Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Investigation of In Vitro Antioxidant and Hemoglobin Antiglycation Effect of Roasted and Unroasted Argania spinosa L. Seed Oil from Morocco

Author(s): Nour Elhouda Daoudi, Rhizlan Abdnim, Ghariba Elkhadraoui, Hassane Mekhfi, Abdelkhaleq Legssyer, Abderrahim Ziyyat and Mohamed Bnouham*

Volume 17, Issue 3, 2023

Published on: 10 August, 2023

Page: [182 - 190] Pages: 9

DOI: 10.2174/2212796817666230803141223

Price: $65

conference banner
Abstract

Background: Argania spinosa L. seed oil is a Moroccan endemic product that is used traditionally as an alternative treatment for diabetes.

Objective: The present work aims to evaluate the hemoglobin antiglycation and the antioxidant effect of roasted (Roil) and unroasted (UnRoil) Argan seed oil in vitro.

Methods: The antioxidant activity was evaluated by different methods (total antioxidant capacity by the ammonium molybdate, metal chelating activity, ferric reducing antioxidant power, 1, 1-diphenyl- 2- picrylhydrazyl free radical scavenging, and β-carotene bleaching test), and the protein antiglycation effect was tested using hemoglobin, in vitro.

Results: The results showed that both oils possess an important antioxidant effect and the roasting process did not influence the total antioxidant capacity, metal chelating activity, and β-carotene bleaching test. Although, it significantly influences the antiradical activity of Argania spinosa L. seed oil (p < 0.05) with IC50 values of 21.47 ± 0.076 μg/mL for Roil and 4.01 ± 1.13 μg/mL for UnRoil. Besides, Roil and UnRoil it significantly inhibit the hemoglobin glycation activity, with IC50 values of 1.09 ± 0.31 and 0.16 ± 0.031 mg/ml respectively. Moreover, it was noted that UnRoil has a lower IC50 value than Roil, which means that UnRoil has a more potent activity than Roil (p < 0.05).

Conclusion: Argania spinosa L. seed oil is an essential source of natural antioxidants and hemoglobin antiglycation that plays a key role in scavenging of free radicals and might be used for reducing the development of diabetic complications.

Keywords: Diabetes, Argania spinosa, roasting process, protein glycation, hemoglobin antiglycation, antioxidant, in vitro.

Graphical Abstract
[1]
Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr Cardiol Rep 2019; 21(4): 21.
[http://dx.doi.org/10.1007/s11886-019-1107-y] [PMID: 30828746]
[2]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[3]
Gomez-Perez FJ, Aguilar-Salinas CA, Almeda-Valdes P, Cuevas-Ramos D, Lerman Garber I, Rull JA. HbA1c for the diagnosis of diabe-tes mellitus in a developing country. A position article. Arch Med Res 2010; 41(4): 302-8.
[http://dx.doi.org/10.1016/j.arcmed.2010.05.007] [PMID: 20637376]
[4]
Urios P, Grigorova-Borsoss A-M, Peyroux J, Sternberg M. Inhibition of advanced glycation by flavonoids. Nutritional implications in the prevention of diabetes complications? J Soc Biol 2007; 201(2): 189-98.
[http://dx.doi.org/10.1051/jbio:2007024] [PMID: 17978753]
[5]
Takeuchi M, Yamagishi S. TAGE (toxic AGEs) hypothesis in various chronic diseases. Med Hypotheses 2004; 63(3): 449-52.
[http://dx.doi.org/10.1016/j.mehy.2004.02.042] [PMID: 15288366]
[6]
Guillet C. Involvement of glycation end products in diabetes-related complications. Nutr Clin Metab 2010; 24(3): 109-14.
[http://dx.doi.org/10.1016/j.nupar.2010.07.002]
[7]
Elosta A, Ghous T, Ahmed N. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications. Curr Diabetes Rev 2012; 8(2): 92-108.
[http://dx.doi.org/10.2174/157339912799424528] [PMID: 22268395]
[8]
López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta 2013; 763: 1-10.
[http://dx.doi.org/10.1016/j.aca.2012.11.051] [PMID: 23340280]
[9]
Hmamouchi M. Moroccan medicinal and aromatic plants. 2001. Available from: [https://agris.fao.org/agris-search/search.do? recor-dID=XF2015041227
[10]
Moukal A. The argan tree, Argania spinosa L. (skeels), therapeutic, cosmetic and food use. Phytotherapie 2004; 2(5): 135-41.
[http://dx.doi.org/10.1007/s10298-004-0041-2]
[11]
Charrouf Z, Guillaume D, Driouich A. The argan tree, an asset for Morocco. Biofutur 2002; 220: 54-7.
[12]
Drissi A, Girona J, Cherki M, et al. Evidence of hypolipemiant and antioxidant properties of argan oil derived from the argan tree (Ar-gania spinosa)*1. Clin Nutr 2004; 23(5): 1159-66.
[http://dx.doi.org/10.1016/j.clnu.2004.03.003] [PMID: 15380909]
[13]
Kamal R, Kharbach M, Vander Heyden Y, et al. In vivo anti‐inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil ( Argania spinosa L.), obtained by two extraction methods. J Food Biochem 2019; 43(12): e13066.
[http://dx.doi.org/10.1111/jfbc.13066] [PMID: 31573102]
[14]
Daoudi NE. Evaluation of toxicity, nephroprotective and hepatoprotective activities of Argan oil on CCl4-induced nephrotoxicity and hepatotoxicity in Wistar rats. AJMAP 2021; 7(3): 438-64.
[http://dx.doi.org/10.48347/IMIST.PRSM/ajmap-v7i3.28408]
[15]
Berrougui H, de Sotomayor MA, Pérez-Guerrero C, et al. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats. Br J Nutr 2004; 92(6): 921-9.
[http://dx.doi.org/10.1079/BJN20041293] [PMID: 15613254]
[16]
Adlouni A, Christon R, Cherki M, Khalil A, ElMessal M. The nutritional benefits of Argan oil in obesity risk prevention. Atheroscler Suppl 2008; 9(1): 137-8.
[http://dx.doi.org/10.1016/S1567-5688(08)70554-3]
[17]
Berrougui H, Ettaib A, Gonzalez MDH, Sotomayor MA, Bennani-Kabchi N, Hmamouchi M. Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. J Ethnopharmacol 2003; 89(1): 15-8.
[http://dx.doi.org/10.1016/S0378-8741(03)00176-4] [PMID: 14522427]
[18]
Khallouki F, Younos C, Soulimani R, et al. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squa-lene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur J Cancer Prev 2003; 12(1): 67-75.
[http://dx.doi.org/10.1097/00008469-200302000-00011] [PMID: 12548113]
[19]
Mekhfi H, Gadi D, Bnouham M, Ziyyat A, Legssyer A, Aziz M. Effect of argan oil on platelet aggregation and bleeding time: A beneficial nutritional property. J Complement Integr Med 2008; 5(1)
[http://dx.doi.org/10.2202/1553-3840.1164]
[20]
Bnouham M, Bellahcen S, Benalla W, Legssyer A, Ziyyat A, Mekhfi H. Antidiabetic activity assessment of Argania spinosa oil. J Complement Integr Med 2008; 5(1)
[http://dx.doi.org/10.2202/1553-3840.1180]
[21]
Bellahcen S, Hakkou Z, Ziyyat A, et al. Antidiabetic and antihypertensive effect of Virgin Argan Oil in model of neonatal streptozotocin-induced diabetic and l-nitroarginine methylester (l-NAME) hypertensive rats. J Complement Integr Med 2013; 10(1)
[http://dx.doi.org/10.1515/jcim-2013-0008] [PMID: 23836726]
[22]
Daoudi NE, Bouhrim M, Ouassou H, et al. Inhibitory effect of roasted/unroasted Argania spinosa seeds oil on α- glucosidase, α-amylase and intestinal glucose absorption activities. S Afr J Bot 2020; 135: 413-20.
[http://dx.doi.org/10.1016/j.sajb.2020.09.020]
[23]
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 1999; 269(2): 337-41.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[24]
Gulcin İ, Buyukokuroglu ME, Kufrevioglu OI. Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 2003; 34(4): 278-81.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00042.x] [PMID: 12662350]
[25]
Karagözler AA, Erdağ B, Emek YÇ, Uygun DA. Antioxidant activity and proline content of leaf extracts from Dorystoechas hastata. Food Chem 2008; 111(2): 400-7.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.089] [PMID: 26047442]
[26]
Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 1998; 76(2): 270-6.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199802)76:2<270:AID-JSFA945>3.0.CO;2-9]
[27]
Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 2006; 95(2): 200-4.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.031]
[28]
Chauhan B, Ali Z, Naseer MA, Singh R. Pharmacological Activity of a Polyherbal Formulation by Haemoglobin Glycosylation Assay. J Drug Deliv Ther 2019; 9(2): 57-60.
[http://dx.doi.org/10.22270/jddt.v9i2.2472]
[29]
World Diabetes Day Over 2 Million Moroccans Aged 25 and Older Are Diabetic. 2021. Available from: [https://www.maroc.ma/en/news/world-diabetes-day-over-2-million-moroccans-aged-25-and-older-are-diabetic
[30]
Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Mo-rocco. J Ethnopharmacol 1997; 58(1): 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[31]
Bnouham M, Mekhfi H, Legssyer A, Ziyyat A. Ethnopharmacology Forum Medicinal plants used in the treatment of diabetes in Moroc-co. Int J Diabetes Metab 2002; 10(1): 33-50.
[32]
Eddouks M, Maghrani M, Lemhadri A, Ouahidi ML, Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol 2002; 82(2-3): 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[33]
El Monfalouti H, Guillaume D, Denhez C, Charrouf Z. Therapeutic potential of argan oil: A review. J Pharm Pharmacol 2010; 62(12): 1669-75.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01190.x] [PMID: 21054392]
[34]
El Adib S, Aissi O, Charrouf Z, Ben Jeddi F, Messaoud C. Argania spinosa var. mutica and var. apiculata: variation of fatty-acid compo-sition, phenolic content, and antioxidant and α-amylase-inhibitory activities among varieties, organs, and development stages. Chem Biodivers 2015; 12(9): 1322-38.
[http://dx.doi.org/10.1002/cbdv.201400328] [PMID: 26363877]
[35]
Loizzo MR, Saab AM, Tundis R, et al. in vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. J Ethnopharmacol 2008; 119(1): 109-16.
[http://dx.doi.org/10.1016/j.jep.2008.06.003] [PMID: 18601990]
[36]
Bouhrim M, Ouassou H, Boutahiri S, et al. Opuntia dillenii (Ker Gawl.) Haw., seeds oil antidiabetic potential using in vivo, in vitro, in situ, and ex vivo approaches to reveal its underlying mechanism of action. Molecules 2021; 26(6): 6.
[http://dx.doi.org/10.3390/molecules26061677] [PMID: 33802826]
[37]
Bhutkar M, Bhinge S, Randive D, Wadkar G, Todkar S. Studies on in-vitro antiglycation potential of some indigenous antidiabetic plants. GJPP 2017; 3(5): 127-30.
[http://dx.doi.org/10.19080/GJPPS.2017.03.555624]
[38]
Durmaz G, Gökmen V. Impacts of roasting oily seeds and nuts on their extracted oils. Lipid Technol 2010; 22(8): 179-82.
[http://dx.doi.org/10.1002/lite.201000042]
[39]
Chen H, Virk MS, Chen F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depend-ing on their reducing powers and structures. Int J Food Sci Nutr 2016; 67(4): 400-11.
[http://dx.doi.org/10.3109/09637486.2016.1166187] [PMID: 27102241]
[40]
Ben Mansour R, Ben Slema H, Falleh H, et al. Phytochemical characteristics, antioxidant, and health properties of roasted and unroasted Algerian argan (Argania spinosa) oil. J Food Biochem 2018; 42(5): e12562.
[http://dx.doi.org/10.1111/jfbc.12562]
[41]
Prasanna G, Saraswathi NT. Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin. Int J Biol Macromol 2017; 95: 121-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.035] [PMID: 27845223]
[42]
Mohd Dom NS, Yahaya N, Adam Z, Nik Abd Rahman NMA, Hamid M. Antiglycation and antioxidant properties of Ficus deltoidea varieties. Evid Based Complement Alternat Med 2020; 2020: 6374632.
[http://dx.doi.org/10.1155/2020/6374632] [PMID: 32831872]
[43]
Traber MG, Stevens JF. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic Biol Med 2011; 51(5): 1000-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.017] [PMID: 21664268]
[44]
Beyer RE. The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 1994; 26(4): 349-58.
[http://dx.doi.org/10.1007/BF00762775] [PMID: 7844109]
[45]
Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ Med J 2014; 14(2): e157-65.
[PMID: 24790736]

Rights & Permissions Print Cite