Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

A Comprehensive Review on Prospects of Polymeric Nanoparticles for Treatment of Diabetes Mellitus: Receptors-Ligands, In vitro & In vivo Studies

Author(s): Arinjay Jain and Shilpa Dawre*

Volume 18, Issue 4, 2024

Published on: 22 September, 2023

Page: [457 - 478] Pages: 22

DOI: 10.2174/1872210517666230803091245

Price: $65

Open Access Journals Promotions 2
Abstract

As per International Diabetes Federation Report 2022, worldwide diabetes mellitus (DM) caused 6.7M moralities and ~537M adults suffering from diabetes mellitus. It is a chronic condition due to β-cell destruction or insulin resistance that leads to insulin deficiency. This review discusses Type-1 DM and Type-2 DM pathophysiology in detail, with challenges in management and treatment. The toxicity issues of conventional drugs and insulin injections are complex to manage. Thus, there is a need for technological intervention. In recent years, nanotechnology has found a fruitful advancement of novel drug delivery systems that might potentially increase the efficacy of anti-diabetic drugs. Amongst nano-formulations, polymeric nanoparticles have been studied to enhance the bioavailability and efficacy of anti-diabetic drugs and insulin. In the present review, we summarized polymeric nanoparticles with different polymers utilized to deliver anti-diabetic drugs with in vitro and in vivo studies. Furthermore, this review also includes the role of receptors and ligands in diabetes mellitus and the utilization of receptor-ligand interaction to develop targeted nanoparticles. Additionally, we discussed the utility of nanoparticles for the delivery of phytoconstituents which aids in protecting the oxidative stress generated during diabetes mellitus. Atlast, this article also comprises of numerous patents that have been filed or granted for the delivery of antidiabetic and anticancer molecules for the treatment of diabetes mellitus and pancreatic cancer.

Keywords: Polymeric nanoparticles, diabetes mellitus, T1DM, T2DM, polymers, diabetes mellitus.

Graphical Abstract
[1]
Magliano D, Boyko EJ. IDF Diabetes Atlas. (10th ed.), International Diabetes Federation 2021.
[2]
Galaviz KI, Narayan KMV, Lobelo F, Weber MB. Lifestyle and the prevention of type 2 diabetes: A status report. Am J Lifestyle Med 2018; 12(1): 4-20.
[http://dx.doi.org/10.1177/1559827615619159] [PMID: 30202378]
[3]
Rao S, Lau A, So HC. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care 2020; 43(7): 1416-26.
[http://dx.doi.org/10.2337/dc20-0643] [PMID: 32430459]
[4]
Reshad RAI, Riana SH, Chowdhury MA, et al. Diabetes in COVID-19 patients: Challenges and possible management strategies. Egypt J Bronchol 2021; 15(1): 53.
[http://dx.doi.org/10.1186/s43168-021-00099-2]
[5]
Cousin E, Schmidt MI, Ong KL, et al. Burden of diabetes and hyperglycaemia in adults in the Americas, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol 2022; 10(9): 655-67.
[http://dx.doi.org/10.1016/S2213-8587(22)00186-3] [PMID: 35850129]
[6]
Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215-22.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[7]
Guglielmi C, Leslie RD, Pozzilli P. Epidemiology and Risk Factors of Type 1 Diabetes BT - Diabetes Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment. Cham: Springer International Publishing 2018; pp. 41-54.
[8]
Duan D, Kengne AP, Echouffo-Tcheugui JB. Screening for diabetes and prediabetes. Endocrinol Metab Clin North Am 2021; 50(3): 369-85.
[http://dx.doi.org/10.1016/j.ecl.2021.05.002]
[9]
Mathur P, Leburu S, Kulothungan V. Prevalence, awareness, treatment and control of diabetes in india from the countrywide national NCD monitoring survey. Front Public Health 2022; 10: 748157.
[http://dx.doi.org/10.3389/fpubh.2022.748157] [PMID: 35359772]
[10]
Zhang P, Zhang Y, Liu CG. Polymeric nanoparticles based on carboxymethyl chitosan in combination with painless microneedle therapy systems for enhancing transdermal insulin delivery. RSC Advances 2020; 10(41): 24319-29.
[http://dx.doi.org/10.1039/D0RA04460A] [PMID: 35516174]
[11]
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023; 242(Pt 3): 125114.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125114] [PMID: 37263330]
[12]
Pankaj M. Diabetes beyond insulin: Review of new drugs for treatment of diabetes mellitus. Curr Drug Discov Technol 2007; 4(1): 39-47.
[http://dx.doi.org/10.2174/157016307781115476] [PMID: 17630927]
[13]
Cesur S, Cam ME, Sayın FS, et al. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus. Langmuir 2022; 38(17): 5040-51.
[http://dx.doi.org/10.1021/acs.langmuir.1c00587] [PMID: 34096296]
[14]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[http://dx.doi.org/10.3109/10717544.2014.991001] [PMID: 25544604]
[15]
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: Are we there yet? Int J Mol Sci 2020; 22(1): 385.
[http://dx.doi.org/10.3390/ijms22010385] [PMID: 33396561]
[16]
Abdel-Moneim A, Ramadan H. Novel strategies to oral delivery of insulin: Current progress of nanocarriers for diabetes management. Drug Dev Res 2022; 83(2): 301-16.
[http://dx.doi.org/10.1002/ddr.21903] [PMID: 34859477]
[17]
Samavati SS, Kashanian S, Derakhshankhah H, Rabiei M. Nanoparticle application in diabetes drug delivery. J Nanopart Res 2022; 24(9): 178.
[http://dx.doi.org/10.1007/s11051-022-05547-8]
[18]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine 2019; 47(1): 22-7.
[19]
NCD Management-Screening, Diagnosis and Treatment.. Classification of diabetes mellitus 2019. Available from: https://www.who.int/publications/i/item/classification-of-diabetes-mellitus
[20]
Insel RA, Dunne JL, Atkinson MA, et al. Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes care 2015; 38(10): 1964-74.
[http://dx.doi.org/10.2337/dc15-1419] [PMID: 26404926]
[21]
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet 2018; 391(10138): 2449-62.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[22]
Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017; 66(2): 241-55.
[http://dx.doi.org/10.2337/db16-0806]
[23]
Todd JA. Etiology of type 1 diabetes. Immunity 2010; 32(4): 457-67.
[http://dx.doi.org/10.1016/j.immuni.2010.04.001] [PMID: 20412756]
[24]
McCance KL, Huether SE. Pathophysiology: The biologic basis for disease in adults and children 1990. Available from: https://ci.nii.ac.jp/ncid/BA75020579
[25]
Javeed N, Matveyenko AV. Circadian etiology of type 2 diabetes mellitus. Physiology 2018; 33(2): 138-50.
[http://dx.doi.org/10.1152/physiol.00003.2018] [PMID: 29412061]
[26]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(1): 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[27]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[28]
Pathophysiology | Diabetes Mellitus Type 2. Available from: https://u.osu.edu/diabetestype2/diagnosis/
[29]
Blonde L. Current challenges in diabetes management. Clin Cornerstone 2005; 7(S3): ss : S6-S17.
[http://dx.doi.org/10.1016/S1098-3597(05)80084-5] [PMID: 16545737]
[30]
Wong CY, Martinez J, Dass CR. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities. J Pharm Pharmacol 2016; 68(9): 1093-108.
[http://dx.doi.org/10.1111/jphp.12607] [PMID: 27364922]
[31]
Rupprecht B, Stöckl A. Perioperative management of long-term antidiabetic therapy in patients with diabetes mellitus. Anasthesiol Inten-sivmed Notfallmed Schmerzther 2021; 56(10): 679-90.
[PMID: 34704245]
[32]
Freeman J. Management of hypoglycemia in older adults with type 2 diabetes. Postgrad Med 2019; 131(4): 241-50.
[http://dx.doi.org/10.1080/00325481.2019.1578590] [PMID: 30724638]
[33]
Sinclair A, Dunning T, Rodriguez-Mañas L. Diabetes in older people: New insights and remaining challenges. Lancet Diabetes Endocrinol 2015; 3(4): 275-85.
[http://dx.doi.org/10.1016/S2213-8587(14)70176-7] [PMID: 25466523]
[34]
Peyrot M, Egede LE, Funnell MM, et al. US ethnic group differences in self-management in the 2nd diabetes attitudes, wishes and needs (DAWN2) study. J Diabetes Complications 2018; 32(6): 586-92.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.03.002] [PMID: 29709335]
[35]
Thojampa S. Knowledge and self-care management of the uncontrolled diabetes patients. Int J Afr Nurs Sci 2018; 2019(10): 1-5.
[http://dx.doi.org/10.1016/j.ijans.2018.05.006]
[36]
Adeniyi OV, Yogeswaran P, Wright G, Longo-Mbenza B. Diabetic patients’ perspectives on the challenges of glycaemic control. Afr J Prim Health Care Fam Med 2015; 7(1): 1-8.
[http://dx.doi.org/10.4102/phcfm.v7i1.767] [PMID: 26245619]
[37]
Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng 2018; 9(1): 105-27.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[38]
Thakuria A, Kataria B, Gupta D. Nanoparticle-based methodologies for targeted drug delivery—an insight. J Nanopart Res 2021; 23(4): 87.
[http://dx.doi.org/10.1007/s11051-021-05190-9]
[39]
Mishra V, Nayak P, Sharma M, et al. Emerging treatment strategies for diabetes mellitus and associated complications: An update. Pharmaceutics 2021; 13(10): 1568.
[http://dx.doi.org/10.3390/pharmaceutics13101568] [PMID: 34683861]
[40]
Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 2019; 20: 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[41]
Fang Y, Wang Q, Lin X, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: Optimized preparation, characterization, and in vivo evaluation. J Pharm Sci 2019; 108(9): 2994-3002.
[http://dx.doi.org/10.1016/j.xphs.2019.04.020] [PMID: 31047941]
[42]
Wang M, Zhang Z, Huo Q, et al. Targeted polymeric nanoparticles based on mangiferin for enhanced protection of pancreatic β-cells and type 1 diabetes mellitus efficacy. ACS Appl Mater Interfaces 2022; 14(9): 11092-103.
[http://dx.doi.org/10.1021/acsami.1c22964] [PMID: 35199981]
[43]
Elsabahy M, Song Y, Eissa NG, Khan S, Hamad MA, Wooley KL. Morphologic design of sugar-based polymer nanoparticles for delivery of antidiabetic peptides. J Control Release 2021; 334: 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.006] [PMID: 33845056]
[44]
Alhalmi A, Alzubaidi N, Abdulmalik W. Current advances in nanotechnology for delivery of anti-diabetic drugs: A review. Int J Pharmacol 2018; 5(1): 100-7.
[45]
Prabahar K, Udhumansha U, Qushawy M. Optimization of thiolated chitosan nanoparticles for the enhancement of in vivo hypoglycemic efficacy of sitagliptin in streptozotocin-induced diabetic rats. Pharmaceutics 2020; 12(4): 300.
[http://dx.doi.org/10.3390/pharmaceutics12040300] [PMID: 32224875]
[46]
Lokhande A, Mishra S, Kulkarni R, Naik J. Formulation and evaluation of Glipizide loaded nanoparticles. Int J Pharm Pharm Sci 2013; 5(S4): 147-51.
[47]
Wang Y, Wang C, Li K, et al. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021; 330: 618-40.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.002] [PMID: 33417985]
[48]
Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release 2016; 233: 181-90.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.015] [PMID: 27178809]
[49]
Paul PK, Nopparat J, Nuanplub M, Treetong A, Suedee R. Improvement in insulin absorption into gastrointestinal epithelial cells by using molecularly imprinted polymer nanoparticles: Microscopic evaluation and ultrastructure. Int J Pharm 2017; 530(1-2): 279-90.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.071] [PMID: 28764982]
[50]
Sadeghi A, Zahedi P, Ghourchian H, Khatibi A. Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy : In vitro and in vivo assessments. Carbohydr Polym 2021; 261(8): 117889.
[51]
Li Y, Ji W, Peng H, et al. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics 2021; 11(9): 4452-66.
[http://dx.doi.org/10.7150/thno.54176] [PMID: 33754071]
[52]
Salvioni L, Fiandra L, Del Curto MD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res 2016; 110: 122-30.
[http://dx.doi.org/10.1016/j.phrs.2016.05.016] [PMID: 27181095]
[53]
Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 2009; 26(1): 72-81.
[54]
Chinnaiyan SK, Karthikeyan D, Gadela VR. Development and characterization of metformin loaded pectin nanoparticles for t2 diabetes mellitus. Pharm Nanotechnol 2019; 6(4): 253-63.
[http://dx.doi.org/10.2174/2211738507666181221142406] [PMID: 30574859]
[55]
Farooq U, Malviya R, Sharma P. Advancement in microsphere preparation using natural polymers and recent patents. Recent Pat Drug Deliv Formul 2014; 8(2): 111-25.
[http://dx.doi.org/10.2174/1872211308666140218110520] [PMID: 24597612]
[56]
Anwunobi AP, Emeje MO. Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol 2011; S4(01): 002.
[57]
Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci 2011; 42(5): 445-51.
[http://dx.doi.org/10.1016/j.ejps.2010.12.007] [PMID: 21182939]
[58]
Yu Z, Ma L, Ye S, Li G, Zhang M. Construction of an environmentally friendly octenylsuccinic anhydride modified pH-sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress. Carbohydr Polym 2020; 236: 115972.
[http://dx.doi.org/10.1016/j.carbpol.2020.115972] [PMID: 32172827]
[59]
Gradauer K, Barthelmes J, Vonach C, et al. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release 2013; 172(3): 872-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.011] [PMID: 24140721]
[60]
Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007; 24(12): 2198-206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[61]
Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm 2017; 67(2): 149-68.
[http://dx.doi.org/10.1515/acph-2017-0020] [PMID: 28590908]
[62]
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15: 392-408.
[http://dx.doi.org/10.1016/j.bioactmat.2022.02.025] [PMID: 35386357]
[63]
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym 2020; 148: 104501.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104501]
[64]
Zuber M, Zia KM, Barikani M. Chitin and Chitosan Based Blends, Composites and Nanocomposites. In: Springer eBooks. 2012; pp. 55-119.
[65]
Baig MMFA, Naveed M, Abbas M, et al. Chitosan-coated rectangular DNA nanospheres for better outcomes of anti-diabetic drug. J Nanopart Res 2019; 21(5): 98.
[http://dx.doi.org/10.1007/s11051-019-4534-1]
[66]
Santos VP, Marques NSS, Maia PCSV, Lima MAB, Franco LO, Campos-Takaki GM. Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci 2020; 21(12): 4290.
[http://dx.doi.org/10.3390/ijms21124290] [PMID: 32560250]
[67]
Heidari F, Razavi M, Bahrololoom ME, et al. Preparation of natural chitosan from shrimp shell with different deacetylation degree. Mater Res Innov 2018; 22(3): 177-81.
[http://dx.doi.org/10.1080/14328917.2016.1271591]
[68]
He X, Xing R, Liu S, et al. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem Toxicol 2021; 44(4): 335-40.
[http://dx.doi.org/10.1080/01480545.2019.1620264] [PMID: 31179762]
[69]
Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target 2018; 26(7): 551-62.
[http://dx.doi.org/10.1080/1061186X.2017.1400552] [PMID: 29095650]
[70]
Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol 2019; 126: 141-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.182] [PMID: 30586591]
[71]
Martins JP, Liu D, Fontana F, et al. Microfluidic nanoassembly of bioengineered chitosan-modified FcRn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides. ACS Appl Mater Interfaces 2018; 10(51): 44354-67.
[http://dx.doi.org/10.1021/acsami.8b20821] [PMID: 30525379]
[72]
Lee J, Lee C, Kim I, et al. Preparation and evaluation of palmitic acid-conjugated exendin-4 with delayed absorption and prolonged circulation for longer hypoglycemia. Int J Pharm 2012; 424(1-2): 50-7.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.050] [PMID: 22226877]
[73]
Lee J, Lee C, Kim TH, et al. Pulmonary administered palmitic-acid modified exendin-4 peptide prolongs hypoglycemia in type 2 diabetic db/db mice. Regul Pept 2012; 177(1-3): 68-72.
[http://dx.doi.org/10.1016/j.regpep.2012.04.010] [PMID: 22561689]
[74]
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci 2017; 106: 220-30.
[http://dx.doi.org/10.1016/j.ejps.2017.05.068] [PMID: 28595874]
[75]
Lekshmi UMD, Kishore N, Reddy PN. Sub acute toxicity assessment of glipizide engineered polymeric nanoparticles. J Biomed Nanotechnol 2011; 7(4): 578-89.
[http://dx.doi.org/10.1166/jbn.2011.1317] [PMID: 21870463]
[76]
Alihosseini F. 10 - Plant-based compounds for antimicrobial textiles. In: Antimicrobial Textiles. Woodhead Publishing Series in Textiles 2016; pp. 155-95.
[http://dx.doi.org/10.1016/B978-0-08-100576-7.00010-9]
[77]
Ching SH, Bansal N, Bhandari B. Alginate gel particles–A review of production techniques and physical properties. Crit Rev Food Sci Nutr 2017; 57(6): 1133-52.
[http://dx.doi.org/10.1080/10408398.2014.965773] [PMID: 25976619]
[78]
Hariyadi DM, Islam N. Current status of alginate in drug delivery. Adv Pharmacol Pharm Sci 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/8886095] [PMID: 32832902]
[79]
Souto EB, Souto SB, Campos JR, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019; 24(23): 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[80]
Chai Z, Dong H, Sun X, Fan Y, Wang Y, Huang F. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol 2020; 159: 640-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.097] [PMID: 32428589]
[81]
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 2019; 123: 968-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.147] [PMID: 30448487]
[82]
Wong CY, Al-Salami H, Dass CR. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264: 247-75.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.003] [PMID: 28887133]
[83]
Rehman A, Ahmad T, Aadil RM, et al. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol 2019; 90: 35-46.
[http://dx.doi.org/10.1016/j.tifs.2019.05.015]
[84]
Shishir MRI, Karim N, Gowd V, Xie J, Zheng X, Chen W. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll 2019; 95: 432-44.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.059]
[85]
Rehman A, Jafari SM, Tong Q, et al. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284: 102251.
[http://dx.doi.org/10.1016/j.cis.2020.102251] [PMID: 32949812]
[86]
Chinnaiyan SK, Deivasigamani K, Gadela VR. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int J Biol Macromol 2019; 125: 278-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.009] [PMID: 30521906]
[87]
Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol 2020; 55: 101471.
[http://dx.doi.org/10.1016/j.jddst.2019.101471]
[88]
Tan YL, Ho HK. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov Today 2018; 23(5): 1108-14.
[http://dx.doi.org/10.1016/j.drudis.2018.01.051] [PMID: 29408437]
[89]
Lopes M, Shrestha N, Correia A, et al. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 2016; 232: 29-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.012] [PMID: 27074369]
[90]
Nagaraja SHE, Al-Dhubiab B, Tekade RK, et al. Novel preparation and effective delivery of mucoadeshive nanoparticles containing anti-diabetic drug. Indian J Pharm Educ 2019; 53(2s): s43-9.
[http://dx.doi.org/10.5530/ijper.53.2s.47]
[91]
Valcarcel J, Fraguas J, Hermida-merino C, Hermida-merino D, Piñeiro MM, Antonio V. Production and physicochemical characterization of gelatin and collagen hydrolysates from turbot skin waste generated by aquaculture activities. Mar Drugs 2021; 19(9): 491.
[92]
Dmour I, Taha MO. Natural and semisynthetic polymers in pharmaceutical nanotechnologyOrganic Materials as Smart Nanocarriers for Drug Delivery. Elsevier Inc. 2018; pp. 35-100.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00002-6]
[93]
Shehata TM, Ibrahima MM. BÜCHI nano spray dryer B-90: A promising technology for the production of metformin hydrochloride-loaded alginate–gelatin nanoparticles. Drug Dev Ind Pharm 2019; 45(12): 1907-14.
[http://dx.doi.org/10.1080/03639045.2019.1680992] [PMID: 31621436]
[94]
Andonova V. Synthetic polymer-based nanoparticles: Intelligent drug delivery systems. In: Reddy BSR, Ed. Acrylic Polymers in Healthcare. Rijeka: IntechOpen 2017.
[http://dx.doi.org/10.5772/intechopen.69056]
[95]
Singh L, Kumar V, Ratner BD. Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials 2004; 25(13): 2611-7.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.040] [PMID: 14751747]
[96]
Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly(Lactic Acid-Co-Glycolic Acid) nanoparticles. J Nanopart Res 2000; 2(2): 173-81.
[http://dx.doi.org/10.1023/A:1010038908767]
[97]
Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater Des 2020; 193: 108805.
[http://dx.doi.org/10.1016/j.matdes.2020.108805]
[98]
Liu K, Chen Y, Yang Z, Jin J. zwitterionic Pluronic analog-coated PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol 2023; 236: 123870.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123870] [PMID: 36870645]
[99]
Alhalmi A, Alzubaidi N, Abdulmalik W. lipidic nanoformulation for breast cancer View project Evaluation of Hedychium spicatum extract against Ovalbumin induced asthma in experimental rat models View project current advances in nanotechnology for delivery of anti-diabetic drugs: A review. Int J Pharmacogn 2018; 5(1): 100-7.
[100]
Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J Control Release 2006; 114(2): 242-50.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.013] [PMID: 16859800]
[101]
Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 2012; 7(9): 1311-37.
[http://dx.doi.org/10.2217/nnm.12.31] [PMID: 22583576]
[102]
Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives. Drug Discov Today 2015; 20(1): 95-104.
[http://dx.doi.org/10.1016/j.drudis.2014.09.018] [PMID: 25277320]
[103]
Rachmawati H, Yanda YL, Rahma A, Mase N. Curcumin-loaded PLA nanoparticles: Formulation and physical evaluation. Sci Pharm 2016; 84(1): 191-202.
[http://dx.doi.org/10.3797/scipharm.ISP.2015.10] [PMID: 27110509]
[104]
Sharma D, Singh J. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan zinc-insulin complexes incorporated in thermosensitive copolymer. J Control Release 2020; 323: 161-78.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.012] [PMID: 32283211]
[105]
Nowacka O, Shcharbin D, Klajnert-Maculewicz B, Bryszewska M. Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids Surf B Biointerfaces 2014; 116: 757-60.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.056] [PMID: 24572587]
[106]
Kesharwani P, Gorain B, Low SY, et al. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018; 136: 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[107]
Wang SJ, Brechbiel M, Wiener EC. Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2. Invest Radiol 2003; 38(10): 662-8.
[http://dx.doi.org/10.1097/01.rli.0000084887.47427.75] [PMID: 14501494]
[108]
Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019; 48(3): 757-70.
[http://dx.doi.org/10.1039/C8CS00508G] [PMID: 30548039]
[109]
D’souza AA, Shegokar R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 2016; 13(9): 1257-75.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[110]
Tobío M, Sánchez A, Vilà A, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 2000; 18(3-4): 315-23.
[http://dx.doi.org/10.1016/S0927-7765(99)00157-5] [PMID: 10915953]
[111]
Reboredo C, González-Navarro CJ, Martínez-López AL, Martínez-Ohárriz C, Sarmento B, Irache JM. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics 2021; 14(1): 39.
[http://dx.doi.org/10.3390/pharmaceutics14010039] [PMID: 35056935]
[112]
Wong E. Cells: Molecules and Mechanisms. Axolotl Academic Publishing 2022.
[113]
Zhang F, Pei X, Peng X, et al. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. Biomater Adv 2022; 135: 212746.
[http://dx.doi.org/10.1016/j.bioadv.2022.212746] [PMID: 35929218]
[114]
Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: A therapeutic perspective. Clin Sci 2012; 122(5): 203-14.
[http://dx.doi.org/10.1042/CS20110357] [PMID: 22070434]
[115]
Jonnalagadda VG, Ram Raju AV, Pittala S, Shaik A, Selkar NA. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus. Adv Pharm Bull 2014; 4(3): 209-17.
[PMID: 24754003]
[116]
Mestareehi A, Li H, Zhang X, et al. Quantitative proteomics reveals transforming growth factor β receptor targeted by resveratrol and hesperetin coformulation in endothelial cells. ACS Omega 2023; 8(18): 16206-17.
[http://dx.doi.org/10.1021/acsomega.3c00678] [PMID: 37179642]
[117]
Hirsch S, Hinden L, Naim MBD, et al. Hepatic targeting of the centrally active cannabinoid 1 receptor (CB1R) blocker rimonabant via PLGA nanoparticles for treating fatty liver disease and diabetes. J Control Release 2023; 353: 254-69.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.040] [PMID: 36442615]
[118]
Navgire S, Satpute A, Pandey S, Patil A. Recent patents on oral insulin delivery. Recent Pat Drug Deliv Formul 2014; 8(3): 202-5.
[http://dx.doi.org/10.2174/1872211308666140701093351] [PMID: 24981288]
[119]
Chauhan P, Tamrakar AK, Mahajan S, Prasad GBKS. Chitosan encapsulated nanocurcumin induces GLUT-4 translocation and exhibits enhanced anti-hyperglycemic function. Life Sci 2018; 213: 226-35.
[http://dx.doi.org/10.1016/j.lfs.2018.10.027] [PMID: 30343126]
[120]
Sayem A, Arya A, Karimian H, Krishnasamy N, Ashok Hasamnis A, Hossain C. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (glut4) protein translocation. Molecules 2018; 23(2): 258.
[http://dx.doi.org/10.3390/molecules23020258] [PMID: 29382104]
[121]
Ismail R, Csóka I. Novel strategies in the oral delivery of antidiabetic peptide drugs – Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017; 115: 257-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.015] [PMID: 28336368]
[122]
Araújo F, Shrestha N, Gomes MJ, et al. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale 2016; 8(20): 10706-13.
[http://dx.doi.org/10.1039/C6NR00294C] [PMID: 27150301]
[123]
Mishra BK, Banerjee BD, Agrawal V, Madhu SV. Association of PPARγ gene expression with postprandial hypertriglyceridaemia and risk of type 2 diabetes mellitus. Endocrine 2020; 68(3): 549-56.
[http://dx.doi.org/10.1007/s12020-020-02257-w] [PMID: 32180115]
[124]
Janani C, Ranjitha Kumari BD. PPAR gamma gene – A review. Diabetes Metab Syndr 2015; 9(1): 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[125]
Tian Q, Zhang CN, Wang XH, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010; 31(17): 4748-56.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.042] [PMID: 20303163]
[126]
Yang C, Gao S, Dagnæs-Hansen F, Jakobsen M, Kjems J. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Appl Mater Interfaces 2017; 9(14): 12203-16.
[http://dx.doi.org/10.1021/acsami.6b16556] [PMID: 28332829]
[127]
Rastegari A, Mottaghitalab F, Dinarvand R, et al. Inhibiting hepatic gluconeogenesis by chitosan lactate nanoparticles containing CRTC2 siRNA targeted by poly(ethylene glycol)-glycyrrhetinic acid. Drug Deliv Transl Res 2019; 9(3): 694-706.
[http://dx.doi.org/10.1007/s13346-019-00618-1] [PMID: 30825078]
[128]
Urimi D, Agrawal AK, Kushwah V, Jain S. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech 2019; 20(3): 131.
[http://dx.doi.org/10.1208/s12249-019-1330-2] [PMID: 30815757]
[129]
Sidibeh CO, Pereira MJ, Lau Börjesson J, et al. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine 2017; 55(3): 839-52.
[http://dx.doi.org/10.1007/s12020-016-1172-6] [PMID: 27858284]
[130]
Lenz A, Lenz G, Ku HT, Ferreri K, Kandeel F. Islets from human donors with higher but not lower hemoglobin A1c levels respond to gastrin treatment in vitro. PLoS One 2019; 14(8): e0221456.
[http://dx.doi.org/10.1371/journal.pone.0221456] [PMID: 31430329]
[131]
Tang S, Zhang M, Zeng S, et al. Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice. Proc Natl Acad Sci 2020; 117(49): 31219-30.
[http://dx.doi.org/10.1073/pnas.2012389117] [PMID: 33229527]
[132]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[133]
Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 2007; 122(2): 141-50.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.019] [PMID: 17707540]
[134]
Sharma G, Sharma AR, Nam JS, Doss GPC, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13(1): 74.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[135]
Wang A, Fan W, Yang T, et al. Liver‐target and glucose‐responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv Funct Mater 2020; 30(13): 1910168.
[http://dx.doi.org/10.1002/adfm.201910168]
[136]
Liu Y, Zeng S, Ji W, et al. Emerging theranostic nanomaterials in diabetes and its complications. Adv Sci 2022; 9(3): 2102466.
[http://dx.doi.org/10.1002/advs.202102466] [PMID: 34825525]
[137]
Kaklotar D, Agrawal P, Abdulla A, et al. Transition from passive to active targeting of oral insulin nanomedicines: Enhancement in bioavailability and glycemic control in diabetes. Nanomedicine 2016; 11(11): 1465-86.
[http://dx.doi.org/10.2217/nnm.16.43] [PMID: 27171572]
[138]
Liu C, Shan W, Liu M, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv 2016; 23(6): 2015-25.
[http://dx.doi.org/10.3109/10717544.2015.1058433] [PMID: 26203690]
[139]
Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018; 120(Pt A): 775-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[140]
Kavimandan N, Losi E, Peppas N. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin–transferrin conjugates. Biomaterials 2006; 27(20): 3846-54.
[http://dx.doi.org/10.1016/j.biomaterials.2006.02.026] [PMID: 16529810]
[141]
Shan W, Zhu X, Tao W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces 2016; 8(38): 25444-53.
[http://dx.doi.org/10.1021/acsami.6b08183] [PMID: 27588330]
[142]
Yin M, Song Y, Guo S, et al. Intelligent escape system for the oral delivery of liraglutide: A perfect match for gastrointestinal barriers. Mol Pharm 2020; 17(6): 1899-909.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01307] [PMID: 32267705]
[143]
Badawy EA, Rasheed WI, Elias TR, et al. Flaxseed oil reduces oxidative stress and enhances brain monoamines release in streptozotocin-induced diabetic rats. Hum Exp Toxicol 2015; 34(11): 1133-8.
[http://dx.doi.org/10.1177/0960327115571765] [PMID: 25669659]
[144]
Bitencourt PER. In: Nanoparticle formulation of Syzygium cumini, antioxidants, and diabetes. Diabetes 2020; pp. 343-50.
[http://dx.doi.org/10.1016/B978-0-12-815776-3.00035-8]
[145]
Perumal V, Manickam T, Bang KS, Velmurugan P, Oh BT. Antidiabetic potential of bioactive molecules coated chitosan nanoparticles in experimental rats. Int J Biol Macromol 2016; 92: 63-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.006] [PMID: 27381582]
[146]
Hasija R, Chaurasia S, Swati G. Assessment of polymeric nanoparticles to enhance oral bioavailability and antioxidant activity of resveratrol. Indian J Pharm Sci 2021; 83(6): 1114-28.
[147]
Narisepalli S, Salunkhe SA, Chitkara D, Mittal A. Asiaticoside polymeric nanoparticles for effective diabetic wound healing through increased collagen biosynthesis: In vitro and in vivo evaluation. Int J Pharm 2023; 631: 122508.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122508] [PMID: 36539166]
[148]
Nie X Jnr, Chen Z, Pang L, et al. Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. Int J Nanomedicine 2020; 15: 10215-40.
[http://dx.doi.org/10.2147/IJN.S285134] [PMID: 33364755]
[149]
Wiggins SC, Abuid NJ, Gattás-Asfura KM, Kar S, Stabler CL. Nanotechnology approaches to modulate immune responses to cell-based therapies for type 1 diabetes. J Diabetes Sci Technol 2020; 14(2): 212-25.
[http://dx.doi.org/10.1177/1932296819871947] [PMID: 32116026]
[150]
Kim MJ, Lee Y, Jon S, Lee DY, Ph D. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation. Biomaterials 2017; 133: 242-52.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.029] [PMID: 28448818]
[151]
Zhang P, Li T, Wu X, Nice EC, Huang C. Oxidative stress and diabetes: Antioxidative strategies. Front Med 2020; 14(5): 583-600.
[http://dx.doi.org/10.1007/s11684-019-0729-1]
[152]
Samrat K, Murthy TPK, Divyashri G, Krishna RH, Chandraprabha MN. Nanotechnology: Antidiabetics, Antioxidant and Antiinflammatory. In: Nanomaterials for Sustainable Development: Opportunities and Future Perspectives. 2023; pp. 235-63.
[153]
Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 2018; 92: 381-92.
[http://dx.doi.org/10.1016/j.msec.2018.06.055] [PMID: 30184764]
[154]
Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 2018; 182: 42-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.098] [PMID: 29279124]
[155]
Kozuka C, Shimizu-Okabe C, Takayama C, et al. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice. Drug Deliv 2017; 24(1): 558-68.
[http://dx.doi.org/10.1080/10717544.2017.1279237] [PMID: 28181829]
[156]
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int J Mol Sci 2020; 21(6): 2217.
[http://dx.doi.org/10.3390/ijms21062217] [PMID: 32210082]
[157]
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177: 389-98.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.024] [PMID: 30785036]
[158]
Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2012; 2(2): 112-23.
[http://dx.doi.org/10.1007/s13346-012-0063-5] [PMID: 25786720]
[159]
Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydr Polym 2017; 170: 124-32.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066] [PMID: 28521977]
[160]
Akolade JO, Oloyede HOB, Onyenekwe PC. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. J Funct Foods 2017; 35: 584-94.
[http://dx.doi.org/10.1016/j.jff.2017.06.023]
[161]
Hung D, Safavi H. Novel mini-insulin with extended c-terminal a chai. United States of America; US20220389073, 2022.
[162]
Hanes J, Slusher B, Le A, et al. Glutaminase inhibitor discovery and nanoparticle-enhanced delivery for cancer therapy. United States of America; US20220370371, 2022.
[163]
Quadir M, Ray P, Banerjee SK, Banerjee S. pH-Responsive nanoparticles for treating cancer. Patent WO/2022/240914, 2022.
[164]
Raimondi G, Patrone J, Colon X, Tiburzi O. Lipid nanoparticles as oral vehicles of immunotherapy. United States of America; US20220339116, 2022.
[165]
Rong G, Hang D, Meng G, Xeuyuan H. Preparation method and application of a Gelma gel loaded with platelet membrane and coated with cerium oxide. China; CN114887113, 2022.
[166]
Wei W, Lu T, Hening L, Mengying X. A nano-engineered stem cell anti-tumor targeted drug delivery system and its preparation method and application. China; CN114848844, 2022.
[167]
Thomas J, Jacob J, Huiyun L, Sara R. Methods and compositions comprising ursolic acid and/or resveratrol for treating diabetes, or cancer. Patent USA; US2022226347, 2022.
[168]
Hongling Z, Jing L, Mingjin W, Binghua W, Xiang L, Peibo F. Preparation method and application of pH-sensitive plant microcapsule nano extruder. Patent China; CN114522150, 2022.
[169]
Jianfu S, Chen X, Xiaoqin W. Preparation and application of phloretin-loaded soybean lecithin-chitosan nanoparticles for preventing diabetes. Patent China; CN114209663, 2022.
[170]
Wagner H, Yussman JR. Nanoparticle compositions and uses thereof. Patent USA; US2022031632, 2022.
[171]
Jingjing Y, Shihua C, Conghui D. Ionic emulsifier chitosan nanoparticle modified quercetin oral sustained-release preparation and preparation method thereof. Patent China; CN113797177, 2021.
[172]
Wagner DH, Yussman MG, Vaitaitis GM, Henry CW. Nanocapsules comprising an interior cavity loaded with a peptide. Patent USA; WO2021231898, 2021.
[173]
Kim JIL, Ryu JH, Park BG. Composition for anti-diabetes and anti-obesity comprising novel compound. Canada 2021.
[174]
Lee J. Composition for anti-diabetes and anti-obesity comprising novel compound. Patent WO2021182898, 2021.
[175]
Jinglei L, Liu Y, Haishan W. Oral insulin chitosan nanoparticle solution and preparation method thereof. Patent China; CN113304124, 2021.
[176]
Xu P. Carrier-free curcumin nanoparticle for EGFR positive cancer therapy. United States of America; US20210369861, 2021.
[177]
Woo L, Ah C. Silica nanoparticles for biomarker diagnosis and method for producing same. Patent European Patent Office; EP3726215, 2020.
[178]
Yizong H, Zhiyu H, Haiquan M, Yongming C, Lixin L. Tannin acid/Fe3+> nanoparticle system, and drug delivery method. Patent China; CN111714643, 2020.
[179]
Li C, Zhao J, Fleming J. Polymeric drug delivery systems for treatment of disease. Patent United States of America; US20200246264, 2020.
[180]
Jia H, Qin W, Ju X, Fan D, Yong Z. Preparation method of electrochemical sensor for detecting insulin by using electrodeposited gold and platinum-copper oxysulfide. Patent China; CN112147194, 2020.
[181]
Mckean R, Cirstea TR. Membrane. United Kingdom; GB2580473, 2020.
[182]
Quiying Y, Jiaqi W, Gensheng Y, et al. Polypeptide nanoparticle for treating diabetes mellitus, polypeptide nanoparticle microneedle and preparation method of polypeptide nanoparticle microneedle. Patent China; CN111053891, 2020.
[183]
Xiang G, Jinlin S. Metformin sustained-release THA/PCL guided tissue regeneration membrane and preparation method thereof. Patent China; CN110917409, 2020.
[184]
Hong W. Poria cocos-gold nanoparticles for treating obesity and preparation method thereof. Patent CN110496142, 2019.
[185]
Yangqing G, Jian L, Jingmin H. Artemisinin-loaded citrus pectin oral nanoparticle. Patent China; CN110200980, 2019.
[186]
Zhen G, Jicheng Y. Glucose-responsive insulin delivery system using hypoxia-sensitive nanocomposites. Patent Russia; RU2017139931, 2019.
[187]
Soudry-Kochavi L, Naraykin N, Di Paola R, et al. Pharmacodynamical effects of orally administered exenatide nanoparticles embedded in gastro-resistant microparticles. Eur J Pharm Biopharm 2018; 133: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.013] [PMID: 30342089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy