Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Discrimination between Benign and Malignant Lung Lesions using Volumetric Quantitative Dynamic Contrast-enhanced MRI

Author(s): Fang Wei, Fu Weidong, Zhou Wenming*, He Lei, Cheng Xiaosan, Mao Zhongliang, Liu Qianyun and Lin Huashan

Volume 20, 2024

Published on: 02 October, 2023

Article ID: e270723219206 Pages: 8

DOI: 10.2174/1573405620666230727111222

open_access

Open Access Journals Promotions 2
Abstract

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is considered a promising method in lung lesion assessment.

Methods: Sixty-four patients with single pulmonary lesions (SPLs) received DCE-MRI at 3.0 T. Of them, 49 cases were diagnosed with lung cancer, and 15 with benign pulmonary nodules (8 inflammatory nodules, 5 tuberculosis, and 2 abscesses). SPLs were quantitatively analyzed to determine the pulmonary lesions-related perfusion parameters, including reflux constant (Kep), volume transfer constant (Ktrans), the maximum slope of increase (MaxSlope), extravascular extracellular space volume fraction (Ve), apparent diffusion coefficient (ADC), the initial area in the signal intensitytime curve (IAUGC), and contrast-enhancement ratio (CER). In addition, a Student’s t-test was conducted to calculate statistical significance regarding the quantitatively analyzed perfusion parameters in benign SPLs compared to malignant SPLs. The area under (AUC) the receiver operating characteristic (ROC) curve was studied to investigate the performance of perfusion parameters in diagnosing lung cancer.

Results: Values of Ktrans, Kep, Ve, MaxSlope, and IAUGC increased within malignant nodules relative to benign nodules (Ktrans: 0.21 ±0.08 vs. 0.73 ±0.40, P = 0.0001; Kep: 1.21 ±0.66 vs. 1.83 ±0.90, P = 0.0163; Ve: 0.24 ±0.08 vs. 0.47 ±0.18, P < 0.0001; MaxSlope: 0.09 ±0.14 vs. 0.28 ±0.29, P = 0.0166; IAUGC: 0.18 ±0.09 vs. 0.55 ±0.34, P = 0.0001). Meanwhile, malignant nodules presented higher ADC than benign nodules (0.0016 ±0.0006 vs. 0.0012 ±0.0003, P = 0.0019). Ktrans and IAUGC showed the best diagnostic performance with AUCs [1.0, 95%CI (0.99–1.0); 0.93, 95%CI(0.85–1.0), respectively].

Conclusion: Malignant pulmonary lesions had higher values of Ktrans, Ve, Kep, MaxSlope, and IAUGC compared to benign pulmonary lesions. Overall, perfusion parameters of DCE-MRI facilitate discrimination between benign from malignant pulmonary nodules.

Keywords: Dynamic contrast-enhanced magnetic resonance imaging, Lung lesions, Single pulmonary lesion (SPL), Diagnosis, AUC, ADC.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Yang D, Liu Y, Bai C, Wang X, Powell CA. Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Lett 2020; 468: 82-7.
[http://dx.doi.org/10.1016/j.canlet.2019.10.009] [PMID: 31600530]
[3]
Cao M, Chen W. Epidemiology of lung cancer in China. Thorac Cancer 2019; 10(1): 3-7.
[http://dx.doi.org/10.1111/1759-7714.12916] [PMID: 30485694]
[4]
Groheux D, Quere G, Blanc E, et al. FDG PET-CT for solitary pulmonary nodule and lung cancer: Literature review. Diagn Interv Imaging 2016; 97(10): 1003-17.
[http://dx.doi.org/10.1016/j.diii.2016.06.020] [PMID: 27567555]
[5]
O’Dowd EL, Baldwin DR. Lung cancer screening—low dose CT for lung cancer screening: recent trial results and next steps. Br J Radiol 2018; 91(1090): 20170460.
[http://dx.doi.org/10.1259/bjr.20170460] [PMID: 28749712]
[6]
Zhou SC, Wang YJ, Ai T, et al. Diagnosis of solitary pulmonary lesions with intravoxel incoherent motion diffusion-weighted MRI and semi-quantitative dynamic contrast-enhanced MRI. Clin Radiol 2019; 74(5): 409.e7-409.e16.
[http://dx.doi.org/10.1016/j.crad.2018.12.022] [PMID: 30795843]
[7]
Jin K, Wang K, Zhang H, et al. Solitary pulmonary lesion in patients with history of malignancy: Primary lung cancer or metastatic cancer? Ann Surg Oncol 2018; 25(5): 1237-44.
[http://dx.doi.org/10.1245/s10434-018-6360-6] [PMID: 29417404]
[8]
Serai SD, Rapp JB, States LJ, Andronikou S, Ciet P, Lee EY. Pediatric lung MRI: Currently available and emerging techniques. AJR Am J Roentgenol 2021; 216(3): 781-90.
[http://dx.doi.org/10.2214/AJR.20.23104] [PMID: 33474982]
[9]
Allen BD, Schiebler ML, Sommer G, et al. Cost-effectiveness of lung mri in lung cancer screening. Eur Radiol 2020; 30(3): 1738-46.
[http://dx.doi.org/10.1007/s00330-019-06453-9] [PMID: 31748855]
[10]
Chen GX, Wang MH, Zheng T, Tang GC, Han FG, Tu GJ. Diffusion: Weighted magnetic resonance imaging for the detection of metastatic lymph nodes in patients with lung cancer: A meta-analysis. Mol Clin Oncol 2017; 6(3): 344-54.
[http://dx.doi.org/10.3892/mco.2017.1153] [PMID: 28451411]
[11]
Li CH, Chen FH, Schellingerhout D, Lin YS, Hong JH, Liu HL. Flow versus permeability weighting in estimating the forward volumetric transfer constant (Ktrans) obtained by DCE-MRI with contrast agents of differing molecular sizes. Magn Reson Imaging 2017; 36: 105-11.
[http://dx.doi.org/10.1016/j.mri.2016.10.027] [PMID: 27989901]
[12]
Wang GC, Chen YJ, Feng XR, Feng PY. Diagnostic value of HR‐MRI and DCE‐MRI in unilateral middle cerebral artery inflammatory stenosis. Brain Behav 2020; 10(9): e01732.
[http://dx.doi.org/10.1002/brb3.1732] [PMID: 32767660]
[13]
Kang SR, Kim HW, Kim HS. Evaluating the relationship between dynamic contrast‐enhanced mri (dce-mri) parameters and pathological characteristics in breast cancer. J Magn Reson Imaging 2020; 52(5): 1360-73.
[http://dx.doi.org/10.1002/jmri.27241] [PMID: 32524658]
[14]
Kumar N, Sharma M, Aggarwal N, et al. Role of various DW MRI and DCE MRI parameters as predictors of malignancy in solid pulmonary lesions. Canadian Ass Radiol J 2021; 72(3): 525-32.
[http://dx.doi.org/10.1177/0846537120914894]
[15]
Cheng Z, Wu Z, Shi G, et al. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging. Eur Radiol 2018; 28(3): 982-91.
[http://dx.doi.org/10.1007/s00330-017-5050-2] [PMID: 28929243]
[16]
Wang H, Su Z, Xu X, et al. Dynamic contrast-enhanced mri in renal tumors: Common subtype differentiation using pharmacokinetics. Sci Rep 2017; 7(1): 3117.
[http://dx.doi.org/10.1038/s41598-017-03376-7] [PMID: 28596583]
[17]
Chen L, Liu D, Zhang J, et al. Free-breathing dynamic contrast-enhanced MRI for assessment of pulmonary lesions using golden-angle radial sparse parallel imaging. J Magn Reson Imaging 2018; 48(2): 459-68.
[http://dx.doi.org/10.1002/jmri.25977] [PMID: 29437281]

© 2024 Bentham Science Publishers | Privacy Policy