Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Antidiabetic and Antidyslipidemic Effects of Artemisia mesatlantica, an Endemic Plant from Morocco

Author(s): Adil Qabouche, Ayoub Amssayef, Ismail Bouadid, Nadia Lahrach, Ahmed EL-Haidani and Mohamed Eddouks*

Volume 23, Issue 1, 2023

Published on: 15 August, 2023

Page: [50 - 63] Pages: 14

DOI: 10.2174/1871529X23666230803113616

Price: $65

conference banner
Abstract

Aims: The study aimed to assess the antihyperglycemic and antidyslipidemic activities of Artemisia mesatlantica.

Background: Artemisia mesatlantica is an endemic plant of Morocco used in traditional medicine as an alternative treatment for diabetes.

Objective: The study was designed to examine the antihyperglycemic and antidyslipidemicability of aqueous extract of Artemisia mesatlantica (AMAE) in experimental animal models.

Methods: The effect of the single and repeated oral administration (7 days of treatment) of AMAE (60 mg/kg) on blood glucose and lipid profile were assessed in normal and streptozotocin-induced diabetic rats. Furthermore, to confirm the antidyslipidemic effect of Artemisia mesatlantica, a model of hyperlipidemia induced by tyloxapol (Triton WR-1339) in rats was used.

Results: The AMAE (60 mg/kg) was able to significantly reduce glycaemia, improve lipid profile and increase hepatic glycogen content in STZ-induced diabetic rats. In addition, pretreatment of rats for 7 consecutive days with an aqueous extract of Artemisia mesatlantica (600 mg/kg) prior to tyloxapol injection prevented increases in plasma levels of total cholesterol, triglycerides and LDL-c.

Conclusion: From these observed results, it can be deduced that Artemisia mesatlantica possesses remarkable antidiabetic and antihyperlipidemic properties.

Keywords: Artemisia mesatlantica, antidiabetic effect, antidyslipidemic effect, streptozotocin, triton-WR-1339.

[1]
Valiathan, M.S. Healing plants. Curr. Sci., 1998, 75(11), 1122-1127.
[2]
Okur, M.E.; Karantas, I.D.; Siafaka, P.I. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta. Pharm. Sci., 2017, 55, 1.
[3]
IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res. Clin. Pract., 2015, 109(3), 461-465.
[http://dx.doi.org/10.1016/j.diabres.2015.05.037] [PMID: 26119773]
[4]
Vergès, B. Hyperlipidémie des diabétiques. EMC - Endocrinologie, 2004, 1(2), 106-116.
[http://dx.doi.org/10.1016/j.emcend.2004.02.001]
[5]
Kirtikar, K.R.; Basu, B.D. Indianmedicinal plants international book distributors; Deharadun: India, 1995, pp. 1-456.
[6]
Nadkarni, K.; Nadkarni, A.K. Indian materiamedica Popular Prakashan Pvt. Ltd: Bombay, 1976, pp. 1-7.
[7]
Duraipandiyan, V.; Al-Dhabi, N.A.; Stephen Irudayaraj, S.; Sunil, C. Hypolipidemic activity of friedelin isolated from azima tetracantha in hyperlipidemic rats. Rev. Bras. Farmacogn., 2016, 26(1), 89-93.
[http://dx.doi.org/10.1016/j.bjp.2015.07.025]
[8]
Marco, J.A.; Barbera, O. Natural products from the genus Artemisia L. Studies Nat. Prod. Chem., 1990, 7, 201-264.
[9]
Ghazanfar, K.; Ganai, B.A.; Akbar, S.; Mubashir, K.; Dar, S.A.; Dar, M.Y.; Tantry, M.A. Antidiabetic activity of artemisia amygdalina decne in streptozotocin induced diabetic rats. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/185676] [PMID: 24967338]
[10]
Biodiversity Inventory. In: Project for the development and protection of forests in the province of Ifrane; Ifrane National Park: Morocco, 2005.
[11]
Ouyahya, A. Étude taxinomique de 6 armoises endémiques du Maroc (Doctoral dissertation, Thesis, Fcaulty of Science St Jérôme. Marseille: France, 1980.
[12]
Ghazi, S.; Rouani, M.; Sekkat, Z.L.; Il Idrissi, A.; Arahou, M.; Hassikou, R. Activité anticandidosique de divers extraits d’Artemisia mesatlantica M. Phytotherapie, 2016, 14(5), 293-303.
[http://dx.doi.org/10.1007/s10298-015-0998-z]
[13]
Bencheqroun, H.K.; Ghanmi, M.; Satrani, B.; Aafi, A.; Chaouch, A. Activité antimicrobienne des huiles essentielles d’Artemisia mesatlantica, plante endémique du Maroc. Bull. Soc. R. Sci. Liege, 2012, 81, 4-21.
[14]
Hebi, M.; Farid, O.; Ajebli, M.; Eddouks, M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2017, 87, 230-239.
[http://dx.doi.org/10.1016/j.biopha.2016.12.111] [PMID: 28061406]
[15]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of mentha suaveolens ehrh in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[16]
Bouhlali, E.D.T.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolic constituents of moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[17]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[18]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric., 1978, 29(9), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[19]
Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol., 2004, 92(2), 201-208.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[20]
Organization for Economic Cooperation and Development. OECD guideline 423 In: Oral Toxicity Study in Rodents; OECD guideline for the testing of chemicals, , 2001; 423, p. pp. 1-8.
[21]
Nishad, D.K.; Mittal, G.; Chaurasia, O.P.; Kumar, R.; Bhatnagar, A.; Singh, S.B.; Ali, R.; Ali, R.; Jaimini, A. Acute and sub acute toxicity and efficacy studies of Hippophae rhamnoides based herbal antioxidant supplement. Indian J. Pharmacol., 2012, 44(4), 504-508.
[http://dx.doi.org/10.4103/0253-7613.99329] [PMID: 23087514]
[22]
Ajebli, M.; Eddouks, M.; Buxussempervirens, L. Improves streptozotocin induced diabetes mellitus in rats. J. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17, 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[23]
Carroll, N.V.; Longley, R.W.; Roe, J.H. The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem., 1956, 220(2), 583-593.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[24]
de Sousa, J.A.; Pereira, P.; Allgayer, M.C.; Marroni, N.P.; de Barros Falcão Ferraz, A.; Picada, J.N. Evaluation of dna damage in wistar rat tissues with hyperlipidemia induced by tyloxapol. Exp. Mol. Pathol., 2017, 103(1), 51-55.
[http://dx.doi.org/10.1016/j.yexmp.2017.06.009] [PMID: 28684216]
[25]
Rasouli, M.; Tahmouri, H.; Mosavi-Mehr, M. The long term kinetic of plasma lipids and lipoproteins in tyloxapol injected rats. J. Clin. Diagn. Res., 2016, 10(6), BF01-BF05.
[http://dx.doi.org/10.7860/JCDR/2016/18890.7993] [PMID: 27504278]
[26]
Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int. J. Mol. Sci., 2021, 22(14), 7644.
[http://dx.doi.org/10.3390/ijms22147644] [PMID: 34299261]
[27]
Alimohammadi, S.; Hobbenaghi, R.; Javanbakht, J.; Kheradmand, D.; Mortezaee, R.; Tavakoli, M.; Khadivar, F.; Akbari, H. Retracted article: protective and antidiabetic effects of extract from nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: An experimental study with histopathological evaluation. Diagn. Pathol., 2013, 8(1), 137.
[http://dx.doi.org/10.1186/1746-1596-8-137] [PMID: 23947821]
[28]
Gillery, P.; Monboisse, J.C.; Maquart, F.X.; Borel, J.P. Does oxygen free radical increased formation explain long term complications of diabetes mellitus? Med. Hypotheses, 1989, 29(1), 47-50.
[http://dx.doi.org/10.1016/0306-9877(89)90167-9] [PMID: 2664434]
[29]
Simonson, D.C.; Ferrannini, E.; Bevilacqua, S.; Smith, D.; Barrett, E.; Carlson, R.; DeFronzo, R.A. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes, 1984, 33(9), 838-845.
[http://dx.doi.org/10.2337/diab.33.9.838] [PMID: 6432610]
[30]
Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: A review. Molecules, 2018, 23(1), 105.
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[31]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on diabetes mellitus and its complications: A systematic review. Curr. Diab. Rep., 2018, 18(10), 72.
[http://dx.doi.org/10.1007/s11892-018-1042-0] [PMID: 30105479]
[32]
de la Garza, A.L.; Etxeberria, U.; Lostao, M.P.; San Román, B.; Barrenetxe, J.; Martínez, J.A.; Milagro, F.I. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. J. Agric. Food Chem., 2013, 61(49), 12012-12019.
[http://dx.doi.org/10.1021/jf4021569] [PMID: 24261475]
[33]
Eddouks, M.; Azzane, A.; Farid, O. Antihyperglycemic and antidyslipidemic effects of Artemisia arborescens aqueous extract in streptozotocin-induced diabetic rat. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(2), 120-138.
[http://dx.doi.org/10.2174/1871525720666220425094135] [PMID: 35469581]
[34]
Amssayef, A.; Azzaoui, B.; Bouadid, I.; Eddouks, M. Antihyperglycemic activity of aqueous extract of euphorbia guyoniana in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(4), 225-234.
[http://dx.doi.org/10.2174/1871529X21666211214161639] [PMID: 34906066]
[35]
Hicks, J.; Wartchow, E.; Mierau, G. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct. Pathol., 2011, 35(5), 183-196.
[http://dx.doi.org/10.3109/01913123.2011.601404] [PMID: 21910565]
[36]
Golden, S.; Wals, P.A.; Okajima, F.; Katz, J. Glycogen synthesis by hepatocytes from diabetic rats. Biochem. J., 1979, 182(3), 727-734.
[http://dx.doi.org/10.1042/bj1820727] [PMID: 160223]
[37]
Grover, J.K.; Vats, V.; Yadav, S. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol. Cell. Biochem., 2002, 241(1/2), 53-59.
[http://dx.doi.org/10.1023/A:1020870526014] [PMID: 12482025]
[38]
Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol., 2005, 4(1), 5-11.
[http://dx.doi.org/10.1186/1475-2840-4-5]
[39]
Amine, S.; Azzouzi, H.E.; Radi, F. KHiiya, Z.; Amalich, S.; Sekkate, C.H; Zair, T. Phenolic characterization and antioxidant activity of two endemic wormwood species of morocco: artemisia ifranensis j. didier and Artemisia mesatlantica. Moroccan J. Chem., 2018, 6(1), 6-1.
[40]
Nie, C.; Zhang, F.; Ma, X.; Guo, R.; Zhou, S.; Zhao, L.; Xu, H.; Xiao, X.; Wang, Z. Determination of quality markers of Xuezhiling tablet for hyperlipidemia treatment. Phytomedicine, 2018, 44, 231-238.
[http://dx.doi.org/10.1016/j.phymed.2018.03.004] [PMID: 29631806]
[41]
Saeed, A.; Feofanova, E.; Yu, B.; Virani, S.; Nambi, V.; Coresh, J.; Guild, C.; Sun, W.; Boerwinkle, E.; Ballantyne, C.; Hoogeveen, R. Association of elevated triglycerides and atherogenic lipoproteins with incident cardiovascular diseases: Insights from genetic data in the atherosclerosis risk in communities study. J. Clin. Lipidol., 2017, 11(3), 788.
[http://dx.doi.org/10.1016/j.jacl.2017.04.028] [PMID: 28506382]
[42]
WHO. Raised Cholesterol; WHO: Geneva, Switzerland, 2015.
[43]
Sultan, S.; D’Souza, A.; Zabetakis, I.; Lordan, R.; Tsoupras, A.; Kavanagh, E.P.; Hynes, N. Statins: Rationale, mode of action, and side effects.The Impact of Nutrition and Statins on Cardiovascular Diseases; Academic Press, 2019, pp. 171-200.
[http://dx.doi.org/10.1016/B978-0-12-813792-5.00006-9]
[44]
Ghatak, S.B.; Panchal, S.J. Anti-hyperlipidemic activity of oryzanol, isolated from crude rice bran oil, on Triton WR-1339-induced acute hyperlipidemia in rats. Rev. Bras. Farmacogn., 2012, 22(3), 642-648.
[http://dx.doi.org/10.1590/S0102-695X2012005000023]
[45]
Zarzecki, M.S.; Araujo, S.M.; Bortolotto, V.C.; de Paula, M.T.; Jesse, C.R.; Prigol, M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep., 2014, 1, 200-208.
[http://dx.doi.org/10.1016/j.toxrep.2014.02.003] [PMID: 28962239]
[46]
Packiam, C.S.; Margret, J.; Meenakshi, K. Potential of Ascidia sydneiensis against triton induced hyperlipidemia. EJPMR, 2017, 4(1), 356-364.
[47]
Goldfarb, S. Rapid increase in hepatic HMG CoA reductase activity and in vivo cholesterol synthesis after Triton WR 1339 injection. J. Lipid Res., 1978, 19(4), 489-494.
[http://dx.doi.org/10.1016/S0022-2275(20)40720-5] [PMID: 659987]
[48]
Kolawole, O.; Kolawole, S.O.; Ayankunle, A.A.; Olaniran, I.O. Methanol leaf extract of Persea americana protects rats against cholesterol-induced hyperlipidemia. Br. J. Med. Med. Res., 2012, 2(2), 235-242.
[http://dx.doi.org/10.9734/BJMMR/2012/933]
[49]
Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science, 1986, 232(4746), 34-47.
[http://dx.doi.org/10.1126/science.3513311] [PMID: 3513311]
[50]
Wilson, P.W.; Abbott, R.D.; Castelli, W.P. High density lipoprotein cholesterol and mortality. the framingham heart study. arteriosclerosis: An official journal of the american heart association. Inc, 1988, 8(6), 737-741.
[51]
Balzan, S.; Hernandes, A.; Reichert, C.L.; Donaduzzi, C.; Pires, V.A.; Gasparotto, A., Jr; Cardozo, E.L. Jr Lipid-lowering effects of standardized extracts of Ilex paraguariensis in high-fat-diet rats. Fitoterapia, 2013, 86, 115-122.
[http://dx.doi.org/10.1016/j.fitote.2013.02.008] [PMID: 23422228]
[52]
Ng, C.; Shih, D.; Hama, S.; Villa, N.; Navab, M.; Reddy, S. The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med., 2005, 38(2), 153-163.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.035] [PMID: 15607899]
[53]
Desu, B.S.R.; Saileela, C.H. Anti-hyperlipidemic activity of methanolic extract of rhinacanthusnasutus. Int. J. Res. Pharm. Chem., 2013, 3(3), 708-711.
[54]
Kruit, J.K.; Groen, A.K.; van Berkel, T.J.; Kuipers, F. Emerging roles of the intestine in control of cholesterol metabolism. World J. Gastroenterol., 2006, 12(40), 6429-6439.
[http://dx.doi.org/10.3748/wjg.v12.i40.6429] [PMID: 17072974]
[55]
Amssayef, A.; Bouadid, I.; Eddouks, M. Oakmoss exhibits antihyperglycemic activity in Streptozotocin-Induced Diabetic Rats. Cardiovasc. Haematol. Disorders-Drug Targets, 2022, 22(1), 42-51.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy