Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Isolation and Biochemical Characterization of Ananassains, Cysteine Peptidases from the Fruits of Ananas ananassoides

Author(s): Adriana Okayama, Hamilton Cabral and Bonilla-Rodriguez Gustavo Orlando*

Volume 17, Issue 3, 2023

Published on: 10 August, 2023

Page: [170 - 181] Pages: 12

DOI: 10.2174/2212796817666230801121826

Price: $65

conference banner
Abstract

Aims: This work performed a preliminary characterization of two new peptidases from Ananas ananassoides.

Background: Proteolytic enzymes, also known as peptidases, are found in all living things and play critical physiological roles in metabolism and cellular regulation. They account for roughly 60% of the enzymes used in industry and have high proteolytic activity, such as papain from Carica papaya latex and stem and fruit bromelains from the edible pineapple Ananas comosus.

Objective: The wild pineapple Ananas ananassoides contains proteolytic enzymes, which motivated this study due to the potential applications of this type of enzyme.

Methods: The fruit and stem of A. ananassoides were blended, clarified, and purified using chromatography (SP-Sepharose and Sephadex G-50). The molecular mass was determined using mass spectrometry (M.S.), and the N-terminal sequences were obtained and compared to other Bromeliaceae proteases. Fluorogenic substrates were used to determine the kinetic parameters.

Results: As determined by M.S., the fruit and stem contain cysteine-peptidases with Mr of 27,329.6 and 23,912.5 Da, respectively, values that are very similar to those found in edible pineapple bromelains. Despite Mr and carbohydrate composition differences, both proteases have similar optimum pH values. They have similar temperature effects, though the stem protease is more thermally stable. Both proteases have a stronger preference for hydrophobic, polar, and basic residues. Both proteases hydrolyzed substrates containing polar and basic residues.

Conclusion: A comparison of the N-terminal sequences (AVPQIIDW for fruit ananassains and AVPEIIDW for stem ananassains) reveals a high degree of homology when compared to other Bromeliaceae proteases such as papain.

Keywords: Cysteine peptidase, Ananas ananassoides, fluorogenic substrates, protease, Bromeliaceae, protein isolation.

Graphical Abstract
[1]
Neurath H. Evolution of proteolytic enzymes. Science 1984; 224(4647): 350-7.
[http://dx.doi.org/10.1126/science.6369538]
[2]
Sharma M, Gat Y, Arya S, Kumar V, Panghal A, Kumar A. A review on microbial alkaline protease: An essential tool for various indus-trial approaches. Ind Biotechnol 2019; 15(2): 69-78.
[http://dx.doi.org/10.1089/ind.2018.0032]
[3]
Neurath H. The diversity of proteolytic enzymes. In: Bond JS, Beynon RJ, Eds. Proteolytic Enzymes: A Practical approach In: . 1989; pp. 1-2.
[4]
Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2014; 42(D1): D503-9.
[http://dx.doi.org/10.1093/nar/gkt953] [PMID: 24157837]
[5]
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62(3): 597-635.
[http://dx.doi.org/10.1128/MMBR.62.3.597-635.1998] [PMID: 9729602]
[6]
Salese L, Liggieri CS, Bernik DL, Bruno MA. Characterization of the fruit proteolytic system of Bromelia serra Griseb. (Bromeliaceae) and its application in bioactive peptides release. J Food Biochem 2022; 46(1): e14016.
[http://dx.doi.org/10.1111/jfbc.14016] [PMID: 34811749]
[7]
Cabral H, Ruiz MT, Carareto CM, Bonilla-Rodriguez G. A plant proteinase, extracted from Bromelia fastuosa, as an alternative to proteinase K for DNA extraction. Drosoph Inf Serv 2000; 83: 178-85.
[8]
Silva-López RE, Gonçalves RN. Therapeutic proteases from plants: Biopharmaceuticals with multiple applications. J Appl Biotechnol Bioeng 2019; 6(2): 101-9.
[http://dx.doi.org/10.15406/jabb.2019.06.00180]
[9]
Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 2016; 5(3): 283-8.
[http://dx.doi.org/10.3892/br.2016.720] [PMID: 27602208]
[10]
Pavan R, Jain S. Shraddha, Kumar A. Properties and therapeutic application of bromelain: A review. Biotechnol Res Int 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/976203] [PMID: 23304525]
[11]
Ferreira FR, Cabral JRS. Pineapple germplasm in Brazil. Acta Hortic 1993; (334): 23-6.
[http://dx.doi.org/10.17660/ActaHortic.1993.334.1]
[12]
Medina J C. Pineapple: Culture, raw material, processing and economic aspects. (2nd ed..), Campinas, SP: ITAL 1987.
[13]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2): 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[14]
See YP, Jackowski G. Estimating molecular weight of polypeptides by SDS gel electrophoresis. In: Creighton TE, Ed. Protein structure: A practical approach. Oxford: IRL Press 1990; pp. 1-22.
[15]
Sarath G, De La Motte RB, Wagner FW. Protease assay methods.In: Beynon RJ, Bond JS, Eds Proteolytic Enzymes: A Practical Approach Oxford University Press. 1989; pp. 25-55.
[16]
Baeza G, Correa D, Salas C. Proteolytic enzymes inCarica candamarcensis. J Sci Food Agric 1990; 51(1): 1-9.
[http://dx.doi.org/10.1002/jsfa.2740510102]
[17]
Cabral H, Leopoldino A, Tajara E, et al. Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa. Protein Pept Lett 2006; 13(1): 83-9.
[http://dx.doi.org/10.2174/092986606774502072] [PMID: 16454675]
[18]
Beynon RJ, Easterby JS. Buffer Solutions: The Basics. England:Oxford 1996.
[19]
Chagas JR, Juliano L, Prado ES. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem 1991; 192(2): 419-25.
[http://dx.doi.org/10.1016/0003-2697(91)90558-B] [PMID: 2035841]
[20]
Carmona AK, Juliano MA, Juliano L. The use of fluorescence resonance energy transfer (FRET) peptides for measurement of clinically important proteolytic enzymes. An Acad Bras Cienc 2009; 81(3): 381-92.
[21]
Leatherbarrow RJ. Grafit. 2001. Available from: [https://m.imdb.com/title/tt0864575/mediaviewer/rm1341681152
[22]
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28(3): 350-6.
[http://dx.doi.org/10.1021/ac60111a017]
[23]
Meza-Espinoza L, de los Ángeles Vivar-Vera M, de Lourdes García-Magaña M, et al. Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci Biotechnol 2017; 27(2): 509-17.
[http://dx.doi.org/10.1007/s10068-017-0244-6] [PMID: 30263775]
[24]
Payrol JA, Obregón WD, Trejo SA, Caffini NO. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. Protein J 2008; 27(2): 88-96.
[http://dx.doi.org/10.1007/s10930-007-9111-2] [PMID: 17932734]
[25]
Herrera MDG, Luaces PA, Liggieri C, Bruno M, Avanza MV. Proteolytic characterization of a novel enzymatic extract from Bromelia serra leaves. An Acad Bras Cienc 2022; 94(4): e20201871.
[26]
Vallés D, Cantera AMB, Antiacanthain A, Antiacanthain A. New proteases isolated from bromelia antiacantha Bertol. (Bromeliaceae). Int J Biol Macromol 2018; 113: 916-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.025] [PMID: 29522824]
[27]
Bruno MA, Pardo MF, Caffini NO, López LMI. Hieronymain I, a new cysteine peptidase isolated from unripe fruits of Bromelia hieronymi Mez (Bromeliaceae). J Protein Chem 2003; 22(2): 127-34.
[http://dx.doi.org/10.1023/A:1023418812832] [PMID: 12760417]
[28]
Kaschani F, Shabab M, Bozkurt T, et al. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 2010; 154(4): 1794-804.
[http://dx.doi.org/10.1104/pp.110.158030] [PMID: 20940351]
[29]
Ferreira JF, Santana JCC, Tambourgi EB. The effect of pH on bromelain partition from Ananas comosus by PEG4000/phosphate ATPS. Braz Arch Biol Technol 2011; 54(1): 125-32.
[http://dx.doi.org/10.1590/S1516-89132011000100017]
[30]
Ritonja A, Rowan AD, Buttle DJ, Rawlings ND, Turk V, Barrett AJ. Stem bromelain: Amino acid sequence and implications for weak binding of cystatin. FEBS Lett 1989; 247(2): 419-24.
[http://dx.doi.org/10.1016/0014-5793(89)81383-3] [PMID: 2714443]
[31]
Napper AD, Bennett SP, Borowski M, et al. Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem J 1994; 301(3): 727-35.
[http://dx.doi.org/10.1042/bj3010727] [PMID: 8053898]
[32]
López LMI, Sequeiros C, Natalucci CL, et al. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) harms (Bromeliaceae). Protein Expr Purif 2000; 18(2): 133-40.
[http://dx.doi.org/10.1006/prep.1999.1165] [PMID: 10686143]
[33]
Pérez A, Carvajal C, Trejo S, et al. Penduliflorain I: A cysteine protease isolated from Hohenbergia penduliflora (A.Rich.) Mez (Brome-liaceae). Protein J 2010; 29(4): 225-33.
[http://dx.doi.org/10.1007/s10930-010-9243-7] [PMID: 20521163]
[34]
Goto K, Murachi T, Takahashi N. Structural studies on stem bromelain isolation, characterization and alignment of the cyanogen bro-mide fragments. FEBS Lett 1976; 62(1): 93-5.
[http://dx.doi.org/10.1016/0014-5793(76)80024-5] [PMID: 1248643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy