Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Harnessing the Potential of Litchi Fruit Pericarp for Wound Mitigation in Wistar Albino Rats

Author(s): Puneet Gupta, Neelam Singh*, Charu Bharti and Neha SL.

Volume 1, 2023

Published on: 06 October, 2023

Article ID: e080823219531 Pages: 10

DOI: 10.2174/2210299X01666230808152705

open_access

Open Access Journals Promotions 2
Abstract

Background: The use of medicinal plants is vital in the treatment of several ailments. Litchi (Litchi chinensis Sonn.) fruit pericarp is the main by-product of litchi processing. Litchi fruit pericarp contains a significant amount of polyphenolic compounds, which have been found to have a broad variety of biological activities.

Methods: Litchi pericarp was produced in 10% (w/w) hydrogel and tested for wound healing activities in Wistar rats using an excision wound model. Wound healing activity was evaluated using wound-healing rate, inflammatory cytokine levels, oxidative stress, collagen hydroxyproline and hexosamine concentration, and macroscopic and histological evidence.

Results: The results show that pericarp extract has significant wound healing potential, which is indicated by better wound closure, tissue regeneration, and histological characteristics. Litchi pericarp hydrogel boosted the skin's hydroxyproline content, antioxidant capacity, wound contraction, and antiinflammatory potential by regulating the production of the cytokines TNF-α, IL-1β, and IL-6. This supports the effectiveness of litchi pericarp's wound-healing qualities.

Conclusion: Litchi pericarp hydrogel promoted wound recovery in rats, encouraging its application in wound alleviation.

Keywords: Litchi pericarp, Hydrogel, Excisional wound, Cytokines, Hydroxyproline, Rats. Article

[1]
Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics., 2020, 12(8), 735.
[http://dx.doi.org/10.3390/pharmaceutics12080735]
[2]
Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound healing: A cellular perspective. Physiol Rev., 2019, 99(1), 665-706.
[http://dx.doi.org/10.1152/physrev.00067.2017]
[3]
Rhea, L; Dunnwald, M. Murine excisional wound healing model and histological morphometric wound analysis. J. Vis. Exp., 2020, (162), 10.3791/61616.
[4]
Rajoo, A.; Ramanathan, S.; Mansor, S.M.; Sasidharan, S. Formulation and evaluation of wound healing activity of Elaeis guineensis Jacq leaves in a Staphylococcus aureus infected Sprague Dawley rat model. J. Ethnopharmacol., 2021, 266, 113414.
[http://dx.doi.org/10.1016/j.jep.2020.113414] [PMID: 32980488]
[5]
Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int. J. Mol. Sci., 2021, 22(2), 634.
[http://dx.doi.org/10.3390/ijms22020634] [PMID: 33435246]
[6]
Zhu, X.; Wang, H.; Sun, J.; Yang, B.; Duan, X.; Jiang, Y. Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. J. Zhejiang Univ. Sci. B, 2019, 20(6), 503-512.
[http://dx.doi.org/10.1631/jzus.B1900161] [PMID: 31090276]
[7]
Yao, P.; Gao, Y.; Simal-Gandara, J.; Farag, M.A.; Chen, W.; Yao, D.; Delmas, D.; Chen, Z.; Liu, K.; Hu, H.; Xiao, J.; Rong, X.; Wang, S.; Hu, Y.; Wang, Y. Litchi ( Litchi chinensis Sonn.): A comprehensive review of phytochemistry, medicinal properties, and product development. Food Funct., 2021, 12(20), 9527-9548.
[http://dx.doi.org/10.1039/D1FO01148K] [PMID: 34664581]
[8]
Kanlayavattanakul, M.; Lourith, N. Phytochemical Properties and Cosmetic Benefits. Asian Berries; CRC Press, 2020.
[9]
Chen, M.X.; Alexander, K.S.; Baki, G. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. J Pharm , 2016, 2016, 1-10.
[10]
Said dos Santos, R.; Bassi da Silva, J.; Rosseto, H.C.; Vecchi, C.F.; Campanholi, K.S.S.; Caetano, W.; Bruschi, M.L. Emulgels containing propolis and curcumin: The effect of type of vegetable oil, poly(acrylic acid) and bioactive agent on physicochemical stability, mechanical and rheological properties. Gels, 2021, 7(3), 120.
[http://dx.doi.org/10.3390/gels7030120] [PMID: 34449614]
[11]
Temesgen, S.; Sasikumar, J.M.; Egigu, M.C. Effect of extraction solvents on total polyphenolic content and antioxidant capacity of Syzygium Aromaticum L. flower bud from ethiopia. BioMed Res. Int., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/4568944] [PMID: 36467886]
[12]
Shousha, W.G.; Aboulthana, W.M.; Salama, A.H.; Saleh, M.H.; Essawy, E.A. Evaluation of the biological activity of Moringa oleifera leaves extract after incorporating silver nanoparticles, in vitro study. Bull. Natl. Res. Cent., 2019, 43(1), 212.
[http://dx.doi.org/10.1186/s42269-019-0221-8]
[13]
Soriano Sancho, R.A.; Pavan, V.; Pastore, G.M. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Res. Int., 2015, 76, 74-78.
[http://dx.doi.org/10.1016/j.foodres.2014.11.042]
[14]
Stojilkovski, K.; Uranič, N.; Kolar, D.; Kreft, S. Simple method for the determination of polysaccharides in herbal syrup. J. Carbohydr. Chem., 2018, 37(7-8), 431-441.
[http://dx.doi.org/10.1080/07328303.2019.1567754]
[15]
Maslii, Y; Ruban, O; Kasparaviciene, G; Kalveniene, Z; Materiienko, A; Ivanauskas, L The influence of ph values on the rheological, textural and release properties of carbomer polacril® 40P-based dental gel formulation with plant-derived and synthetic active components. Mol Basel Switz., 2020, 25(21), 5018.
[16]
Balata, G.; El Nahas, H.M.; Radwan, S. Propolis organogel as a novel topical delivery system for treating wounds. Drug Deliv., 2014, 21(1), 55-61.
[http://dx.doi.org/10.3109/10717544.2013.847032] [PMID: 24295500]
[17]
Rezano, A; Indra, T; Siregar, Z; Maliki, AS Sappanwood ( Caesalpinia sappan ) extract gel do not heal skin excisional woundon balb / c Mice. Biomed. Pharmacol. J., 2019, 12, 375-381.
[18]
Zomer, H.D.; Trentin, A.G. Skin wound healing in humans and mice: Challenges in translational research. J. Dermatol. Sci., 2018, 90(1), 3-12.
[http://dx.doi.org/10.1016/j.jdermsci.2017.12.009] [PMID: 29289417]
[19]
Pourhoseingholi, M.A.; Baghestani, A.R.; Vahedi, M. How to control confounding effects by statistical analysis. Gastroenterol. Hepatol. Bed Bench, 2012, 5(2), 79-83.
[PMID: 24834204]
[20]
Howard, B. Book review: Guide for the care and use of laboratory animals. Altern. Lab. Anim., 1998, 26(3), 363-364.
[http://dx.doi.org/10.1177/026119299802600313]
[21]
Ali Khan, B.; Ullah, S.; Khan, M.K.; Alshahrani, S.M.; Braga, V.A. Formulation and evaluation of Ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm. J., 2020, 28(12), 1842-1850.
[http://dx.doi.org/10.1016/j.jsps.2020.11.011] [PMID: 33424273]
[22]
Lim, C.Y.; In, J. Randomization in clinical studies. Korean J. Anesthesiol., 2019, 72(3), 221-232.
[http://dx.doi.org/10.4097/kja.19049] [PMID: 30929415]
[23]
Kazemi, M.; Mohammadifar, M.; Aghadavoud, E.; Vakili, Z.; Aarabi, M.H.; Talaei, S.A. Deep skin wound healing potential of lavender essential oil and licorice extract in a nanoemulsion form: Biochemical, histopathological and gene expression evidences. J. Tissue Viability, 2020, 29(2), 116-124.
[http://dx.doi.org/10.1016/j.jtv.2020.03.004] [PMID: 32204968]
[24]
Koshak, A.E.; Algandaby, M.M.; Mujallid, M.I.; Abdel-Naim, A.B.; Alhakamy, N.A.; Fahmy, U.A.; Alfarsi, A.; Badr-Eldin, S.M.; Neamatallah, T.; Nasrullah, M.Z.; Abdallah, H.M.; Esmat, A. Wound healing activity of Opuntia ficus-indica fixed oil formulated in a self-nanoemulsifying formulation. Int. J. Nanomedicine, 2021, 16, 3889-3905.
[http://dx.doi.org/10.2147/IJN.S299696] [PMID: 34135583]
[25]
Khémiri, I; Essghaier, H.B; Sadfi, Z.N; Ben, G.N; Bitri, L. The antimicrobial and wound healing potential of opuntia ficus indica L. inermis extracted oil from tunisia. Evid. Based Complement Alternat. Med., 2019, 2019, 9148782.
[26]
Koriem, K.M.M.; Shamsuri, R.B.; Ubaidillah, A.M. Evaluation of sodium fluoride toxicity in Schistosoma infected snails: assessment of antioxidants, antiapoptotic, hypoprotein and hypocholesterol activities. J. Parasit. Dis., 2016, 40(4), 1451-1458.
[http://dx.doi.org/10.1007/s12639-015-0711-z] [PMID: 27876966]
[27]
Masson-Meyers, D.S.; Andrade, T.A.M.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol., 2020, 101(1-2), 21-37.
[http://dx.doi.org/10.1111/iep.12346] [PMID: 32227524]
[28]
Dwivedi, D; Dwivedi, M; Malviya, S; Singh, V Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J Tradit Complement Med., 2017, 7, 79-85.
[29]
Pereira, L.M.; Hatanaka, E.; Martins, E.F.; Oliveira, F.; Liberti, E.A.; Farsky, S.H.; Curi, R.; Pithon-Curi, T.C. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem. Funct., 2008, 26(2), 197-204.
[http://dx.doi.org/10.1002/cbf.1432] [PMID: 17918246]
[30]
Grellner, W.; Georg, T.; Wilske, J. Quantitative analysis of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci. Int., 2000, 113(1-3), 251-264.
[http://dx.doi.org/10.1016/S0379-0738(00)00218-8] [PMID: 10978634]
[31]
Pereira Beserra, F.; Sérgio Gushiken, L.F.; Vieira, A.J.; Augusto Bérgamo, D.; Luísa Bérgamo, P.; Oliveira de Souza, M.; Alberto Hussni, C.; Kiomi Takahira, R.; Henrique Nóbrega, R.; Monteiro Martinez, E.R.; John Jackson, C.; Lemos de Azevedo Maia, G.; Leite Rozza, A.; Helena Pellizzon, C. From inflammation to cutaneous repair: Topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF-κB, Ki-67, growth factor expression, and distribution of collagen fibers. Int. J. Mol. Sci., 2020, 21(14), 4952.
[http://dx.doi.org/10.3390/ijms21144952]
[32]
Deng, Y.; Huang, G.; Zhao, W.; Li, X.; Zhang, Y.; Wei, F.; Lin, Z.; Lin, B. A self-matching, ultra-fast film forming and washable removal bio-crosslinked hydrogel films for perishable fruits. Carbohydr. Polym., 2021, 267, 118177.
[http://dx.doi.org/10.1016/j.carbpol.2021.118177] [PMID: 34119145]
[33]
Molina, G.G.V. Antimicrobial potentials of dolichos lablab linn (Hyacinth Bean). Liceo J. Higher Edu. Res., 2020, 16(2), 149-171.
[http://dx.doi.org/10.7828/ljher.v16i2.1382]
[34]
Betadine : Uses, safe dosage, subtitutes, & precautions. FactDr, 2019.https://factdr.com/medicine/betadine/
[35]
Yang, Z.; Zhang, L.; Wu, Y.H.; Li, D.P.; Li, W. Evaluation of chemical constituents of litchi pericarp extracts and its antioxidant activity in mice. Foods, 2022, 11(23), 3837.
[http://dx.doi.org/10.3390/foods11233837] [PMID: 36496645]
[36]
Ibrahim, S.R.M.; Mohamed, G.A. Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology. J. Ethnopharmacol., 2015, 174, 492-513.
[http://dx.doi.org/10.1016/j.jep.2015.08.054] [PMID: 26342518]
[37]
Ahmad, S.U.; Binti Aladdin, N.A.; Jamal, J.A.; Shuid, A.N.; Mohamed, I.N. Evaluation of wound-healing and antioxidant effects of marantodes pumilum (Blume) Kuntze in an excision wound model. Molecules., 2021, 26(1), 228.
[38]
Li, S.; Yang, Y.; Li, J.; Zhu, Z.; Lorenzo, J.M.; Barba, F.J. Increasing yield and antioxidative performance of litchi pericarp procyanidins in baked food by ultrasound-assisted extraction coupled with enzymatic treatment. Molecules., 2018, 23(9), 2089.
[http://dx.doi.org/10.3390/molecules23092089]
[39]
Wang, X.; Wei, Y.; Yuan, S.; Liu, G.; Zhang, Y.; Wang, W. Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett., 2006, 239(1), 144-150.
[http://dx.doi.org/10.1016/j.canlet.2005.08.011] [PMID: 16300877]
[40]
Ibrahim, N.I.; Mohamed, I.N.; Mohamed, N.; Mohd Ramli, E.S.; Shuid, A.N. The effects of aqueous extract of Labisia Pumila (Blume) Fern.-Vill. Var. Alata on wound contraction, hydroxyproline content and histological assessments in superficial partial thickness of second-degree burn model. Front. Pharmacol., 2022, 13, 968664.
[http://dx.doi.org/10.3389/fphar.2022.968664] [PMID: 36313379]
[41]
Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in wound healing. Bioengineering., 2021, 8(5), 63.
[http://dx.doi.org/10.3390/bioengineering8050063] [PMID: 34064689]
[42]
Miskolci, V.; Squirrell, J.; Rindy, J.; Vincent, W.; Sauer, J.D.; Gibson, A. Distinct inflammatory and wound healing responses to complex caudal fin injuries of larval zebrafish. Elife., 2019, 8, e45976.
[http://dx.doi.org/10.7554/eLife.45976]
[43]
Lyon, M.S.; Wosiski-Kuhn, M.; Gillespie, R.; Caress, J.; Milligan, C. Inflammation, immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve, 2019, 59(1), 10-22.
[http://dx.doi.org/10.1002/mus.26289] [PMID: 29979464]
[44]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[45]
Nair, A.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm., 2016, 7(2), 27-31.
[http://dx.doi.org/10.4103/0976-0105.177703] [PMID: 27057123]
[46]
Tan, J.L.; Lash, B.; Karami, R.; Nayer, B.; Lu, Y.Z.; Piotto, C. Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol., 2021, 422, 4.
[47]
Mirza, R.E.; Fang, M.M.; Ennis, W.J.; Koh, T.J. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes, 2013, 62(7), 2579-2587.
[http://dx.doi.org/10.2337/db12-1450] [PMID: 23493576]
[48]
Shukla, S.K.; Sharma, A.K.; Gupta, V.; Yashavarddhan, M.H. Pharmacological control of inflammation in wound healing. J. Tissue Viability, 2019, 28(4), 218-222.
[http://dx.doi.org/10.1016/j.jtv.2019.09.002] [PMID: 31542301]
[49]
Furuyama, A.; Hosokawa, T.; Mochitate, K. Interleukin-1β and tumor necrosis factor-α have opposite effects on fibroblasts and epithelial cells during basement membrane formation. Matrix Biol., 2008, 27(5), 429-440.
[http://dx.doi.org/10.1016/j.matbio.2008.02.005] [PMID: 18434122]
[50]
Dai, J; Shen, J; Chai, Y; Chen, H. IL-1 β impaired diabetic wound healing by regulating MMP-2 and MMP-9 through the p38 pathway. Mediators Inflamm, 2021, 2021, 6645766.
[51]
Wu, JR; Lu, YC; Hung, SJ; Lin, JH; Chang, KC; Chen, JK Antimicrobial and immunomodulatory activity of herb extracts used in burn wound healing: “san Huang Powder. Evid Based Complement Alternat Med., 2021, 2021, 2900060.
[52]
Yao, Y.; Liu, T.; Yin, L.; Man, S.; Ye, S.; Ma, L. Polyphenol-Rich Extract from Litchi chinensis Seeds Alleviates Hypertension-Induced Renal Damage in Rats. J. Agric. Food Chem., 2021, 69(7), 2138-2148.
[http://dx.doi.org/10.1021/acs.jafc.0c07046] [PMID: 33470120]
[53]
Barchitta, M.; Maugeri, A.; Favara, G.; Magnano San Lio, R.; Evola, G.; Agodi, A.; Basile, G. Nutrition and wound healing: An overview focusing on the beneficial effects of curcumin. Int. J. Mol. Sci., 2019, 20(5), 1119.
[http://dx.doi.org/10.3390/ijms20051119] [PMID: 30841550]

© 2024 Bentham Science Publishers | Privacy Policy