Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Current Developments in Synthetic Protocols for Pyrazolines and Analogs

Author(s): Rajnish Kumar*, Himanshu Singh, Avijit Mazumder, Salahuddin and Ranjeet Kumar Yadav

Volume 27, Issue 8, 2023

Published on: 16 August, 2023

Page: [710 - 726] Pages: 17

DOI: 10.2174/1385272827666230731091839

Price: $65

Open Access Journals Promotions 2
Abstract

The pyrazoline moiety is present in several commercialized molecules with a wide range of applications, which has established their importance in the pharmaceutical, agricultural and industrial sectors. A large number of patents have been granted on research related to pyrazolines. Due to its broad-spectrum usefulness, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Several synthesis strategies can prepare pyrazolines or their analogs, and the focus will always be on new greener and more economical ways for its synthesis. Among all the methods, chalcones, hydrazines, diazo compounds, and hydrazones have been most commonly applied in different reaction conditions for the synthesis of pyrazoline and its analogs synthesis. However, there are a lot of scopes for other molecules like Huisgen zwitter ions, different metal catalysts, and nitrile imine to be used as starting reagents. The presented article consists of recently reported synthetic protocols of pyrazoline and its derivatives, which will be very useful to the researchers.

Keywords: Pyrazolines, synthetic strategies, chalcones, hydrazines, diazo compounds, hydrazones.

« Previous
Graphical Abstract
[1]
Pola, S. Significance of thiazole-based heterocycles for bioactive systems. Scope. Sel. Heterocycl. Org. Pharm. Perspect., 2016, 1, 13-62.
[http://dx.doi.org/10.5772/62077]
[2]
Bakhotmah, D.; Abdel-Rahman, R. A review on the synthesis and chemistry of bioactive pyrazolines bearing 1, 2, 4-triazine moieties. Mini Rev. Org. Chem., 2016, 13(1), 62-77.
[http://dx.doi.org/10.2174/1570193X13666160225000114]
[3]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7(1), 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[4]
Revanasiddappa, B.C.; Jisha, M.S.; Kumar, M.V.; Kumar, H. Synthesis, antibacterial and antifungal evlaution of novel pyrazoline derivatives. Dhaka Univ. J. Pharm. Sci., 2018, 17(2), 221-226.
[http://dx.doi.org/10.3329/dujps.v17i2.39179]
[5]
Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; Wu, Y.L.; Thomas, M.; O’Byrne, K.J.; Moro-Sibilot, D.; Camidge, D.R.; Mok, T.; Hirsh, V.; Riely, G.J.; Iyer, S.; Tassell, V.; Polli, A.; Wilner, K.D.; Jänne, P.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med., 2013, 368(25), 2385-2394.
[http://dx.doi.org/10.1056/NEJMoa1214886] [PMID: 23724913]
[6]
Ganapathy, M.E. Huang, W.; Rajan, D.P.; Carter, A.L.; Sugawara, M.; Iseki, K.; Leibach, F.H.; Ganapathy, V. β-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem., 2000, 275(3), 1699-1707.
[http://dx.doi.org/10.1074/jbc.275.3.1699] [PMID: 10636865]
[7]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.; Al-aizari, F.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[8]
Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2020, 97, 103470.
[http://dx.doi.org/10.1016/j.bioorg.2019.103470] [PMID: 32120072]
[9]
Burch, J.; McKenna, C.; Palmer, S.; Norman, G.; Glanville, J.; Sculpher, M.; Woolacott, N. Rimonabant for the treatment of overweight and obese people. Health Technol. Assess., 2009, 13(3), 13-22.
[http://dx.doi.org/10.3310/hta13suppl3-03] [PMID: 19846024]
[10]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.S.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[11]
Hughes, M.F.; Mason, R.P.; Eling, T.E. Prostaglandin hydroperoxidase-dependent oxidation of phenylbutazone: Relationship to inhibition of prostaglandin cyclooxygenase. Mol. Pharmacol., 1988, 34(2), 186-193. http://dx.doi.org/0026-895X/88/020186-08S2.00/0
[PMID: 2842654]
[12]
Dowling, G.; Malone, E. Analytical strategy for the confirmatory analysis of the non-steroidal anti-inflammatory drugs firocoxib, propyphenazone, ramifenazone and piroxicam in bovine plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2011, 56(2), 359-365.
[http://dx.doi.org/10.1016/j.jpba.2011.05.029] [PMID: 21684706]
[13]
Grima, M.; Michel, B.; Barthelmebs, M.; Imbs, J.L. Mechanism of action of the diuretic effect of muzolimine. Arch. Mal. Du. Coeur. et des Vaisseaux, 1990, 83(8), 1205.
[14]
Shallcross, J.; Hámor, P.; Bechard, A.R.; Romano, M.; Knackstedt, L.; Schwendt, M. The divergent effects of CDPPB and Cannabidiol on fear extinction and anxiety in a predator scent stress model of PTSD in rats. Front. Behave. Neurosci., 2019, 13-91.
[http://dx.doi.org/10.3389/fnbeh.2019.00091]
[15]
Spitz, I.M.; Novis, B.H.; Ebert, R.; Trestian, S.; LeRoith, D.; Creutzfeldt, W. Betazole-induced GIP secretion is not mediated by gastric HCl. Metabolism, 1982, 31(4), 380-382.
[http://dx.doi.org/10.1016/0026-0495(82)90114-7] [PMID: 7078422]
[16]
Evans, N.A.; Waters, P.J. 2‐pyrazoline dyes for wool and nylon. J. Soc. Dyers Colour., 1978, 94(6), 252-255.
[http://dx.doi.org/10.1111/j.1478-4408.1978.tb03416.x]
[17]
Yusuf, M.; Jain, P. Synthetic and biological studies of pyrazolines and related heterocyclic compounds. Arab. J. Chem., 2014, 7(5), 553-596.
[http://dx.doi.org/10.1016/j.arabjc.2011.09.013]
[18]
Ameen, I.; Tripathi, A.K.; Siddiqui, A.; Kapil, G.; Pandey, S.S.; Tripathi, U.N. Synthesis, characterizations and photo-physical properties of novel lanthanum(III) complexes. J. Taibah Univ. Sci., 2018, 12(6), 796-808.
[http://dx.doi.org/10.1080/16583655.2018.1516028]
[19]
Zuhal, O.; Burak Kandilci, H.; Bülent, G.; Unsal, C.; Altan, A Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur. J. Med. Chem., 2007. Available from: https://pubchem.ncbi.nlm.nih.gov/#query=pyrazoline&tab=pubmed (Accessed December 23, 2022)
[20]
QIAN, X. Pyrazoline compound, photosensitive resin composition, and patterning method. WO 2022012317A1, 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/#query=pyrazoline&tab=patent (Accessed December 23, 2022)
[21]
Patrik, P.; Francesca, G.; Benoit, L. Pyrazolinedione derivatives as NADPH oxidase inhibitors. WO 036651, 2011.
[22]
Patrik, P.; Francesca, G.; Benoit, L. Pyrazolinedione derivatives as NADPH oxidase inhibitors. CA 2770278, 2011.
[23]
Patrik, P.; Francesca, G.; Benoit, L. Pyrazolinedione derivatives as NADPH oxidase inhibitors. EP 2483271, 2017.
[24]
Patrik, P.; Francesca, G.; Benoit, L. Pyrazolinedione derivatives as NADPH oxidase inhibitors. RU 2569855, 2015.
[25]
Loevezijn, A.V.; Bakker, W.I.; Stoit, A.; Rensink, A.A.M.; Verhorst, J. Pyrazolinedione derivatives as NADPH oxidase inhibitors. RU 2569855, 2016.
[26]
Gary, M.; Pandit, C.; Thomas, S. Pyrazoline derivatives and their use as selective androgen receptor modulators. AU 288457, 2016.
[27]
Gary, M.; Pandit, C.; Thomas, S. Pyrazoline derivatives and their use as selective androgen receptor modulators. EP 2736910, 2015.
[28]
Pettersson, L. 1-amidino-3-aryl-2-pyrazoline derivatives as 5-HT2 antagonist. CA 2988033, 2016.
[29]
Pettersson, L. 5-HT2 antagonist. US 10544103, 2020.
[30]
Shanghai, L.L.; Cassayre, J.Y.; Berthon, G.; Qacemic, M.E.L.; Shanghai, Y.W. Pyrazoline derivatives as insecticidal compounds. US 10287281 2019.
[31]
Shanghai, L.L.; Cassayre, J.Y.; Berthon, G.; Qacemic, M.E.L.; Shanghai, Y.W. Pyrazoline derivatives as insecticidal compounds. EP 2948439, 2020.
[32]
Giselbrecht, K.H. Process for manufacturing 1-cyclopropyl napthalenes. US 10683245, 2020.
[33]
Josep, H.B.; David, S.E. Pyrazoline derived compound and its use in a weekly dosage regimen against inflammation and pain derived from degenerative joint disease in mammals. EP 3206684, 2020.
[34]
Josep, H.B.; David, S.E. Pyrazoline derived compound and its use in a weekly dosage regimen against inflammation and pain derived from degenerative joint disease in mammals. US 11154536, 2021.
[35]
Fedorovich, T.V.; Mikhajlovich, D.S.; Andreevich, C.D.; Viktorovna, V.A. Light sensitive polmer material with fluorescent reading of information activated by trichloroacetyl pyrazoline and method for production thereof. RU 2725766, 2020.
[36]
Bliznyuk, V.N.; Seliman, A.F.; DeVol, T.A.; Derevyanko, N.A.; Ischenko, A.A. Organic scintillators derived from pyrazoline. US 10800966, 2020.
[37]
Acker, T.M.; Liotta, D.C.; Traynelis, S.F.; Jing, Y. Pyrazolinedihydroquinolones pharmaceutical compositions and uses. US 11117882, 2021.
[38]
Sid, A.; Messai, A.; Parlak, C. Kazancı N.; Luneau, D.; Keşan, G.; Rhyman, L.; Alswaidan, I.A.; Ramasami, P. 1-Formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline: Synthesis, characterization, antimicrobial activity and DFT studies. J. Mol. Struct., 2016, 1121, 46-53.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.043]
[39]
Bhatt, A.H.; Parekh, H.H.; Parikh, K.A.; Parikh, A.R. Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian J. Chem., 2001, 40, 57-61.
[40]
Kendre, M.M.; Baseer, M.A. Synthesis and evaluation of some new pyrazoline derivatives as antimicrobial agents. Orient. J. Chem., 2013, 29(1), 253-256.
[http://dx.doi.org/10.13005/ojc/290140]
[41]
Jadhav, S.B.; Shastri, R.A.; Gaikwad, K.V.; Gaikwad, S.V. Synthesis and antimicrobial studies of some novel pyrazoline and isoxazoline derivatives. E-J. Chem., 2009, 6(1), 183-188.
[http://dx.doi.org/10.1155/2009/361564]
[42]
Al-Abdullah, E.S. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecules, 2011, 16(4), 3410-3419.
[http://dx.doi.org/10.3390/molecules16043410] [PMID: 21512449]
[43]
Khan, M.H. Synthesis and antimicrobial activity of 5-amino-2, 7-diaryl-6-cyano-3-isonicotinamido thiazolo [4, 5-b]-2, 3, 4, 7-Tetrahydropyridines, 2, 7-Diaryl-6-Cyano-3-Isonicotinamido Thiazolo [4, 5-b]-2, 3, 4, 5, 6, 7-hexahydropyrid-5-ones, 2, 7-diaryl-5-amino-3-isonicotinamido thiazolo [4, 5-d][1, 3-] thiazines and 2, 6-diaryl-3-isonicotinamido thiazolo [4, 5-c] pyrazolines. Indian J. Chem., 2007, 46, 148-153.
[44]
Joshi, N.S.; Shaikh, A.A.; Deshpande, A.P.; Karale, B.K.; Bhirud, S.B. Gill, ch. synthesis, characterization and antimicrobial activities of some fluorine containing 2-(1-phenyl-3-aryl-1h-pyrazol-4-yl)-3-chlorochromones, 2-(1-phenyl-3-aryl-1h-pyrazol-4-yl) chromones and 5-(1-phenyl-3-aryl-1h-pyrazol-4-yl)-3-(2-hydroxyphenyl)-4, 5-dihydropyrazolines. Indian J. Chem., 2005, 44, 422-425.
[45]
Badadhe, P.V.; Chavan, N.M.; Mandhane, P.G.; Joshi, R.S.; Nagargoje, D.R.; Gill, C.H. Synthesis and characterization of some novel isoxazolines and pyrazolines as potent antimicrobial agents. Indian J. Chem., 2011, 50, 879-884.
[46]
Chen, G.; Wang, H.Y.; Liu, Y.; Xu, X.P.; Ji, S.J. The synthesis and characterisation of novel pyrazoline derivatives containing triphenylamine. Dyes Pigments, 2010, 85(3), 194-200.
[http://dx.doi.org/10.1016/j.dyepig.2009.11.004]
[47]
Mokle, S.S.; Vibhute, A.Y.; Khansole, S.V.; Zangade, S.B.; Vibhute, Y. Synthesis, characterization and antibacterial activity of some new 2-pyrazolines using triethanolamine as reaction solvent. J. Pharm. Biol. Chem. Sci., 2010, 1-631.
[48]
Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonía, R.; Nogueras, M.; Sanchez, A.; Cobo, J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg. Med. Chem., 2010, 18(14), 4965-4974.
[http://dx.doi.org/10.1016/j.bmc.2010.06.013] [PMID: 20594863]
[49]
Holla, B.S.; Mahalinga, M.; Poojary, B.; Ashok, M.; Akberali, P.M. Synthesis of pyrazolines promoted by amberlyst-15 catalyst. J. Pharm. Toxicol., 2006, 45, 568-571.
[50]
Maleki, B.; Azarifar, D.; Moghaddam, K.; Hojati, F.; Gholizadeh, M.; Salehabadi, H. Synthesis and characterization of a series of 1,3,5-trisubstituted-2-pyrazolines derivatives using methanoic acid under thermal condition. J. Serb. Chem. Soc., 2009, 74(12), 1371-1376.
[http://dx.doi.org/10.2298/JSC0912371M]
[51]
Xie, Z.; Bian, X.; Geng, X.; Li, S.; Wang, C. Novel synthesis of 1, 3, 5-trisubstituted 2-pyrazolines promoted by chlorotrimethylsilane. J. Chem. Res., 2008, 2008(1), 52-54.
[http://dx.doi.org/10.3184/030823408X287113a]
[52]
Jayashankara, B.; Rai, K.M.L. Synthesis and antimicrobial studies of new series of pyrazoline bearing bis-heterocycles via 1, 3-dipolar cycloaddition reactions. E-J. Chem., 2008, 5(2), 309-315.
[http://dx.doi.org/10.1155/2008/570569]
[53]
Albuquerque, H.; Santos, C.; Cavaleiro, J.; Silva, A. Chalcones as versatile synthons for the synthesis of 5- and 6-membered nitrogen heterocycles. Curr. Org. Chem., 2014, 18(21), 2750-2775.
[http://dx.doi.org/10.2174/1385272819666141013224253]
[54]
Safaei-Ghomi, J.; Bamoniri, A.H.; Soltanian-Telkabadi, M. A modified and convenient method for the preparation of N-phenylpyrazoline derivatives. Chem. Heterocycl. Compd., 2006, 42(7), 892-896.
[http://dx.doi.org/10.1007/s10593-006-0176-1]
[55]
Hamdy, A.M.; Shandala, M.Y. Synthesis of some new substituted 1, 3, 5- triaryl pyrazolines. Iraqi. Nat J. Chem., 2008, 30.
[56]
Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3(1), 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[57]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020] [PMID: 18986738]
[58]
Ramesh, B.; Sumana, T. Synthesis and anti-inflammatory activity of pyrazolines. E-J. Chem., 2010, 7(2), 514-516.
[http://dx.doi.org/10.1155/2010/731675]
[59]
Gupta, R.; Gupta, N.; Jain, A. Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation. ChemInform, 2010, 41.
[60]
Rajora, J.; Yadav, J.; Kumar, R.; Srivastava, Y.K. Ziani nouara. Indian J. Chem., 2010, 49, 989.
[61]
Babu, V.H.; Sridevi, C.; Joseph, A.; Srinivasan, K.K. Synthesis and biological evaluation of some novel pyrazolines. Ind. J. Pharamaceut. Sci., 2007, 69(3), 470-473.
[62]
Achraya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45, 430.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[63]
Mahé, O.; Dez, I.; Levacher, V.; Brière, J.F. Enantioselective synthesis of bio-relevant 3,5-diaryl pyrazolines. Org. Biomol. Chem., 2012, 10(19), 3946-3954.
[http://dx.doi.org/10.1039/c2ob25227a] [PMID: 22495248]
[64]
Revanasiddappa, B.C.; Kumar, M.V.; Kumar, H. Synthesis and antidepressant activity of pyrazoline derivatives. Dhaka Univ. J. Pharm. Sci., 2020, 19(2), 179-184.
[http://dx.doi.org/10.3329/dujps.v19i2.50634]
[65]
Beyhan, N.; Kocyigit-Kaymakcioglu, B.; Gümrü, S.; Aricioglu, F. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcones. Arab. J. Chem., 2017, 10, S2073-S2081.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.037]
[66]
Sharshira, E.M.; Hamada, N.M.M. Synthesis and in vitro antimicrobial activity of some pyrazolyl-1-carboxamide derivatives. Molecules, 2011, 16(9), 7736-7745.
[http://dx.doi.org/10.3390/molecules16097736] [PMID: 21909057]
[67]
Bhat, A.R.; Athar, F.; Azam, A. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(1), 426-431.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.005] [PMID: 18187238]
[68]
Hassan, S. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[69]
Rathish, I.G.; Javed, K.; Ahmad, S.; Bano, S.; Alam, M.S.; Pillai, K.K.; Singh, S.; Bagchi, V. Synthesis and antiinflammatory activity of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide. Bioorg. Med. Chem. Lett., 2009, 19(1), 255-258.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.105] [PMID: 19010670]
[70]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[71]
Kucukoglu, K.; Oral, F.; Aydin, T.; Yamali, C.; Algul, O.; Sakagami, H.; Gulcin, I.; Supuran, C.T.; Gul, H.I. Synthesis, cytotoxicity and carbonic anhydrase inhibitory activities of new pyrazolines. J. Enzyme Inhib. Med. Chem., 2016, 31(sup4), 20-24.
[http://dx.doi.org/10.1080/14756366.2016.1217852] [PMID: 27579806]
[72]
Yu, M.; Yang, H.; Wu, K.; Ji, Y.; Ju, L.; Lu, X. Novel pyrazoline derivatives as bi-inhibitor of COX-2 and B-Raf in treating cervical carcinoma. Bioorg. Med. Chem., 2014, 22(15), 4109-4118.
[http://dx.doi.org/10.1016/j.bmc.2014.05.059] [PMID: 24934992]
[73]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[74]
Yang, M.N.; Yan, D.M.; Zhao, Q.Q.; Chen, J.R.; Xiao, W.J. Synthesis of dihydropyrazoles via ligand-free Pd-catalyzed alkene aminoarylation of unsaturated hydrazones with diaryliodonium salts. Org. Lett., 2017, 19(19), 5208-5211.
[http://dx.doi.org/10.1021/acs.orglett.7b02480] [PMID: 28898097]
[75]
Chen, M.; Wang, L.J.; Ren, P.X.; Hou, X.Y.; Fang, Z.; Han, M.N.; Li, W. Copper-catalyzeddiamination of alkenes of unsaturated ketohydrazones with amines. Org. Lett., 2018, 20(3), 510-513.
[http://dx.doi.org/10.1021/acs.orglett.7b03401] [PMID: 29355325]
[76]
Wang, Z.; Yang, Y.; Gao, F.; Wang, Z.; Luo, Q.; Fang, L. Synthesis of 5-(trifluoromethyl) pyrazolines by formal [4+1]-annulation of fluorinated sulfur ylides and azoalkenes. Org. Lett., 2018, 20(4), 934-937.
[http://dx.doi.org/10.1021/acs.orglett.7b03811] [PMID: 29393649]
[77]
Fan, Z.; Feng, J.; Hou, Y.; Rao, M.; Cheng, J. Copper-catalyzed aerobic cyclization of βγ-unsaturated hydrazones with concomitant C═C bond cleavage. Org. Lett., 2020, 22(20), 7981-7985.
[http://dx.doi.org/10.1021/acs.orglett.0c02911] [PMID: 33021381]
[78]
Tu, K.N.; Kim, S.; Blum, S.A. Copper-catalyzedaminoboration from hydrazones to generate borylated pyrazoles. Org. Lett., 2019, 21(5), 1283-1286.
[http://dx.doi.org/10.1021/acs.orglett.8b04038] [PMID: 30753081]
[79]
Phansavath, P.; Ratovelomanana-Vidal, V.; Westermeyer, A.; Llopis, Q.; Guillamot, G. Highly regioselective synthesis of 3,5-substituted pyrazoles from bromovinyl acetals and n-tosylhydrazones. Synlett, 2020, 31(12), 1172-1176.
[http://dx.doi.org/10.1055/s-0039-1690885]
[80]
Kamal, A.; Sastry, K.N.V.; Chandrasekhar, D.; Adiyala, G.S.; Mani, P.R.; Nanubolu, J.B.; Singarapu, K.J.; Maurya, R.A. One-pot, three-component approach to the synthesis of 3,4,5-trisubstituted pyrazoles. J. Org. Chem., 2015, 80, 4325-4335.
[http://dx.doi.org/10.1021/jo502946g] [PMID: 25849582]
[81]
Wen, J.J.; Tang, H.T.; Xiong, K.; Ding, Z.C.; Zhan, Z.P. Synthesis of polysubstituted pyrazoles by a platinum-catalyzed sigmatropic rearrangement/cyclization cascade. Org. Lett., 2014, 16(22), 5940-5943.
[http://dx.doi.org/10.1021/ol502968c] [PMID: 25383747]
[82]
Senadi, G.C. Hu, W.P.; Lu, T.Y.; Garkhedkar, A.M.; Vandavasi, J.K.; Wang, J.J. I2-TBHP-catalyzed oxidative cross-coupling of N-sulfonyl hydrazones and isocyanides to 5-aminopyrazoles. Org. Lett., 2015, 17(6), 1521-1524.
[http://dx.doi.org/10.1021/acs.orglett.5b00398] [PMID: 25738730]
[83]
Panda, N.; Jena, A.K. Fe-catalyzed one-pot synthesis of 1,3-di- and 1,3,5-trisubstituted pyrazoles from hydrazones and vicinal diols. J. Org. Chem., 2012, 77(20), 9401-9406.
[http://dx.doi.org/10.1021/jo301770k] [PMID: 22998610]
[84]
Fan, X.W.; Lei, T.; Zhou, C.; Meng, Q.Y.; Chen, B.; Tung, C.H.; Wu, L.Z. Radical addition of hydrazones by α-bromo ketones to prepare 1, 3, 5-trisubstituted pyrazoles via visible light catalysis. J. Org. Chem., 2016, 81(16), 7127-7133.
[http://dx.doi.org/10.1021/acs.joc.6b00992] [PMID: 27362866]
[85]
Chen, S.; Chen, W.; Chen, X.; Chen, G.; Ackermann, L.; Tian, X. Copper (I)-catalyzedoxyamination of β γ-unsaturated hydrazones: Synthesis of dihydropyrazoles. Org. Lett., 2019, 21(19), 7787-7790.
[http://dx.doi.org/10.1021/acs.orglett.9b02733] [PMID: 31539265]
[86]
Deng, X.; Mani, N.S. Regioselective synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles from N-arylhydrazones and nitroolefins. J. Org. Chem., 2008, 73(6), 2412-2415.
[http://dx.doi.org/10.1021/jo7026195] [PMID: 18278943]
[87]
Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. I2-mediated oxidative C-N bond formation for metal-free one-pot synthesis of di-, tri-, and tetrasubstituted pyrazoles from αβ-unsaturated aldehydes/ketones and hydrazines. J. Org. Chem., 2014, 79(21), 10170-10178.
[http://dx.doi.org/10.1021/jo501844x] [PMID: 25279429]
[88]
Lellek, V.; Chen, C.; Yang, W.; Liu, J.; Ji, X.; Faessler, R. An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride. Synlett, 2018, 29(8), 1071-1075.
[http://dx.doi.org/10.1055/s-0036-1591941]
[89]
da Silva, M.J.V.; Poletto, J.; Jacomini, A.P.; Pianoski, K.E.; Gonçalves, D.S.; Ribeiro, G.M. de S Melo, S.M.; Back, D.F.; Moura, S.; Rosa, F.A. Unconventional method for synthesis of 3-carboxyethyl-4-formyl(hydroxy)-5-aryl-n-arylpyrazoles. J. Org. Chem., 2017, 82(23), 12590-12602.
[http://dx.doi.org/10.1021/acs.joc.7b02361] [PMID: 29094945]
[90]
Zhang, G.; Ni, H.; Chen, W.; Shao, J.; Liu, H.; Chen, B.; Yu, Y. One-pot three-component approach to the synthesis of polyfunctional pyrazoles. Org. Lett., 2013, 15(23), 5967-5969.
[http://dx.doi.org/10.1021/ol402810f] [PMID: 24255982]
[91]
Desai, J.M.; Shah, V.H. Synthesis and biological activity of cyanopyridine, isoxazole and pyrazoline derivatives having thymol moiety. ChemInform, 2003, 34(22), 382-385.
[http://dx.doi.org/10.1002/chin.200322137]
[92]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[93]
Li, D.Y.; Mao, X.F.; Chen, H.J.; Chen, G.R.; Liu, P.N. Rhodium-catalyzed addition-cyclization of hydrazines with alkynes: Pyrazole synthesis via unexpected C-N bond cleavage. Org. Lett., 2014, 16(13), 3476-3479.
[http://dx.doi.org/10.1021/ol501402p] [PMID: 24964008]
[94]
Ju, Y.; Varma, R.S. Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: Microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem., 2006, 71(1), 135-141.
[http://dx.doi.org/10.1021/jo051878h]
[95]
Sahu, S.K.; Banerjee, M.; Samantray, A.; Behera, C.; Azam, M.A. Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives. Trop. J. Pharm. Res., 2008, 7(2), 961-968.
[http://dx.doi.org/10.4314/tjpr.v7i2.14664]
[96]
Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org. Lett., 2008, 10(12), 2377-2379.
[http://dx.doi.org/10.1021/ol800592s] [PMID: 18503279]
[97]
Yang, C.; Liu, W.; He, Z.; He, Z. Divergent reactivity of nitrocyclopropanes with huisgen zwitterions and facile syntheses of 3-alkoxy pyrazolines and pyrazoles. Org. Lett., 2016, 18(19), 4936-4939.
[http://dx.doi.org/10.1021/acs.orglett.6b02415] [PMID: 27608855]
[98]
Yamazaki, S.; Maenaka, Y.; Fujinami, K.; Mikata, Y. Triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with activated alkenes leading to pyrazolines. RSC Advances, 2012, 2(21), 8095-8103.
[http://dx.doi.org/10.1039/c2ra21249h]
[99]
Nair, V.; Biju, A.T.; Mohanan, K.; Suresh, E. Novel synthesis of highly functionalized pyrazolines and pyrazoles by triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with allenic esters. Org. Lett., 2006, 8(11), 2213-2216.
[http://dx.doi.org/10.1021/ol0604623] [PMID: 16706489]
[100]
Cui, S.L.; Wang, J.; Wang, Y.G. Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines. Org. Lett., 2008, 10(1), 13-16.
[http://dx.doi.org/10.1021/ol7022888] [PMID: 18062691]
[101]
Shamsuzzaman; Khanam, H.; Dar, A.M.; Siddiqui, N.; Rehman, S. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines. J. Saudi Chem. Soc., 2016, 20(1), 7-12.
[http://dx.doi.org/10.1016/j.jscs.2012.05.004]
[102]
Shamsuzzaman; Khanam, H.; Mashrai, A.; Sherwani, A.; Owais, M.; Siddiqui, N. Synthesis and anti-tumor evaluation of B-ring substituted steroidal pyrazoline derivatives. Steroids, 2013, 78(12-13), 1263-1272.
[http://dx.doi.org/10.1016/j.steroids.2013.09.006] [PMID: 24064114]
[103]
Papafilippou, A.; Terzidis, M.A.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A. Reactivity of the Mitsunobu reagent toward 3-formylchromones: A strategy for the one-pot synthesis of chromeno[2,3-c]pyrazolines and chromeno[2,3-e]tetrazepines. Tetrahedron Lett., 2011, 52(12), 1306-1309.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.063]
[104]
Li, Y.; Zhang, X.; Lu, T.; Miao, Z. A regioselective synthesis of substituted pyrazolines via a cascade annulation of Huisgen zwitterion with α‐cyano‐αβ‐unsaturated ketones under solvent‐free heating conditions. ChemistrySelect, 2019, 4(35), 10352-10356.
[http://dx.doi.org/10.1002/slct.201901500]
[105]
Nair, V.; Mathew, S.C.; Biju, A.T.; Suresh, E. A novel reaction of the Huisgen zwitterion with chalcones and dienones: An efficient strategy for the synthesis of pyrazoline and pyrazolopyridazine derivatives. Angew. Chem. Int. Ed., 2007, 46(12), 2070-2073.
[http://dx.doi.org/10.1002/anie.200604025] [PMID: 17286329]
[106]
Bano, S.; Alam, M.S.; Javed, K.; Dudeja, M.; Das, A.K.; Dhulap, A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur. J. Med. Chem., 2015, 95, 96-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.031] [PMID: 25800645]
[107]
Mertens, L.; Hock, K.J.; Koenigs, R.M. Fluoroalkyl-substituted diazomethanes and their application in a general synthesis of pyrazoles and pyrazolines. Chemistry, 2016, 22(28), 9542-9545.
[http://dx.doi.org/10.1002/chem.201601707] [PMID: 27168358]
[108]
Li, J.J. Pechmann pyrazole synthesis; Springer: Berlin, Heidelberg, 2003.
[http://dx.doi.org/10.1007/978-3-662-05336-2_227]
[109]
Stewart, J.M.; Clark, R.L.; Pike, P.E. Synthesis of various heterocyclic compounds by use of diazomethane triazoles and pyrazoles. J. Chem. Eng. Data, 1971, 16(1), 98-101.
[http://dx.doi.org/10.1021/je60048a044]
[110]
Babinski, D.J.; Aguilar, H.R.; Still, R.; Frantz, D.E. Synthesis of substituted pyrazoles via tandem cross-coupling/electrocyclization of enol triflates and diazoacetates. J. Org. Chem., 2011, 76(15), 5915-5923.
[http://dx.doi.org/10.1021/jo201042c] [PMID: 21682322]
[111]
Krishna, P.R.; Sekhar, E.R.; Mongin, F. Lewis acid- and/or Lewis base-catalyzed [3+2] cycloaddition reaction: Synthesis of pyrazoles and pyrazolines. Tetrahedron Lett., 2008, 49(48), 6768-6772.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.037]
[112]
Padmavathi, V.; Radhalakshmi, T.; Mahesh, K.; Mohan, A.V.N. Synthesis of novel bis heterocycles: Bis pyrroles, pyrrolyl pyrazolines and pyrrolyl isoxazolines. IJC-B., 2008, 47B, 1707.
[113]
Conti, P.; Pinto, A.; Tamborini, L.; Rizzo, V.; De Micheli, C. A regioselective route to 5-substituted pyrazole- and pyrazoline-3-phosphonic acids and esters. Tetrahedron, 2007, 63(25), 5554-5560.
[http://dx.doi.org/10.1016/j.tet.2007.04.027]
[114]
Tanaka, K.; Maeno, S.; Mitsuhashi, K. Cycloadditions of N-Aryl-C-(trifluoromethyl)nitrilimines with dimethyl fumarate and maleate. J. Heterocycl. Chem., 1985, 22(2), 565-568.
[http://dx.doi.org/10.1002/jhet.5570220271]
[115]
Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Asymmetric catalytic 1,3-dipolar cycloaddition reaction of nitrile imines for the synthesis of chiral spiro-pyrazoline-oxindoles. Org. Lett., 2013, 15(1), 76-79.
[http://dx.doi.org/10.1021/ol303097j] [PMID: 23228061]
[116]
Abunada, N.; Hassaneen, H.; Kandile, N.; Miqdad, O. Synthesis and biological activity of some new pyrazoline and pyrrolo[3,4-c]pyrazole-4,6-dione derivatives: Reaction of nitrilimines with some dipolarophiles. Molecules, 2008, 13(4), 1011-1024.
[http://dx.doi.org/10.3390/molecules13041011] [PMID: 18463603]
[117]
Huang, H.; Shi, Y.; Li, H.; Li, H.; Pang, A.; Yang, J. A One-Step Approach to N -(Hetero)aryl-3,5-dinitropyrazoles from (Hetero)aryl Amines. Org. Lett., 2020, 22(15), 5866-5869.
[http://dx.doi.org/10.1021/acs.orglett.0c01960] [PMID: 32672468]
[118]
Zhu, C.; Zeng, H.; Liu, C.; Cai, Y.; Fang, X.; Jiang, H. Regioselective synthesis of 3-trifluoromethylpyrazole by coupling of aldehydes, sulfonyl hydrazides, and 2-bromo-3, 3, 3-trifluoropropene. Org. Lett., 2020, 22(3), 809-813.
[http://dx.doi.org/10.1021/acs.orglett.9b04228] [PMID: 31951135]
[119]
Martín, R.; Rodríguez Rivero, M.; Buchwald, S.L. Domino cu-catalyzed C-N coupling/hydroamidation: A highly efficient synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed., 2006, 45(42), 7079-7082.
[http://dx.doi.org/10.1002/anie.200602917] [PMID: 17009380]
[120]
Zhang, Q.; Meng, L.G.; Wang, K.; Wang, L. (n)Bu3P-catalyzed desulfonylative [3 + 2] cycloadditions of allylic carbonates with arylazosulfones to pyrazole derivatives. Org. Lett., 2015, 17(4), 872-875.
[http://dx.doi.org/10.1021/ol503735c] [PMID: 25651031]
[121]
Chandra, T.; Garg, N.; Lata, S.; Saxena, K.K.; Kumar, A. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem., 2010, 45(5), 1772-1776.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.009] [PMID: 20149499]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy