Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation and Evaluation of the In situ Gel-forming Chitosan Hydrogels for Nasal Delivery of Morphine in a Single Unit dose in Rats to Enhance the Analgesic Responses

Author(s): Hossein Kamali, Mohsen Tafaghodi, Farhad Eisvand, S. Mohammad Ahmadi-Soleimani, Mina Khajouee, Hosnieh Ghazizadeh and Jafar Mosafer*

Volume 21, Issue 7, 2024

Published on: 25 July, 2023

Page: [1024 - 1035] Pages: 12

DOI: 10.2174/1567201820666230724161205

Price: $65

Abstract

Introduction: In this study, an in situ gel-forming chitosan hydrogel was prepared with the use of glutamate salt of chitosan (Ch-Ga), β-glycerophosphate (Gp), and morphine (Mor). The paper is focused on in vitro physicochemical properties and in-vivo analgesic effects of the prepared chitosan hydrogel.

Method: The thermosensitive properties of prepared chitosan hydrogel were evaluated during the different temperatures and times. The physicochemical properties of chitosan hydrogel were investigated by infrared (IR) spectroscopy and X-ray diffraction analysis (XRD). Also, its cell cytotoxicity effects were evaluated in murine NIH/3T3 normal cells. Subsequently, the distribution of chitosan hydrogel in the nasal cavity of rats and its analgesic responses were evaluated. The prepared chitosan hydrogel showed that it could be gelled at the temperature of 34 °C before leaving the nose in the shortest possible time of 30 s.

Result: The analgesic responses of the intranasal (IN) injection of chitosan hydrogel (IN-chitosan hydrogel, 10 mg Mor/kg) in a single unit dose in rat relative to the placebo and intranasal or intraperitoneal (IP) injection of free morphine solution (IN-Free Mor or IP-Free Mor, 10 mg Mor/kg) via the hot plate test, reveal that the IN-chitosan hydrogel could induce fast analgesic effects of morphine with maximum possible effect (MPE) of 93% after 5 min compare to the IN-Free Mor and IP-Free Mor with MPE of 80% after 15 min and 66% after 30 min, respectively. Also, prolonged analgesic effects with MPE of 78 % after 6 h of injection were only seen in the IN-chitosan hydrogel injected group. The obtained fluorescent images of rat’s brain injected with IN-chitosan hydrogel containing doxorubicine (Dox) as a fluorescent agent showed that the mucosal adhesive and absorption enhancer properties of IN-chitosan hydrogel resulting in longer presence of them in the nasal cavity of rats followed by more absorption of Dox from the blood vessels of olfactory bulbs with a 74% color intensity compared to the IN-Free Mor and IN-Free Dox with 15%.

Conclusion: These data reveal that the IN-chitosan hydrogel could induce fast and prolonged analgesic effects of morphine compare to the IN/IP-Free Mor, which could be considered as an in situ gel-forming thermosensitive chitosan hydrogel for nasal delivery of wide ranges of therapeutic agents.

Keywords: Chitosan, morphine, hydrogel, thermosensitive, nasal delivery, analgesic effects.

Graphical Abstract
[1]
Pagano, C.; Perioli, L.; Ricci, M. Novel Approaches in Nasal In Situ Gel Drug Delivery. Nasal Drug Delivery: Formulations, Developments, Challenges, and Solutions; Springer, 2023, pp. 235-252.
[2]
Datusalia, A.K.; Singh, G.; Yadav, N.; Gaun, S.; Manik, M.; Singh, R.K. Targeted delivery of montelukast for the treatment of Alzheimer’s Disease. CNS Neurol. Disord. Drug Targ., 2022, 21(10), 913-925.
[http://dx.doi.org/10.2174/1871527320666210902163756]
[3]
Georgieva, D.; Nikolova, D.; Vassileva, E.; Kostova, B. Chitosan-Based Nanoparticles for Targeted Nasal Galantamine Delivery as a Promising Tool in Alzheimer’s Disease Therapy. Pharmaceutics, 2023, 15(3), 829.
[http://dx.doi.org/10.3390/pharmaceutics15030829] [PMID: 36986689]
[4]
Nguyen, T.T.; Bao, N.S.; Van Vo, G. Advances in hydrogel-based drug delivery systems for Parkinson’s Disease. Neurochem. Res., 2022, 47(8), 2129-2141.
[http://dx.doi.org/10.1007/s11064-022-03617-w] [PMID: 35596041]
[5]
Illum, L. Nasal drug delivery — Recent developments and future prospects. J. Control. Release, 2012, 161(2), 254-263.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.024] [PMID: 22300620]
[6]
Christensen, K.S.; Cohen, A.E.; Mermelstein, F.H.; Hamilton, D.A.; McNicol, E.; Babul, N.; Carr, D.B. The analgesic efficacy and safety of a novel intranasal morphine formulation (morphine plus chitosan), immediate release oral morphine, intravenous morphine, and placebo in a postsurgical dental pain model. Anesth. Analg., 2008, 107(6), 2018-2024.
[http://dx.doi.org/10.1213/ane.0b013e318187b952] [PMID: 19020153]
[7]
Bellich, B.; D’Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. “The Good, the Bad and the Ugly” of Chitosans. Mar. Drugs, 2016, 14(5), 99.
[http://dx.doi.org/10.3390/md14050099] [PMID: 27196916]
[8]
Soane, R.J.; Frier, M.; Perkins, A.C.; Jones, N.S.; Davis, S.S.; Illum, L. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int. J. Pharm., 1999, 178(1), 55-65.
[http://dx.doi.org/10.1016/S0378-5173(98)00367-6] [PMID: 10205625]
[9]
Soane, R.J.; Hinchcliffe, M.; Davis, S.S.; Illum, L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm., 2001, 217(1-2), 183-191.
[http://dx.doi.org/10.1016/S0378-5173(01)00602-0] [PMID: 11292554]
[10]
Illum, L.; Farraj, N.F.; Davis, S.S. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res., 1994, 11(8), 1186-1189.
[http://dx.doi.org/10.1023/A:1018901302450] [PMID: 7971722]
[11]
Illum, L. Nasal drug delivery—possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[12]
Ilium, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9), 1326-1331.
[http://dx.doi.org/10.1023/A:1011929016601] [PMID: 9755881]
[13]
Davis, S.S.; Illum, L. Absorption enhancers for nasal drug delivery. Clin. Pharmacokinet., 2003, 42(13), 1107-1128.
[http://dx.doi.org/10.2165/00003088-200342130-00003] [PMID: 14531723]
[14]
Wu, J.; Wei, W.; Wang, L.Y.; Su, Z.G.; Ma, G.H. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials, 2007, 28(13), 2220-2232.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.024] [PMID: 17291582]
[15]
Iliescu, M.; Hoemann, C.D.; Shive, M.S.; Chenite, A.; Buschmann, M.D. Ultrastructure of hybrid chitosan-glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc. Res. Tech., 2008, 71(3), 236-247.
[http://dx.doi.org/10.1002/jemt.20545] [PMID: 18041781]
[16]
Wu, J.; Su, Z.G.; Ma, G.H. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int. J. Pharm., 2006, 315(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.045] [PMID: 16616819]
[17]
Cho, J.; Heuzey, M.C.; Bégin, A.; Carreau, P.J. Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules, 2005, 6(6), 3267-3275.
[http://dx.doi.org/10.1021/bm050313s] [PMID: 16283755]
[18]
Cho, J.; Heuzey, M.C.; Bégin, A.; Carreau, P.J. Chitosan and glycerophosphate concentration dependence of solution behaviour and gel point using small amplitude oscillatory rheometry. Food Hydrocoll., 2006, 20(6), 936-945.
[http://dx.doi.org/10.1016/j.foodhyd.2005.10.015]
[19]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[20]
Crompton, K.E.; Goud, J.D.; Bellamkonda, R.V.; Gengenbach, T.R.; Finkelstein, D.I.; Horne, M.K.; Forsythe, J.S. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials, 2007, 28(3), 441-449.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.044] [PMID: 16978692]
[21]
Fan, R.; Cheng, Y.; Wang, R.; Zhang, T.; Zhang, H.; Li, J.; Song, S.; Zheng, A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers (Basel), 2022, 14(12), 2379.
[http://dx.doi.org/10.3390/polym14122379] [PMID: 35745954]
[22]
Hoemann, C.D.; Chenite, A.; Sun, J.; Hurtig, M.; Serreqi, A.; Lu, Z.; Rossomacha, E.; Buschmann, M.D. Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J. Biomed. Mater. Res. A, 2007, 83A(2), 521-529.
[http://dx.doi.org/10.1002/jbm.a.31365] [PMID: 17503494]
[23]
Nair, L.S.; Starnes, T.; Ko, J.W.K.; Laurencin, C.T. Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules, 2007, 8(12), 3779-3785.
[http://dx.doi.org/10.1021/bm7006967] [PMID: 17994699]
[24]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[25]
Illum, L.; Watts, P.; Fisher, A.N.; Hinchcliffe, M.; Norbury, H.; Jabbal-Gill, I.; Nankervis, R.; Davis, S.S. Intranasal delivery of morphine. J. Pharmacol. Exp. Ther., 2002, 301(1), 391-400.
[http://dx.doi.org/10.1124/jpet.301.1.391] [PMID: 11907197]
[26]
Pavis, H.; Wilcock, A.; Edgecombe, J.; Carr, D.; Manderson, C.; Church, A.; Fisher, A. Pilot study of nasal morphine-chitosan for the relief of breakthrough pain in patients with cancer. J. Pain Symptom Manage., 2002, 24(6), 598-602.
[http://dx.doi.org/10.1016/S0885-3924(02)00522-5] [PMID: 12551810]
[27]
Stoker, D.G.; Reber, K.R.; Waltzman, L.S.; Ernst, C.; Hamilton, D.; Gawarecki, D.; Mermelstein, F.; McNicol, E.; Wright, C.; Carr, D.B. Analgesic efficacy and safety of morphine-chitosan nasal solution in patients with moderate to severe pain following orthopedic surgery. Pain Med., 2008, 9(1), 3-12.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00300.x] [PMID: 18254761]
[28]
Babul, N.; Darke, A.C. Disposition of morphine and its glucuronide metabolites after oral and rectal administration: Evidence of route specificity. Clin. Pharmacol. Ther., 1993, 54(3), 286-292.
[http://dx.doi.org/10.1038/clpt.1993.149] [PMID: 8375123]
[29]
Cañadas, C.; Alvarado, H.; Calpena, A.C.; Silva, A.M.; Souto, E.B.; García, M.L.; Abrego, G. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int. J. Pharm., 2016, 511(2), 719-727.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.055] [PMID: 27480398]
[30]
Ahmadi-Soleimani, S.M.; Azizi, H.; Abbasi-Mazar, A. Intermittent REM sleep deprivation attenuates the development of morphine tolerance and dependence in male rats. Neurosci. Lett., 2021, 748135735
[http://dx.doi.org/10.1016/j.neulet.2021.135735] [PMID: 33592307]
[31]
Shah, P.; Sarolia, J.; Vyas, B.; Wagh, P.; Ankur, K.; Kumar, M.A. PLGA nanoparticles for nose to brain delivery of Clonazepam: Formulation, optimization by 32 Factorial design, in vitro and in vivo evaluation. Curr. Drug Deliv., 2021, 18(6), 805-824.
[http://dx.doi.org/10.2174/18755704MTA3lOTgqw] [PMID: 32640955]
[32]
Hoekman, J.D.; Ho, R.J.Y. Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth. Analg., 2011, 113(3), 641-651.
[http://dx.doi.org/10.1213/ANE.0b013e3182239b8c] [PMID: 21709146]
[33]
Kashyap, K.; Shukla, R. Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges. Curr. Drug Deliv., 2019, 16(10), 887-901.
[http://dx.doi.org/10.2174/1567201816666191029122740] [PMID: 31660815]
[34]
Giri, T.K.; Thakur, A.; Alexander, A.; Ajazuddin; Badwaik, H.; Tripathi, D.K. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm. Sin. B, 2012, 2(5), 439-449.
[http://dx.doi.org/10.1016/j.apsb.2012.07.004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy