruan S, Han C. Mechanism of piperine in affecting apoptosis and proliferation of gastric cancer cells via ROS‐mitochondria‐associated signalling pathway. J Cell Mol Med 2021; 25(20): 9513-22.
[http://dx.doi.org/10.1111/jcmm.16891] [PMID: 34464498]
[79]
Tharmalingam N, Kim SH, Park M, et al. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect Agent Cancer 2014; 9(1): 43.
[http://dx.doi.org/10.1186/1750-9378-9-43] [PMID: 25584066]
[80]
Dubey M, Nagarkoti S, Awasthi D, et al. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis 2016; 7(9): e2348.
[http://dx.doi.org/10.1038/cddis.2016.248] [PMID: 27584786]
[81]
Kao CY, Sheu BS, Wu JJ. CsrA regulates Helicobacter pylori J99 motility and adhesion by controlling flagella formation. Helicobacter 2014; 19(6): 443-54.
[http://dx.doi.org/10.1111/hel.12148] [PMID: 25109343]
[82]
Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 2000; 287(5457): 1497-500.
[http://dx.doi.org/10.1126/science.287.5457.1497] [PMID: 10688800]
[83]
Ohnishi N, Yuasa H, Tanaka S, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci 2008; 105(3): 1003-8.
[http://dx.doi.org/10.1073/pnas.0711183105] [PMID: 18192401]
[84]
Tsang J, Smith TG, Pereira LE, Hoover TR. Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression. Microbiology 2013; 159(Pt_1): 58-67.
[http://dx.doi.org/10.1099/mic.0.059063-0] [PMID: 23154969]
[85]
Nguyen TH, Vu DC. A review on phytochemical composition and potential health-promoting properties of walnuts. Food Rev Int 2021; 39(1): 1-27.
[86]
Park JM, An JM, Han YM, et al. Walnut polyphenol extracts inhibit Helicobacter pylori-induced STAT3Tyr705 phosphorylation through activation of PPAR-γ and SOCS1 induction. J Clin Biochem Nutr 2020; 67(3): 248-56.
[http://dx.doi.org/10.3164/jcbn.20-89] [PMID: 33293765]
[87]
Cao S, Zhu C, Feng J, et al. Helicobacter hepaticus infection induces chronic hepatitis and fibrosis in male BALB/c mice via the activation of NF‐κB, Stat3, and MAPK signaling pathways. Helicobacter 2020; 25(2): e12677.
[http://dx.doi.org/10.1111/hel.12677] [PMID: 31881556]
[88]
Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting interleukin-6 signaling in clinic. Immunity 2019; 50(4): 1007-23.
[http://dx.doi.org/10.1016/j.immuni.2019.03.026] [PMID: 30995492]
[89]
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018; 15(4): 234-48.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[90]
Batirel S, Yilmaz AM, Sahin A, Perakakis N, Kartal Ozer N, Mantzoros CS. Antitumor and antimetastatic effects of walnut oil in esophageal adenocarcinoma cells. Clin Nutr 2018; 37(6): 2166-71.
[http://dx.doi.org/10.1016/j.clnu.2017.10.016] [PMID: 29126716]
[91]
Moon HS, Batirel S, Mantzoros CS. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism 2014; 63(11): 1447-54.
[http://dx.doi.org/10.1016/j.metabol.2014.07.009] [PMID: 25129649]
[92]
Maguire LS, O’Sullivan SM, Galvin K, O’Connor TP, O’Brien NM. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 2004; 55(3): 171-8.
[http://dx.doi.org/10.1080/09637480410001725175] [PMID: 15223592]
[93]
De Stefani E, Ronco AL, Boffetta P, et al. Nutrient intake and risk of squamous cell carcinoma of the esophagus: A case-control study in Uruguay. Nutr Cancer 2006; 56(2): 149-57.
[http://dx.doi.org/10.1207/s15327914nc5602_5] [PMID: 17474860]
[94]
Park M, Hong J. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016; 5(2): 15.
[http://dx.doi.org/10.3390/cells5020015] [PMID: 27043634]
[95]
Wu D, Wu P, Zhao L, et al. NF-KB expression and outcomes in solid tumors. Medicine 2015; 94(40): e1687.
[http://dx.doi.org/10.1097/MD.0000000000001687]
[96]
Hering J, Garrean S, Dekoj TR, et al. Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells. Ann Surg Oncol 2007; 14(12): 3620-8.
[http://dx.doi.org/10.1245/s10434-007-9556-8] [PMID: 17896154]
[97]
Ledoux AC, Perkins ND. NF-κB and the cell cycle. Biochem Soc Trans 2014; 42(1): 76-81.
[http://dx.doi.org/10.1042/BST20130156] [PMID: 24450631]
[98]
Fan Y, Zhang X, Tong Y, Chen S, Liang J. Curcumin against gastrointestinal cancer: A review of the pharmacological mechanisms underlying its antitumor activity. Front Pharmacol 2022; 13: 990475.
[http://dx.doi.org/10.3389/fphar.2022.990475] [PMID: 36120367]
[99]
Ghosh S, Kumar S, Rahaman F, Prakash A, Tripathi S, Bhattacharya R. Phytochemicals - An alternative of conventional chemotherapy in cancer treatment. J Clin Oncol Therapeutics 2021; 3(1): 1.
[http://dx.doi.org/10.47275/2690-5663-119]
[100]
George BP, Chandran R, Abrahamse H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021; 10(9): 1455.
[http://dx.doi.org/10.3390/antiox10091455] [PMID: 34573087]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy