Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Monoclonal Antibodies and Antibody-drug Conjugates as Emerging Therapeutics for Breast Cancer Treatment

Author(s): Swati Saini, Nisha Gulati, Rajendra Awasthi, Vimal Arora, Sachin Kumar Singh, Shobhit Kumar, Gaurav Gupta, Kamal Dua, Rakesh Pahwa* and Harish Dureja*

Volume 21, Issue 7, 2024

Published on: 09 August, 2023

Page: [993 - 1009] Pages: 17

DOI: 10.2174/1567201820666230731094258

Price: $65

Abstract

When breast cells divide and multiply out of control, it is called breast cancer. Symptoms include lump formation in the breast, a change in the texture or color of the breast, or a discharge from the nipple. Local or systemic therapy is frequently used to treat breast cancer. Surgical and radiation procedures limited to the affected area are examples of local management. There has been significant worldwide progress in the development of monoclonal antibodies (mAbs) since 1986, when the first therapeutic mAb, Orthoclone OKT3, became commercially available. mAbs can resist the expansion of cancer cells by inducing the destruction of cellular membranes, blocking immune system inhibitors, and preventing the formation of new blood vessels. mAbs can also target growth factor receptors. Understanding the molecular pathways involved in tumor growth and its microenvironment is crucial for developing effective targeted cancer therapeutics. Due to their unique properties, mAbs have a wide range of clinical applications. Antibody-drug conjugates (ADCs) are drugs that improve the therapeutic index by combining an antigen-specific antibody with a payload. This review focuses on the therapeutic applications, mechanistic insights, characteristics, safety aspects, and adverse events of mAbs like trastuzumab, bevacizumab, pertuzumab, ertumaxomab, and atezolizumab in breast cancer treatment. The creation of novel technologies utilizing modified antibodies, such as fragments, conjugates, and multi-specific antibodies, must be a central focus of future studies. This review will help scientists working on developing mAbs to treat cancers more effectively.

Keywords: Antibody-drug conjugates, monoclonal antibody, breast cancer, cytotoxicity, human epidermal growth factor receptor, therapeutic interventions, triple-negative breast cancer.

Graphical Abstract
[1]
Bayer, V. An overview of monoclonal antibodies. Semin. Oncol. Nurs., 2019, 35(5), 150972.
[http://dx.doi.org/10.1016/j.soncn.2019.08.006]
[2]
Breedveld, F.C. Therapeutic monoclonal antibodies. Lancet, 2000, 355(9205), 735-740.
[http://dx.doi.org/10.1016/S0140-6736(00)01034-5] [PMID: 10703815]
[3]
Nelson, P.N.; Reynolds, G.M.; Waldron, E.E.; Ward, E.; Giannopoulos, K.; Murray, P.G. Monoclonal antibodies. Mol. Pathol., 2000, 53(3), 111-117.
[http://dx.doi.org/10.1136/mp.53.3.111] [PMID: 10897328]
[4]
Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies, 2020, 9(3), 34.
[http://dx.doi.org/10.3390/antib9030034] [PMID: 32698317]
[5]
Shuptrine, C.W.; Surana, R.; Weiner, L.M. Monoclonal antibodies for the treatment of cancer. Semin. Cancer Biol., 2012, 22(1), 3-13.
[http://dx.doi.org/10.1016/j.semcancer.2011.12.009] [PMID: 22245472]
[6]
Mahmuda, A.; Bande, F.; Kadhim Al-Zihiry, K.J.; Abdulhaleem, N.; Majid, R.A.; Hamat, R.A.; Abdullah, W.O.; Unyah, Z. Monoclonal antibodies: A review of therapeutic applications and future prospects. Trop. J. Pharm. Res., 2017, 16(3), 713-722.
[http://dx.doi.org/10.4314/tjpr.v16i3.29]
[7]
Coulson, A.; Levy, A.; Gossell-Williams, M. Monoclonal antibodies in cancer therapy: Mechanisms, successes and limitations. West Indian Med. J., 2014, 63(6), 650-654.
[PMID: 25803383]
[8]
Cui, Y.; Cui, P.; Chen, B.; Li, S.; Guan, H. Monoclonal antibodies: Formulations of marketed products and recent advances in novel delivery system. Drug Dev. Ind. Pharm., 2017, 43(4), 519-530.
[http://dx.doi.org/10.1080/03639045.2017.1278768] [PMID: 28049357]
[9]
Roskos, L.K.; Davis, C.G.; Schwab, G.M. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev. Res., 2004, 61(3), 108-120.
[http://dx.doi.org/10.1002/ddr.10346]
[10]
Dang, M.N.; Hoover, E.C.; Scully, M.A.; Sterin, E.H.; Day, E.S. Antibody nanocarriers for cancer management. Curr. Opin. Biomed. Eng., 2021, 19(100295), 1-9.
[PMID: 34423177]
[11]
Pento, J.T. Monoclonal antibodies for the treatment of cancer. Anticancer Res., 2017, 37(11), 5935-5939.
[PMID: 29061772]
[12]
Kimiz-Gebologlu, I.; Gulce-Iz, S.; Biray-Avci, C. Monoclonal antibodies in cancer immunotherapy. Mol. Biol. Rep., 2018, 45(6), 2935-2940.
[http://dx.doi.org/10.1007/s11033-018-4427-x] [PMID: 30311129]
[13]
Hafeez, U.; Gan, H.K.; Scott, A.M. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr. Opin. Pharmacol., 2018, 41, 114-121.
[http://dx.doi.org/10.1016/j.coph.2018.05.010] [PMID: 29883853]
[14]
Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2015] [PMID: 31350959]
[15]
Watkins, E.J. Overview of breast cancer. JAAPA, 2019, 32(10), 13-17.
[http://dx.doi.org/10.1097/01.JAA.0000580524.95733.3d] [PMID: 31513033]
[16]
Breast cancer a World Health Organization report.. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (Accessed on 12 April 2022)
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[18]
Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126.
[PMID: 22247839]
[19]
Liu, M.; Yu, X.; Chen, Z.; Yang, T.; Yang, D.; Liu, Q.; Du, K.; Li, B.; Wang, Z.; Li, S.; Deng, Y.; He, N. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnol., 2017, 15(1), 81.
[http://dx.doi.org/10.1186/s12951-017-0311-4] [PMID: 29132385]
[20]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[21]
Helmi, O.; Elshishiny, F.; Mamdouh, W. Targeted doxorubicin delivery and release within breast cancer environment using PEGylated chitosan nanoparticles labeled with monoclonal antibodies. Int. J. Biol. Macromol., 2021, 184, 325-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.014] [PMID: 34119547]
[22]
Heim, E.; Valach, L.; Schaffner, L. Coping and psychosocial adaptation: Longitudinal effects over time and stages in breast cancer. Psychosom. Med., 1997, 59(4), 408-418.
[http://dx.doi.org/10.1097/00006842-199707000-00011] [PMID: 9251161]
[23]
Bednarek, A.K.; Sahin, A.; Brenner, A.J.; Johnston, D.A.; Aldaz, C.M. Analysis of telomerase activity levels in breast cancer: Positive detection at the in situ breast carcinoma stage. Clin. Cancer Res., 1997, 3(1), 11-16.
[PMID: 9815531]
[24]
Segal, R.; Evans, W.; Johnson, D.; Smith, J.; Colletta, S.; Gayton, J.; Woodard, S.; Wells, G.; Reid, R. Structured exercise improves physical functioning in women with stages I and II breast cancer: Results of a randomized controlled trial. J. Clin. Oncol., 2001, 19(3), 657-665.
[http://dx.doi.org/10.1200/JCO.2001.19.3.657] [PMID: 11157015]
[25]
Moran, M.S.; Schnitt, S.J.; Giuliano, A.E.; Harris, J.R.; Khan, S.A.; Horton, J.; Klimberg, S.; Chavez-MacGregor, M.; Freedman, G.; Houssami, N.; Morrow, M. Society of surgical oncology-american society for radiation oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int. J. Radiat. Oncol. Biol. Phys., 2014, 88(3), 553-564.
[26]
Jacquillat, C.; Weil, M.; Baillet, F.; Borel, C.; Auclerc, G.; De Maublanc, M.A.; Housset, M.; Forget, G.; Thill, L.; Soubrane, C.; Khayat, D. Results of neoadjuvant chemotherapy and radiation therapy in the breast-conserving treatment of 250 patients with all stages of infiltrative breast cancer. Cancer, 1990, 66(1), 119-129.
[http://dx.doi.org/10.1002/1097-0142(19900701)66:1<119:AID-CNCR2820660122>3.0.CO;2-3] [PMID: 2112976]
[27]
Neuman, H.B.; Morrogh, M.; Gonen, M.; Van Zee, K.J.; Morrow, M.; King, T.A. Stage IV breast cancer in the era of targeted therapy. Cancer, 2010, 116(5), 1226-1233.
[http://dx.doi.org/10.1002/cncr.24873] [PMID: 20101736]
[28]
Nielsen, D.L.; Kümler, I.; Palshof, J.A.E.; Andersson, M. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Breast, 2013, 22(1), 1-12.
[http://dx.doi.org/10.1016/j.breast.2012.09.008] [PMID: 23084121]
[29]
Mohit, E.; Hashemi, A.; Allahyari, M. Breast cancer immunotherapy: Monoclonal antibodies and peptide-based vaccines. Expert Rev. Clin. Immunol., 2014, 10(7), 927-961.
[http://dx.doi.org/10.1586/1744666X.2014.916211] [PMID: 24867051]
[30]
Karly, P. Trastuzumab a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Adis Drug Evaluation., 2010, 70(2), 215-239.
[31]
Gillian, M. Keating, Pertuzumab in the first-line treatment of HER2-positive metastatic breast cancer. Adis Drug Profile., 2012, 72(3), 353-360.
[32]
Boyiadzis, M.; Foon, K.A. Approved monoclonal antibodies for cancer therapy. Expert Opin. Biol. Ther., 2008, 8(8), 1151-1158.
[http://dx.doi.org/10.1517/14712598.8.8.1151] [PMID: 18613766]
[33]
Kiewe, P.; Thiel, E. Ertumaxomab: A trifunctional antibody for breast cancer treatment. Expert Opin. Investig. Drugs, 2008, 17(10), 1553-1558.
[http://dx.doi.org/10.1517/13543784.17.10.1553] [PMID: 18808314]
[34]
Adams, S.; Diamond, J.R.; Hamilton, E.; Pohlmann, P.R.; Tolaney, S.M.; Chang, C.W.; Zhang, W.; Iizuka, K.; Foster, P.G.; Molinero, L.; Funke, R.; Powderly, J. Atezolizumab Plus nab-Paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-Year survival follow-up a phase 1b clinical trial. JAMA Oncol., 2019, 5(3), 334-342.
[http://dx.doi.org/10.1001/jamaoncol.2018.5152] [PMID: 30347025]
[35]
Nami, B.; Maadi, H.; Wang, Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 2018, 10(10), 342.
[http://dx.doi.org/10.3390/cancers10100342] [PMID: 30241301]
[36]
Greg, L. Trastuzumab a review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Adis Drug Evaluation., 2006, 66(4), 449-475.
[37]
Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med., 2007, 357(1), 39-51.
[http://dx.doi.org/10.1056/NEJMra043186] [PMID: 17611206]
[38]
Levêque, D.; Gigou, L.; Bergerat, J. Clinical pharmacology of trastuzumab. Curr. Clin. Pharmacol., 2008, 3(1), 51-55.
[http://dx.doi.org/10.2174/157488408783329931] [PMID: 18690878]
[39]
Annelies, H.; Boekhout, J.H.; Beijnen, H.M. Trastuzumab. Oncologist, 2011, 16, 800-810.
[40]
McKeage, K.; Perry, C.M. Trastuzumab. Drugs, 2002, 62(1), 209-243.
[http://dx.doi.org/10.2165/00003495-200262010-00008] [PMID: 11790161]
[41]
Bader, A.A.; Schlembach, D.; Tamussino, K.F.; Pristauz, G.; Petru, E. Anhydramnios associated with administration of trastuzumab and paclitaxel for metastatic breast cancer during pregnancy. Lancet Oncol., 2007, 8(1), 79-81.
[http://dx.doi.org/10.1016/S1470-2045(06)71014-2]
[42]
Baselga, J. Clinical trials of Herceptin® (trastuzumab). Eur. J. Cancer, 2001, 37(1), 18-24.
[http://dx.doi.org/10.1016/S0959-8049(00)00404-4] [PMID: 11342196]
[43]
Vogel, C.L.; Melody, A.C.; Debu, T.; John, C.; Gutheil; Lyndsay, N.H.; Louis, F.; Dennis, J.S.; Mureen, M.; Michael, P. Efficacy and safety of trastuzumab as a single agent in first line treatment of HER2 overexpressing metaststic breast cancer. J. Clin. Oncol., 2002, 120(3), 719-726.
[http://dx.doi.org/10.1200/JCO.2002.20.3.719] [PMID: 11821453]
[44]
Jhaveri, K.; Esteva, F.J. Pertuzumab in the treatment of HER2+ breast cancer. J. Natl. Compr. Canc. Netw., 2014, 12(4), 591-598.
[http://dx.doi.org/10.6004/jnccn.2014.0059] [PMID: 24717573]
[45]
Scheuer, W.; Friess, T.; Burtscher, H.; Bossenmaier, B.; Endl, J.; Hasmann, M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res., 2009, 69(24), 9330-9336.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4597] [PMID: 19934333]
[46]
Bernard-Marty, C.; Lebrun, F.; Awada, A.; Piccart, M.J. Monoclonal antibody-based targeted therapy in breast cancer: Current status and future directions. Drugs, 2006, 66(12), 1577-1591.
[http://dx.doi.org/10.2165/00003495-200666120-00004] [PMID: 16956305]
[47]
Chee, M. Rationale for fixed dosing of pertuzumab in cancer patients based on population pharmacokinetic analysis. Pharm. Res., 2006, 23(6), 1275-1284.
[48]
Attard, G.; Kitzen, J.; Blagden, S.P.; Fong, P.C.; Pronk, L.C.; Zhi, J.; Zugmaier, G.; Verweij, J.; De Bono, J.S.; De Jonge, M. A phase Ib study of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in patients with advanced solid tumours. Br. J. Cancer, 2007, 97(10), 1338-1343.
[PMID: 18000498]
[49]
Barthélémy, P.; Leblanc, J.; Goldbarg, V.; Wendling, F.; Kurtz, J.E. Pertuzumab: Development beyond breast cancer. Anticancer Res., 2014, 34(4), 1483-1491.
[PMID: 24692675]
[50]
Capelan, M.; Pugliano, L.; De Azambuja, E.; Bozovic, I.; Saini, K.S.; Sotiriou, C.; Loi, S.; Piccart-Gebhart, M.J. Pertuzumab: New hope for patients with HER2-positive breast cancer. Ann. Oncol., 2013, 24(2), 273-282.
[http://dx.doi.org/10.1093/annonc/mds328] [PMID: 22910839]
[51]
Baselga, J.; Cortés, J.; Kim, S.B.; Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Swain, S.M. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 2012, 366(2), 109-119.
[http://dx.doi.org/10.1056/NEJMoa1113216] [PMID: 22149875]
[52]
Gianni, L.; Lladó, A.; Bianchi, G.; Cortes, J.; Kellokumpu-Lehtinen, P.L.; Cameron, D.A.; Miles, D.; Salvagni, S.; Wardley, A.; Goeminne, J.C.; Hersberger, V.; Baselga, J. Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of Pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol., 2010, 28(7), 1131-1137.
[http://dx.doi.org/10.1200/JCO.2009.24.1661] [PMID: 20124183]
[53]
Nielsen, D.L.; Andersson, M.; Kamby, C. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat. Rev., 2009, 35(2), 121-136.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.003] [PMID: 19008049]
[54]
Presta, L.G.; Chen, H.; O’Connor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res., 1997, 57(20), 4593-4599.
[PMID: 9377574]
[55]
Wang, Y.; Fei, D.; Vanderlaan, M.; Song, A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro. Angiogenesis, 2004, 7(4), 335-345.
[http://dx.doi.org/10.1007/s10456-004-8272-2] [PMID: 15886877]
[56]
Gordon, M.S.; Margolin, K.; Talpaz, M.; Sledge, G.W., Jr; Holmgren, E.; Benjamin, R.; Stalter, S.; Shak, S.; Adelman, D.C. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol., 2001, 19(3), 843-850.
[http://dx.doi.org/10.1200/JCO.2001.19.3.843] [PMID: 11157038]
[57]
Lyseng-Williamson, K.A.; Robinson, D.M. Spotlight on bevacizumab in advanced colorectal cancer, breast cancer, and non-small cell lung cancer. BioDrugs, 2006, 20(3), 193-195.
[http://dx.doi.org/10.2165/00063030-200620030-00007] [PMID: 16724868]
[58]
Hamilton, E.P.; Blackwell, K.L. Safety of bevacizumab in patients with metastatic breast cancer. Oncology, 2011, 80(5-6), 314-325.
[http://dx.doi.org/10.1159/000328757] [PMID: 21778772]
[59]
Alexander, T.; Barrière, J.; François, E.; Follana, P. Bevacizumab: A dose review. Crit. Rev. Oncol. Hematol., 2015, 94(3), 311-322.
[http://dx.doi.org/10.1016/j.critrevonc.2015.01.012] [PMID: 25703583]
[60]
Rugo, H.S. Bevacizumab in the treatment of breast Cancer: Rationale and current data. Oncologist, 2004, 9(S1), 43-49.
[http://dx.doi.org/10.1634/theoncologist.9-suppl_1-43] [PMID: 15178815]
[61]
Zeidler, R.; Reisbach, G.; Wollenberg, B. Simultaneous activation of T-cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J. Immunol., 1999, 163(3), 1246-1252.
[PMID: 10415020]
[62]
Riesenberg, R.; Buchner, A.; Pohla, H.; Lindhofer, H. Lysis of prostate carcinoma cells by trifunctional bispecific antibodies (alpha EpCAM × alpha CD3). J. Histochem. Cytochem., 2001, 49(7), 911-917.
[http://dx.doi.org/10.1177/002215540104900711] [PMID: 11410615]
[63]
Riechelmann, H.; Wiesneth, M.; Schauwecker, P. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: A pilot clinical trial. Cancer Immunol. Immunother., 2007, 56(9), 1397-1406.
[http://dx.doi.org/10.1007/s00262-007-0283-6] [PMID: 17273869]
[64]
Zeidler, R.; Mysliwietz, J.; Csanady, M.; Walz, A.; Ziegler, I.; Schmitt, B.; Wollenberg, B.; Lindhofer, H. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumor cells. Br. J. Cancer, 2000, 83(2), 261-266.
[http://dx.doi.org/10.1054/bjoc.2000.1237] [PMID: 10901380]
[65]
Haense, N.; Atmaca, A.; Pauligk, C.; Steinmetz, K.; Marmé, F.; Haag, G.M.; Rieger, M.; Ottmann, O.G.; Ruf, P.; Lindhofer, H.; Al-Batran, S-E. A phase I trial of the trifunctional anti Her2 × anti CD3 antibody ertumaxomab in patients with advanced solid tumors. BMC Cancer, 2016, 16, 420.
[http://dx.doi.org/10.1186/s12885-016-2449-0] [PMID: 27387446]
[66]
Cardoso, F.; Dirix, L.; Conte, P.F.; Semiglazov, V.; de Placido, S.; Jaeger, M.; Mueller, C.; Eschenbach, B.; Klunker, D.; Lindhofer, H.; Cortes, J. Abstract P3-14-21: Phase II study of single agent trifunctional antibody ertumaxomab (anti-HER-2 and anti-CD3) in HER-2 low expressing hormone-refractory advanced breast cancer patients (ABC). Cancer Res., 2010, 70(24_Supplement), P3-14-21.
[http://dx.doi.org/10.1158/0008-5472.SABCS10-P3-14-21]
[67]
Kiewe, P.; Hasmüller, S.; Kahlert, S.; Heinrigs, M.; Rack, B.; Marmé, A.; Korfel, A.; Jäger, M.; Lindhofer, H.; Sommer, H.; Thiel, E.; Untch, M.; Untch, H. Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin. Cancer Res., 2006, 12(10), 3085-3091.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2436] [PMID: 16707606]
[68]
Jäger, M.; Schoberth, A.; Ruf, P.; Hess, J.; Lindhofer, H. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res., 2009, 69(10), 4270-4276.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2861] [PMID: 19435924]
[69]
Reddy, S.M.; Carroll, E.; Nanda, R. Atezolizumab for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2020, 20(3), 151-158.
[http://dx.doi.org/10.1080/14737140.2020.1732211] [PMID: 32067545]
[70]
Roy, S.; Soria, J-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Hodi, F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014, 515(7528), 563-567.
[http://dx.doi.org/10.1038/nature14011] [PMID: 25428504]
[71]
Marchand, M.; Claret, L.; Eppler, S.; Ruppel, J.; Abidoye, O.; Teng, S.L.; Lin, W-T.; Dayog, S.; Bruno, R.; Jin, J.; Girish, S. Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin. Pharmacol. Ther., 2017, 102(2), 305-312.
[http://dx.doi.org/10.1002/cpt.587] [PMID: 27981577]
[72]
Heimes, A.S.; Schmidt, M. Atezolizumab for the treatment of triple-negative breast cancer. Expert Opin. Investig. Drugs, 2019, 28(1), 1-5.
[http://dx.doi.org/10.1080/13543784.2019.1552255] [PMID: 30474425]
[73]
Basile, D.; Pelizzari, G.; Vitale, M.G.; Lisanti, C.; Cinausero, M.; Iacono, D.; Puglisi, F. Atezolizumab for the treatment of breast cancer. Expert Opin. Biol. Ther., 2018, 18(5), 595-603.
[http://dx.doi.org/10.1080/14712598.2018.1469619] [PMID: 29690797]
[74]
Henze, A.T.; Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest., 2016, 126(10), 3672-3679.
[http://dx.doi.org/10.1172/JCI84427] [PMID: 27482883]
[75]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody- drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4] [PMID: 27299281]
[76]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[77]
Jackson, D.; Atkinson, J.; Guevara, C.I.; Zhang, C.; Kery, V.; Moon, S.; Virata, C.; Yang, P.; Lowe, C.; Pinkstaff, J.; Cho, H.; Knudsen, N.; Manibusan, A.; Tian, F.; Sun, Y.; Lu, Y.; Sellers, A.; Jia, X-C.; Joseph, I.; Anand, B.; Morrison, K.; Pereira, D.S.; Stover, D. In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One, 2014, 9(1), e83865.
[http://dx.doi.org/10.1371/journal.pone.0083865] [PMID: 24454709]
[78]
Christopher, R.; Edward, H.H.; Lawrence, L.C.; Simeon, B.; Probst, G.; Fitch-Bruhns, M.; Monteon, J.; Bermudez, A.; van der Horst, E.H.; Halcomb, R.L.; Jackson, D.Y. Antibody-Drug Conjugates (ADCs) derived from interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol. Pharm., 2015, 12(11), 3986-3998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00432] [PMID: 26393951]
[79]
Svetlana, O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Wahl, A.F.; Meyer, D.L.; Senter, P.D. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol., 2003, 21(7), 778-784.
[http://dx.doi.org/10.1038/nbt832] [PMID: 12778055]
[80]
Wagner-Rousset, E.; Janin-Bussat, M-C.; Beck, A. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs, 2014, 6(1), 273-285.
[http://dx.doi.org/10.4161/mabs.26773] [PMID: 24135617]
[81]
Alicia, F.C. Investigational antibody- drug conjugates in clinical trials for the treatment of breast cancer. Expert Opin. Investig Drugs, 2021, 30(8), 789-795.
[http://dx.doi.org/10.1080/13543784.2021.1940950] [PMID: 34114911]
[82]
Ferraro, E.; Drago, J.Z.; Modi, S. Implementing antibody-drug conjugates(ADCs) in HER2-positive breast cancer: State of the art and future directions. Breast Cancer Res., 2021, 23(1), 84.
[http://dx.doi.org/10.1186/s13058-021-01459-y] [PMID: 34380530]
[83]
Jessica, R.; Owen, S.C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry. AAPS J., 2015, 17(2), 339-351.
[http://dx.doi.org/10.1208/s12248-014-9710-8] [PMID: 25604608]
[84]
Heidi, L.; Cardarelli, P.M.; Deshpande, S.; Borzilleri, R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today, 2014, 19(7), 869-881.
[http://dx.doi.org/10.1016/j.drudis.2013.11.004] [PMID: 24239727]
[85]
Jefferis, R. Antibody therapeutics. Expert Opin. Biol. Ther., 2007, 7(9), 1401-1413.
[http://dx.doi.org/10.1517/14712598.7.9.1401] [PMID: 17727329]
[86]
Jochen, G. Isotype selection in antibody engineering. Nat. Biotechnol., 2007, 25(12), 1369-1372.
[http://dx.doi.org/10.1038/nbt1207-1369] [PMID: 18066027]
[87]
Eiger, D.; Agostinetto, E.; Saude-Conde, R.; De Azambuja, E. The exciting new field of her2-low breast cancer treatment. Cancers, 2021, 13(5), 1015.
[http://dx.doi.org/10.3390/cancers13051015] [PMID: 33804398]
[88]
Jain, N.; Smith, S.W.; Ghone, S.; Tomczuk, B. Current ADC linker chemistry. Pharm. Res., 2015, 32(11), 3526-3540.
[http://dx.doi.org/10.1007/s11095-015-1657-7] [PMID: 25759187]
[89]
Joshua, Z. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol., 2021, 18(6), 327-344.
[http://dx.doi.org/10.1038/s41571-021-00470-8] [PMID: 33558752]
[90]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[91]
Criscitiello, C.; Morganti, S.; Curigliano, G. Antibody-drug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol., 2021, 14(1), 20.
[http://dx.doi.org/10.1186/s13045-021-01035-z] [PMID: 33509252]
[92]
Wayne, C. Factors involved in the design of cytotoxic payloads for antibody-drug conjugates. In: Antibody-Drug Conjugates and Immunotoxins; Springer: New York, NY, 2013.
[93]
Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. Antibody conjugation of nanoparticle as therapeutics for breast cancer treatment. Int. J. Mol. Sci., 2020, 21(17), 6018.
[http://dx.doi.org/10.3390/ijms21176018]
[94]
Trail, P.A.; Dubowchik, G.M.; Lowinger, T.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol. Ther., 2018, 181, 126-142.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.013] [PMID: 28757155]
[95]
Aram, J.; Ibrahim, M.F.; Saifo, M.S. Antibody-drug conjugates used in breast cancers. J. Oncol., 2021, 2021, 9927433.
[http://dx.doi.org/10.1155/2021/9927433] [PMID: 34257655]
[96]
Rinnerthaler, G.; Gampenrieder, S.; Greil, R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int. J. Mol. Sci., 2019, 20(5), 1115.
[http://dx.doi.org/10.3390/ijms20051115] [PMID: 30841523]
[97]
Le Joncour, V.; Martins, A.; Puhka, M.; Isola, J.; Salmikangas, M.; Laakkonen, P.; Joensuu, H.; Barok, M. A novel anti- HER2 antibody-drug conjugate XMT-1522 for HER2-positive breast and gastric cancers resistant to trastuzumab emtansine. Mol. Cancer Ther., 2019, 18(10), 1721-1730.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0207] [PMID: 31292166]
[98]
Pondé, N.; Aftimos, P.; Piccart, M. Antibody-drug conjugates in breast cancer: A comprehensive review, current treatments. Curr. Treat. Options Oncol., 2019, 20(5), 37.
[http://dx.doi.org/10.1007/s11864-019-0633-6] [PMID: 30931493]
[99]
U.S. National Institutes of Health. anti-HER2 antibody-drug conjugate MEDI4276. 2020. Available from: https://www.cancer .gov/ publications/dictionaries/cancer-drug/def/anti-her2-vc0101-adc-pf-06804103
[100]
Altunay, B.; Morgenroth, A.; Beheshti, M.; Vogg, A.; Wong, N.C.L.; Ting, H.H.; Biersack, H-J.; Stickeler, E.; Mottaghy, F.M. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(5), 1371-1389.
[101]
Tymon-Rosario, J.; Bonazzoli, E.; Bellone, S.; Manzano, A.; Pelligra, S.; Guglielmi, A.; Gnutti, B.; Nagarkatti, N.; Zeybek, B.; Manara, P.; Zammataro, L.; Harold, J.; Mauricio, D.; Buza, N.; Hui, P.; Altwerger, G.; Menderes, G.; Ratner, E.; Clark, M.; Andikyan, V.; Huang, G.S.; Silasi, D-A.; Azodi, M.; Schwartz, P.E.; Santin, A.D. DHES0815A, a novel antibody-drug conjugate targeting HER2/neu, is highly active against uterine serous carcinomas in vitro and in vivo. Gynecol. Oncol., 2021, 163(2), 334-341.
[102]
Lee, B.; Park, M-H.; Byeon, J-J.; Shin, S-H.; Choi, J.; Park, Y.; Park, Y-H.; Chae, J.; Shin, Y.G. Quantification of an antibody-conjugated drug in fat plasma by an affinity capture LC-MS/MS method for a novel prenyl transferase-mediated site-specific antibody–drug conjugate. Molecules, 2020, 25(7), 1515.
[http://dx.doi.org/10.3390/molecules25071515]
[103]
Deeks, E. Disitamab vedotin: First approval. Drugs, 2021, 81(16), 1929-1935.
[104]
Review, A.D.C. Hertuzumab vedotin;. 2020. Available from: https://www.adcreview.com/drugmap/hertuzumab-vedotin/
[105]
Li, Hongwen; Yu, Chao; Jiang, Jing; Huang, Changjiang; Yao, Xuejing; Xu, Qiaoyu; Yu, Fang; Lou, Liguang; Fang, Jianmin An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol. Ther., 2016, 17(4), 346-354.
[106]
Faria, M.; Peay, M.; Lam, B.; Ma, E.; Yuan, M.; Waldron, M.; Mylott, W.R., Jr; Liang, M.; Rosenbaum, A.I. Multiplex LC-MS/MS Assays for Clinical Bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies, 2019, 8(1), 11.
[107]
Avilés, P.; Domínguez, J.M.; Guillén, M.J.; Muñoz-Alonso, M.J.; Mateo, C.; Rodriguez-Acebes, R.; Molina-Guijarro, J.M.; Francesch, A.; Martínez-Leal, J.F.; Munt, S.; Galmarini, C.M.; Cuevas, C. MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in vivo activity against HER2-expressing tumors. Mol. Cancer Ther., 2018, 17(4), 786-794.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0795] [PMID: 29440297]
[108]
Conjugates, A.R.J.A-D. MI130004. 2020. Available from: https://www.adcreview.com/drugmap/mi130004/
[109]
Xu, Z.; Guo, D.; Jiang, Z.; Tong, Rongsheng; Jiang, Peidu; Bai, Lan; Chen, Lu; Zhu, Yuxuan; Guo, Chun; Shi, Jianyou; Yu, Dongke Novel HER2-targeting antibody- drug conjugates of trastuzumab beyond T-DM1 in breast cancer: Trastuzumab deruxtecan (DS-8201a) and (Vic-) trastuzumab duocarmazine (SYD985). Eur. J. Med. Chem., 2019, 183, 111682.
[110]
Conjugates, A.R.J.A-D. Trastuzumab duocarmazine |SYD985 | Trastuzumab vc- seco-DUBA. 2020. Available from: https://www.adcreview.com/drugmap/trastuzumabduocarmazinesyd985/
[111]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[112]
Monoclonal antibody therapy in treating women with locally advanced or metastatic breast cancer previously treated with combination chemotherapy. NCT00066547, , 2003.
[113]
Clinical study of recombinant anti-her2 humanized monoclonal antibody for injection. NCT04170595,, 2019.
[114]
Atezolizumab, cobimetinib, and eribulin in treating patients with chemotherapy resistant metastatic inflammatory breast cancer. NCT03202316, , 2017.
[115]
Testing the drug atezolizumab or placebo with usual therapy in first-line HER2-positive metastatic breast cancer. NCT03199885, , 2017.
[116]
Inetetamab plus cyclophosphamide metronomic chemotherapy plus aromatase inhibitor in metastatic HER2+/HR+ breast cancer (Increase). NCT04941885, , 2021.
[117]
Carboplatin and paclitaxel with or without panitumumab in treating patients with invasive triple negative breast cancer. NCT02876107, , 2016.
[118]
Olaparib in combination with either durvalumab, selumetinib, or capivasertib or ceralasertib alone in treating patients with metastatic triple negative breast cancer. NCT03801369, , 2023.
[119]
Dong, W.; Shi, J.; Yuan, T.; Qi, B.; Yu, J.; Dai, J.; He, L. Antibody-drug conjugates of 7-ethyl-10-hydroxycamptothecin: Sacituzumab govitecan and labetuzumab govitecan. Eur. J. Med. Chem., 2019, 167, 583-593.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.017] [PMID: 30822636]
[120]
Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; Shah, N.C.; Rugo, H.S.; Goldenberg, D.M.; Sweidan, A.M.; Iannone, R.; Washkowitz, S.; Sharkey, R.M.; Wegener, W.A.; Kalinsky, K. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med., 2019, 380(8), 741-751.
[http://dx.doi.org/10.1056/NEJMoa1814213] [PMID: 30786188]
[121]
Nagayama, A.; Vidula, N; Ellisen, L; Bardia, A Novel antibody-drug conjugates for triple negative breast cancer. Ther. Adv. Med. Oncol., 2020, 12, 1758835920915980.
[http://dx.doi.org/10.1177/1758835920915980] [PMID: 32426047]
[122]
Sussman, D.; Smith, L.M.; Anderson, M.E.; Duniho, S.; Hunter, J.H.; Kostner, H.; Miyamoto, J.B.; Nesterova, A.; Westendorf, L.; Van Epps, H.A.; Whiting, N.; Benjamin, D.R. SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol. Cancer Ther., 2014, 13(12), 2991-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0896] [PMID: 25253783]
[123]
Hashimoto, Y.; Koyama, K.; Kamai, Y.; Hirotani, K.; Ogitani, Y.; Zembutsu, A.; Abe, M.; Kaneda, Y.; Maeda, N.; Shiose, Y.; Iguchi, T.; Ishizaka, T.; Karibe, T.; Hayakawa, I.; Morita, K.; Nakada, T.; Nomura, T.; Wakita, K.; Kagari, T.; Abe, Y.; Murakami, M.; Ueno, S.; Agatsuma, T. A novel HER3- targeting antibody-drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin. Cancer Res., 2019, 25(23), 7151-7161.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1745] [PMID: 31471314]
[124]
Bayerlová, M.; Menck, K.; Klemm, F.; Wolff, A.; Pukrop, T.; Binder, C.; Beißbarth, T.; Bleckmann, A. Ror2 signaling and its relevance in breast cancer progression. Front. Oncol., 2017, 7, 135.
[http://dx.doi.org/10.3389/fonc.2017.00135] [PMID: 28695110]
[125]
Trombe, M.; Caron, A.; Tellier, A.; Carrez, C.; Guérif, S.; Clavier, S.; Karst, N.; Saarinen, J.; Satomaa, T.; Pitkänen, V.; Aitio, O.; Heiskanen, A.; Fassan, M.; Pinkas, J.; Baffa, R.; Blanc, V.; Nicolazzi, C. Abstract 235: Preclinical activity of an antibody drug conjugate targeting tumor specificmuc1 structural peptide-glycotope. Cancer Res., 2019, 79(13_Supplement), 235.
[http://dx.doi.org/10.1158/1538-7445.AM2019-235]
[126]
Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther., 2022, 7(1), 93.
[http://dx.doi.org/10.1038/s41392-022-00947-7] [PMID: 35318309]
[127]
Mercogliano, M.F.; Bruni, S.; Mauro, F.L.; Schillaci, R. Emerging targeted therapies for HER2-positive breast cancer. Cancers, 2023, 15(7), 1987.
[http://dx.doi.org/10.3390/cancers15071987] [PMID: 37046648]
[128]
Swain, S.M.; Miles, D.; Kim, S.B.; Im, Y.H.; Im, S.A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; Clark, E.; Knott, A.; Restuccia, E.; Benyunes, M.C.; Cortés, J.; Agajanian, R.; Ahmad, R.; Aktas, B.; Alencar, V.H.; Amadori, D.; Andrade, J.; André Franke, F.; Angiolini, C.; Aogi, K.; Armor, J.; Arpornwirat, W.; Assersohn, L.; Audeh, W.; Aulitzky, W.; Azevedo, S.; Bartoli, M.A.; Batista Lopez, N.; Bianconi, M.; Biganzoli, L.; Birhiray, R.; Bitina, M.; Blachy, R.; Blackwell, K.; Blanchard, R.; Blanchet, P.; Boiangiu, I.; Bower, B.; Brezden-Masley, C.; Brufsky, A.; Budde, L.; Caguioa, P.; Calvo, L.; Campone, M.; Carroll, R.R.; Castro, H.; Chan, V.; Charu, V.; Cinieri, S.; Clemens, M.; Conejo, E.A.; Côrtes, E.; Coudert, B.; Cronemberger, E.; Cubero, D.; Dakhil, S.; Daniel, B.; Davidson, N.; De Fatima Gaui, M.; De La Cruz, S.; Del Pilar, M.; Delgado, G.; Ellerton, J.A.; Estuardo, C.; Fehrenbacher, L.; Ferrero, J-M.; Flynn, P.J.; Foszczynska-Kloda, M.; Franco, S.; Fujii, H.; Gallagher, C.; Gamucci, T.; Giacomi, N.; Gil I Gil, M.; Gonzalez Martin, A.; Gorbunova, V.; Gotovkin, E.; Green, N.; Grincuka, E.; Grischke, E-M.; Hansen, V.; Hargis, J.; Hauschild, M.; Hegg, R.; Hendricks, C.; Hermann, R.; Hoff, P.; Horiguchi, J.; Hornedo Muguiro, J.; Iacobelli, S.; Inoue, K.; Ismael, G.; Itoh, Y.; Iwata, D.H.; Jendiroba, D.; Jochim, R.; Jones, A.; Just, M.; Kallab, A.; Karwal, M.; Kashiwaba, M.; Kato, G.; Kaufman, P.A.; Kellokumpu-Lehtinen, P.; Kirsch, A.; Kiselev, I.; Klein, P.; Kohno, N.; Kopp, M.; Kostovska-Maneva, L.; Kotliar, M.; Kudaba, I.; Kümmel, S.; Kuroi, K.; Lacava, J.; Latini, L.; Lee, S.C.; Lichinitser, M.; Lobo, C.; Maintz, C.; Maneecahvakajorn, J.; Marmé, A.; Martinez, G.; Masuda, N.; Matwiejuk, M.; Merculov, V.; Michaelson, R.; Miguel, L.; Monroy, H.; Montemurro, F.; Morales, S.; Moura, R.; Mueller, V.; Mulatero, C.; Nakagami, K.; Nakayama, T.; Neidhart, J.; Nguyen, A.; Nishimura, R.; Ogata, H.; O’reilly, S.; O’rourke, T.; Otero Reye, D.; Ouyang, X.; Patel, R.; Patel, T.; Pedrini, J.L.; Pereira, R.; Perez, A.; Peterson, C.; Pienkowski, T.; Pinczowski, H.; Polikoff, J.; Polkowski, W.; Price, P.E.; Prill, S.; Priou, F.; Purkalne, G.; Pyrhoenen, S.; Quackenbush, R.; Rai, Y.; Ribelles, N.; Ro, J.; Robinson, A.; Robles, R.; Rodriguez, G.; Roman, L.; Saji, S.; Sanchez-Rovira, P.; Sato, N.; Schmidt, M.; Schumacher, C.; Senecal, F.; Sharma, P.; Shen, Z.; Shirinkin, V.; Simoncini, E.; Sirisinha, T.; Smith, R.; Sohn, J-H.; Soldic, Z.; Soria, T.; Spicer, D.; Srimuninnimit, V.; Sriuranpong, V.; Staroslawska, E.; Stefanovski, P.; Sunpaweravong, P.; Taguchi, J.; Takeda, K.; Tellez-Trevilla, G.; Thomas, R.; Thomssen, C.; Toache, Z.; Tokuda, Y.; Tomczak, P.; Tosello, C.; Tsugawa, K.; Tudtud, D.; Ueno, T.; Van Eyll, B.; Varela, M.; Vasev, N.; Vrbanec, D.; Wang, X.; Wang, L.; Watanabe, J.; Waterhouse, D.; Wesenberg, B.; Wheatley, D.; Wong, Z.W.; Yadav, S.; Yadav, S.; Yardley, D.; Yau, T-K.; Yeo, W.; Ying, C.; Youn Oh, D. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol., 2020, 21(4), 519-530.
[http://dx.doi.org/10.1016/S1470-2045(19)30863-0] [PMID: 32171426]
[129]
Abuhelwa, Z.; Alloghbi, A.; Nagasaka, M. A comprehensive review on antibody-drug conjugates (ADCs) in the treatment landscape of non-small cell lung cancer (NSCLC). Cancer Treat. Rev., 2022, 106, 102393.
[http://dx.doi.org/10.1016/j.ctrv.2022.102393] [PMID: 35472631]
[130]
Jeon, E.J.; Han, J.H.; Seo, Y.; Koh, E.M.; Han, K.H.; Hwang, K.; Jung, K.J. Implementation of systematic bioanalysis of antibody–drug conjugates for preclinical pharmacokinetic study of ado-trastuzumab emtansine (T-DM1) in rats. Pharmaceutics, 2023, 15(3), 756.
[http://dx.doi.org/10.3390/pharmaceutics15030756] [PMID: 36986616]
[131]
Liu, T.; Tao, Y.; Xia, X.; Zhang, Y.; Deng, R.; Wang, Y. Analytical tools for antibody-drug conjugates: From in vitro to in vivo. Trends Analyt. Chem., 2022, 152, 116621.
[http://dx.doi.org/10.1016/j.trac.2022.116621]
[132]
Fumagalli, C.; Ranghiero, A.; Gandini, S.; Corso, F.; Taormina, S.; De Camilli, E.; Rappa, A.; Vacirca, D.; viale, G.; Guerini-Rocco, E.; Barberis, M. Inter-tumor genomic heterogeneity of breast cancers: Comprehensive genomic profile of primary early breast cancers and relapses. Breast Cancer Res., 2020, 22(1), 107.
[http://dx.doi.org/10.1186/s13058-020-01345-z] [PMID: 33059724]
[133]
Najjar, S.; Allison, K.H. Updates on breast biomarkers. Virchows Arch., 2022, 480(1), 163-176.
[http://dx.doi.org/10.1007/s00428-022-03267-x] [PMID: 35029776]
[134]
Cruz, E.; Kayser, V. Monoclonal antibody therapy of solid tumors: Clinical limitations and novel strategies to enhance treatment efficacy. Biologics, 2019, 13, 33-51.
[http://dx.doi.org/10.2147/BTT.S166310] [PMID: 31118560]
[135]
Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med., 2013, 274(2), 113-126.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy