Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Genotoxic Impurities in Critical Analysis of Product Development: Recent Advancements, Patents, and Current Challenges

Author(s): Suryakanta Swain, Bikash Ranjan Jena*, Areti Anka Rao, Narender Malothu, Naga Jogayya Kothakota and Satya Narayan Tripathy

Volume 25, Issue 4, 2024

Published on: 10 August, 2023

Page: [385 - 395] Pages: 11

DOI: 10.2174/1389201024666230726152629

Price: $65

conference banner
Abstract

The current review intends to regulate and accurately evaluate genotoxic contaminants in drug substance and drug product method and formulation process development, validation, and degradation pathways. The Quality by Design (QbD) principles can be applied to the systematic evaluation and control of impurities enabled by the development of modern analytical techniques, including the performance of risk assessment, the screening of Critical Process Parameters (CPPs), and the identification of the most influential variables in the optimization of the evaluation and control methods. Current difficulties in removing genotoxic contaminants and the procedures for doing so have been outlined in this review, along with the steps necessary to acquire optimum techniques and the most acceptable formulations. In addition to this, division, characterization, assessment, quantification, and formation of genotoxic impurities sources and control strategy for genotoxic impurities, handling of nitrosamine assay content of drug products in different industrial methodologies and their chemometric prospects and associated recent patents are also explored.

Keywords: Genotoxic, validation, risk assessment, control strategy, chemometrics, recent patents.

Next »
Graphical Abstract
[2]
Andrew, T.; David, E.; Sou-Jen, C.; Sophie, W.; Richard, T.; Nancy, B.; Ignacio, H.; Sanchez, F. Risk assessment of genotoxic impurities in new chemical entities: Strategies to demonstrate control. Org. Process Res. Dev., 2013, 17, 221-230.
[3]
Müller, L.; Mauthe, R.J.; Riley, C.M.; Andino, M.M.; Antonis, D.D.; Beels, C.; DeGeorge, J.; De Knaep, A.G.M.; Ellison, D.; Fagerland, J.A.; Frank, R.; Fritschel, B.; Galloway, S.; Harpur, E.; Humfrey, C.D.N.; Jacks, A.S.; Jagota, N.; Mackinnon, J.; Mohan, G.; Ness, D.K.; O’Donovan, M.R.; Smith, M.D.; Vudathala, G.; Yotti, L. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul. Toxicol. Pharmacol., 2006, 44(3), 198-211.
[http://dx.doi.org/10.1016/j.yrtph.2005.12.001] [PMID: 16412543]
[4]
ICH Q3 A (R2). Impurities in New Drug substances. 2006.https://www.gmp-compliance.org/files/guidemgr/ICH Q3A R2.pdf
[5]
Helleday, T.; Eshtad, S.; Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet., 2014, 15(9), 585-598.
[http://dx.doi.org/10.1038/nrg3729] [PMID: 24981601]
[6]
Shaikh, T.; Hussain, S.; Tabrez, S. Genotoxic impurities and its risk assessment in drug compounds. DDIPIJ, 2018, 2(4), 227-232.
[http://dx.doi.org/10.32474/DDIPIJ.2018.02.000143]
[7]
Robinson, D.I. Control of genotoxic impurities in active pharmaceutical ingredients: a review and perspective. Org. Process Res. Dev., 2010, 14(4), 946-959.
[http://dx.doi.org/10.1021/op900341a]
[8]
Genotoxic impurities in pharmaceutical products regulations and analysis. https://www.agilent.com/cs/library/primers/public/5991-1876EN.pdf
[9]
The determination and control of genotoxic impurities in APIs. Pharm. Technol., 2011, (5)
[10]
Kieffer, J.; Brémond, É.; Lienard, P.; Boccardi, G. In silico assessment of drug substances chemical stability. J. Mol. Struct. THEOCHEM, 2010, 954(1-3), 75-79.
[http://dx.doi.org/10.1016/j.theochem.2010.03.032]
[11]
Sharp, T.R. Calculated carbon–hydrogen bond dissociation enthalpies for predicting oxidative susceptibility of drug substance molecules. Int. J. Pharm., 2011, 418(2), 304-317.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.063] [PMID: 21575693]
[12]
Sudheer, B. Genetic toxicology. Samuel, C.; David, R.; Simon, E. In: Reference module in chemistry, molecular sciences and chemical engineering; Elsevier, 2017; pp. 195-203.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12381-9]
[13]
ICH S2 (R1) Genotoxicity testing and data interpretation for pharmaceuticals intended for human use - Scientific guideline European Medicines Agency, 2012.
[14]
ICH M7. Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk, Business Plan, 2010; Position Paper, 2010.
[15]
ICH Q2 (R1), Validation of analytical procedures: Definitions and methodology, geneva, 2005, in 2005 incorporated in Q2 (R1). In: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use,; , 2005.
[16]
Q3C(R4): impurities: guideline for residual solvents. International Conference on Harmonisation, 2009.http://www.ich.org/LOB/media/MEDIA5254.pdf
[17]
FDA draft guidance, genotoxic and carcinogenic impurities in drug substances and products: Recommended approaches; Food and Drug Administration, 2008.
[18]
EMEA. EMEA, Safety working group, questions and answers on the guideline on the limits of genotoxic impurities, EMA, 2008 and 2009. 2010.http://www.ema.europa.eu/ema
[19]
Sedlo, I. Kolonić, T.; Tomić, S. Presence of nitrosamine impurities in medicinal products. Archives of Industrial Hygiene and Toxicology, 2021, 72(1), 1-5.
[http://dx.doi.org/10.2478/aiht-2021-72-3491] [PMID: 33787187]
[20]
Šulc, M.; Hodek, P.; Stiborová, M. The binding affinity of carcinogenic N-nitrosodimethylamine and N-nitrosomethylaniline to cytochromes P450 2B4, 2E1 and 3A6 does not dictate the rate of their enzymatic N-demethylation. Gen. Physiol. Biophys., 2010, 29(2), 175-185.
[http://dx.doi.org/10.4149/gpb_2010_02_175] [PMID: 20577029]
[21]
Krul, C.A.M.; Zeilmaker, M.J.; Schothorst, R.C.; Havenaar, R. Intragastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions. Food Chem. Toxicol., 2004, 42(1), 51-63.
[http://dx.doi.org/10.1016/j.fct.2003.08.005] [PMID: 14630130]
[22]
Nitrosamine impurities; European Medicines Agency (EMA),, 2020.
[24]
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113(18), 7756-7764.
[http://dx.doi.org/10.1063/1.1316015]
[25]
Wichard, J.D. In silico prediction of genotoxicity. Food Chem Toxicol., 2017, 106(Pt B), 595-599.
[http://dx.doi.org/10.1016/j.fct.2016.12.013]
[26]
Barber, C.; Amberg, A.; Custer, L.; Dobo, K.L.; Glowienke, S.; Van Gompel, J.; Gutsell, S.; Harvey, J.; Honma, M.; Kenyon, M.O.; Kruhlak, N.; Muster, W.; Stavitskaya, L.; Teasdale, A.; Vessey, J.; Wichard, J. Establishing best practise in the application of expert review of mutagenicity under ICH M7. Regul. Toxicol. Pharmacol., 2015, 73(1), 367-377.
[http://dx.doi.org/10.1016/j.yrtph.2015.07.018] [PMID: 26248005]
[27]
Barber, C.; Antonucci, V.; Baumann, J.C.; Brown, R.; Covey-Crump, E.; Elder, D.; Elliott, E.; Fennell, J.W.; Gallou, F.; Ide, N.D.; Jordine, G.; Kallemeyn, J.M.; Lauwers, D.; Looker, A.R.; Lovelle, L.E.; McLaughlin, M.; Molzahn, R.; Ott, M.; Schils, D.; Oestrich, R.S.; Stevenson, N.; Talavera, P.; Teasdale, A.; Urquhart, M.W.; Varie, D.L.; Welch, D. A consortium-driven framework to guide the implementation of ICH M7 Option 4 control strategies. Regul. Toxicol. Pharmacol., 2017, 90, 22-28.
[http://dx.doi.org/10.1016/j.yrtph.2017.08.008] [PMID: 28822875]
[28]
Kragelj Lapanja, N. Toplak Časar, R.; Jurca, S.; Doljak, B. Theoretical purge factor determination as a control strategy for potential mutagenic impurities in the synthesis of drug substances. Acta Chim. Slov., 2017, 64(1), 1-14.
[http://dx.doi.org/10.17344/acsi.2016.2840] [PMID: 28380232]
[29]
Programmable genotoxic agents and uses therefor. Patent USOO5882941A, 1999.
[30]
Highly pure salts of clopidogrel free of genotoxic impurities. Patent WO2012123958A1, 2012.
[31]
Method for measuring genotoxic impurities in pradaxa. Patent CN105092720A, 2015.
[32]
Process for the production of ralfinamide salts substantially free from impurities having genotoxic effects. Patent US9505708B2, 2011.
[33]
Detection method of parecoxib sodium genotoxicity impurity and application thereof. Patent CN105372376A, 2016.
[34]
Method for detecting suspected genotoxic impurity of tofacitinib citrate. Patent CN107064350A, 2017.
[35]
Sarpogrelate hydrochloride genetoxic impurity V and preparation method thereof, detection method, application. Patent CN107382911A, 2017.
[36]
The high-sensitivity analysis method of genotoxicity impurity in ethyl sulfonic acid Nintedanib. Patent CN106841495A, 2017.
[37]
Polybenzimidazole polymer with e'unctionalized spacer chain and its method of preparation for removal of genotoxic impurities. Patent WO2017222402, 2017.
[38]
HPLC method for detecting genotoxic impurities in candesartan cilexetil. Patent CN111965273A, 2019.
[39]
Method for determining genotoxic impurities in rivaroxaban. Patent CN111721858A, 2020.
[40]
Method for analyzing genotoxic impurities in moxifloxacin hydrochloride starting material. Patent CN111855848A, 2020.
[41]
Method for simultaneously detecting genotoxic impurities 5- isoquinoline sulfonic acid methyl ester and 5-isoquinoline sulfonic acid ethyl ester in fasudil hydrochloride. Patent CN111624276A, 2020.
[42]
Method for detecting content of genotoxic impurities in tenofovir alafenamide. Patent CN111239285A, 2020.
[43]
Method for detecting isocyanate potential genotoxic impurities in glimepiride tablet. Patent CN113866329A, 2021.
[44]
HPLC detection method for genotoxic impurities in clotrimazole raw material and methodological verification. Patent CN113834885A, 2021.
[45]
Preparation method for N-nitrosamine genotoxic impurity of varenicline tartrate. Patent CN113788829A, 2021.
[46]
Method for detecting genotoxic impurity in pentoxifylline. Patent CN113686981A, 2021.
[47]
Analysis method for improving recovery rate of genotoxic impurity n-propyl bromide in sodium valproate. Patent CN113624867A, 2021.
[48]
Method for separating and determining two genotoxic impurities in topiromilast. Patent CN113466378A, 2021.
[49]
Method for determining residual content of 4-methylpiperazine-1- formate genotoxic impurities in zopiclone. Patent CN113552241A, 2021.
[50]
Method for separating and determining two genotoxic impurities in flurbiprofen axetil. Patent CN113008999A, 2021.
[51]
Method for detecting arylamine and aromatic hydrazine genotoxic impurities in celecoxib. Patent CN112986410A, 2021.
[52]
Method for analyzing latent genotoxic impurities of lamotrigine. Patent CN112816604A, 2021.
[53]
Quantitative determination method for trace genotoxic impurity trifluoromethanesulfonate in medicine. Patent CN112782303A, 2021.
[54]
Method for testing genotoxic impurity in sacubitril valsartan sodium starting material. Patent CN112611813A, 2021.
[55]
Preparation of metformin hydrochloride free from genotoxic impurity. Patent 20210380529, 2021.
[56]
Method for detecting the content of genotoxic impurity benzyl bromide in drug. Patent CN112305100A, 2021.
[57]
Method for detecting potential genotoxic impurities of esomeprazole sodium. Patent CN112229920A, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy