Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes

Author(s): Hong Shu, Wenhao Lv, Zhi-jian Ren, Hui LI, Tiantian Dong, Yao Zhang and Fang Nie*

Volume 21, Issue 8, 2024

Published on: 03 August, 2023

Page: [1114 - 1127] Pages: 14

DOI: 10.2174/1567201820666230724151545

Price: $65

conference banner
Abstract

Background: Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development.

Objective: In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro.

Methods: PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells.

Results: PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells.

Conclusion: UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.

Keywords: Tumor-associated macrophages, non-small cell lung cancer, STAT6 siRNA, ultrasound-mediated nanobubbles destruction, immunotherapy, M1 Phenotypes.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[3]
The, L. Lung cancer: Some progress, but still a lot more to do. Lancet, 2019, 394(10212), 1880.
[http://dx.doi.org/10.1016/S0140-6736(19)32795-3] [PMID: 31777378]
[4]
Wenes, M.; Shang, M.; Di Matteo, M.; Goveia, J.; Martín-Pérez, R.; Serneels, J.; Prenen, H.; Ghesquière, B.; Carmeliet, P.; Mazzone, M. Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metab., 2016, 24(5), 701-715.
[http://dx.doi.org/10.1016/j.cmet.2016.09.008] [PMID: 27773694]
[5]
Zhu, S.; Yi, M.; Wu, Y.; Dong, B.; Wu, K. Roles of tumor-associated macrophages in tumor progression: Implications on therapeutic strategies. Exp. Hematol. Oncol., 2021, 10(1), 60.
[http://dx.doi.org/10.1186/s40164-021-00252-z] [PMID: 34965886]
[6]
Hwang, I.; Kim, J.W.; Ylaya, K.; Chung, E.J.; Kitano, H.; Perry, C.; Hanaoka, J.; Fukuoka, J.; Chung, J.Y.; Hewitt, S.M. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J. Transl. Med., 2020, 18(1), 443.
[http://dx.doi.org/10.1186/s12967-020-02618-z] [PMID: 33228719]
[7]
Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumorassociated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv, 2016, 99(Pt B), 180-185.
[8]
van Dalen, F.; van Stevendaal, M.; Fennemann, F.; Verdoes, M.; Ilina, O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules, 2018, 24(1), 9.
[http://dx.doi.org/10.3390/molecules24010009] [PMID: 30577495]
[9]
Okabe, Y.; Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell, 2014, 157(4), 832-844.
[http://dx.doi.org/10.1016/j.cell.2014.04.016] [PMID: 24792964]
[10]
Xiao, H.; Guo, Y.; Li, B.; Li, X.; Wang, Y.; Han, S.; Cheng, D.; Shuai, X. M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKβ siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Cent. Sci., 2020, 6(7), 1208-1222.
[http://dx.doi.org/10.1021/acscentsci.9b01235] [PMID: 32724855]
[11]
Dong, R.; Gong, Y.; Meng, W.; Yuan, M.; Zhu, H.; Ying, M.; He, Q.; Cao, J.; Yang, B. The involvement of M2 macrophage polarization inhibition in fenretinide-mediated chemopreventive effects on colon cancer. Cancer Lett., 2017, 388, 43-53.
[http://dx.doi.org/10.1016/j.canlet.2016.11.029] [PMID: 27913199]
[12]
Pastuszak-Lewandoska, D.; Domańska-Senderowska, D.; Kordiak, J.; Antczak, A.; Czarnecka, K.H.; Migdalska-Sęk, M.; Nawrot, E.; Kiszałkiewicz, J.M.; Brzeziańska-Lasota, E. Immunoexpression analysis of selected JAK/STAT pathway molecules in patients with non- small-cell lung cancer. Pol. Arch. Intern. Med, 2017, 127(11), 758-764.
[13]
Fu, C.; Jiang, L.; Hao, S.; Liu, Z.; Ding, S.; Zhang, W.; Yang, X.; Li, S. Activation of the IL-4/STAT6 Signaling Pathway Promotes Lung Cancer Progression by Increasing M2 Myeloid Cells. Front. Immunol., 2019, 10, 2638.
[http://dx.doi.org/10.3389/fimmu.2019.02638] [PMID: 31798581]
[14]
Germain, N.D.; Chung, W.K.; Sarmiere, P.D. RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Mol. Aspects Med., 2023, 91, 101148.
[http://dx.doi.org/10.1016/j.mam.2022.101148] [PMID: 36257857]
[15]
Ranasinghe, P.; Addison, M.L.; Dear, J.W.; Webb, D.J. Small interfering RNA: Discovery, pharmacology and clinical development-An introductory review. Br. J. Pharmacol., 2022, 1-24, bph.15972.
[http://dx.doi.org/10.1111/bph.15972] [PMID: 36250252]
[16]
Lu, S.; Zhao, P.; Deng, Y.; Liu, Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics, 2022, 14(3), 480.
[http://dx.doi.org/10.3390/pharmaceutics14030480] [PMID: 35335857]
[17]
Chen, L.; Zhang, T.; Sun, S.; Ren, W.; Wu, A.; Xu, H. Ultrasound-Mediated Cavitation Enhances EGFR-Targeting PLGA-PEG Nano-Micelle Delivery for Triple-Negative Breast Cancer Treatment. Cancers, 2021, 13(14), 3383.
[http://dx.doi.org/10.3390/cancers13143383] [PMID: 34298600]
[18]
Wang, X.; Shi, Z.; Luo, J.; Zeng, Y.; He, L.; Chen, L.; Yao, J.; Zhang, T.; Huang, P. Ultrasound improved immune adjuvant delivery to induce DC maturation and T cell activation. J. Control. Release, 2022, 349, 18-31.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.054] [PMID: 35780954]
[19]
Ding, D.; Zhu, Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C, 2018, 92, 1041-1060.
[http://dx.doi.org/10.1016/j.msec.2017.12.036] [PMID: 30184728]
[20]
Su, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv., 2021, 28(1), 1397-1418.
[http://dx.doi.org/10.1080/10717544.2021.1938756] [PMID: 34184949]
[21]
Salvador, A.; Sandgren, K.J.; Liang, F.; Thompson, E.A.; Koup, R.A.; Pedraz, J.L.; Hernandez, R.M.; Loré, K.; Igartua, M. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int. J. Pharm., 2015, 496(2), 371-381.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.037] [PMID: 26475970]
[22]
Gu, P.; Wusiman, A.; Wang, S.; Zhang, Y.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr. Polym., 2019, 223, 115128.
[http://dx.doi.org/10.1016/j.carbpol.2019.115128] [PMID: 31427012]
[23]
Akbaba, H.; Erel-Akbaba, G.; Kotmakçı, M.; Başpınar, Y. Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-siRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells. Pharm. Res., 2020, 37(8), 165.
[http://dx.doi.org/10.1007/s11095-020-02885-x] [PMID: 32761250]
[24]
Edin, S.; Wikberg, M.L.; Dahlin, A.M.; Rutegård, J.; Öberg, Å.; Oldenborg, P.A.; Palmqvist, R. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One, 2012, 7(10), e47045.
[http://dx.doi.org/10.1371/journal.pone.0047045] [PMID: 23077543]
[25]
Jensen, T.O.; Schmidt, H.; Møller, H.J.; Høyer, M.; Maniecki, M.B.; Sjoegren, P.; Christensen, I.J.; Steiniche, T. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma. J. Clin. Oncol., 2009, 27(20), 3330-3337.
[http://dx.doi.org/10.1200/JCO.2008.19.9919] [PMID: 19528371]
[26]
Binnemars-Postma, K.; Bansal, R.; Storm, G.; Prakash, J. Targeting the Stat6 pathway in tumor‐associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J., 2018, 32(2), 969-978.
[http://dx.doi.org/10.1096/fj.201700629R] [PMID: 29066614]
[27]
Conway, E.M.; Pikor, L.A.; Kung, S.H.Y.; Hamilton, M.J.; Lam, S.; Lam, W.L.; Bennewith, K.L. Macrophages, Inflammation, and Lung Cancer. Am. J. Respir. Crit. Care Med., 2016, 193(2), 116-130.
[http://dx.doi.org/10.1164/rccm.201508-1545CI] [PMID: 26583808]
[28]
Ebersbach, C.; Beier, A.M.K.; Thomas, C.; Erb, H.H.H. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers, 2021, 13(19), 4854.
[http://dx.doi.org/10.3390/cancers13194854] [PMID: 34638338]
[29]
Karpathiou, G.; Ferrand, E.; Papoudou-Bai, A.; Camy, F.; Honeyman, F.; Dumollard, J.M.; Peoc’h, M. STAT6 and phosphorylated STAT6 are differentially expressed in lymphomas. Pathol. Res. Pract., 2022, 229, 153697.
[http://dx.doi.org/10.1016/j.prp.2021.153697] [PMID: 34839096]
[30]
Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol., 2014, 5, 614.
[http://dx.doi.org/10.3389/fimmu.2014.00614] [PMID: 25506346]
[31]
Rudolph, A.K.; Walter, T.; Erkel, G. The fungal metabolite cyclonerodiol inhibits IL-4/IL-13 induced Stat6-signaling through blocking the association of Stat6 with p38, ERK1/2 and p300. Int. Immunopharmacol., 2018, 65, 392-401.
[http://dx.doi.org/10.1016/j.intimp.2018.10.033] [PMID: 30380514]
[32]
Li, Z.; Guan, Y.Q.; Liu, J.M. The role of STAT-6 as a key transcription regulator in HeLa cell death induced by IFN-γ/TNF-α co-immobilized on nanoparticles. Biomaterials, 2014, 35(18), 5016-5027.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.004] [PMID: 24674464]
[33]
Nayak, S.; Herzog, R.W. Progress and prospects: Immune responses to viral vectors. Gene Ther., 2010, 17(3), 295-304.
[http://dx.doi.org/10.1038/gt.2009.148] [PMID: 19907498]
[34]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[35]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[36]
Patel, P.; Fetse, J.; Lin, C.Y.; Guo, Y.; Hasan, M.R.; Nakhjiri, M.; Zhao, Z.; Jain, A.; Cheng, K. Development of amino acid-modified biodegradable lipid nanoparticles for siRNA delivery. Acta Biomater., 2022, 154, 374-384.
[http://dx.doi.org/10.1016/j.actbio.2022.09.065] [PMID: 36191773]
[37]
Sun, S.; Wang, P.; Sun, S.; Liang, X. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor. Curr. Med. Chem., 2021, 28(3), 525-547.
[http://dx.doi.org/10.2174/1875533XMTA0cNDEhy] [PMID: 32048951]
[38]
Zhao, Y.Z.; Du, L.N.; Lu, C.T.; Jin, Y.G.; Ge, S.P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomedicine, 2013, 8, 1621-1633.
[PMID: 23637531]
[39]
Liang, G.F.; Zhu, Y.L.; Sun, B.; Hu, F.H.; Tian, T.; Li, S.C.; Xiao, Z.D. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res. Lett., 2011, 6(1), 447.
[http://dx.doi.org/10.1186/1556-276X-6-447] [PMID: 21749688]
[40]
Jahanbani, S.; Hansen, P.S.; Blum, L.K.; Bastounis, E.E.; Ramadoss, N.S.; Pandrala, M.; Kirschmann, J.M.; Blacker, G.S.; Love, Z.Z.; Weissman, I.L.; Nemati, F.; Tal, M.C.; Robinson, W.H. Increased macrophage phagocytic activity with TLR9 agonist conjugation of an anti- Borrelia burgdorferi monoclonal antibody. Clin. Immunol., 2023, 246, 109180.
[http://dx.doi.org/10.1016/j.clim.2022.109180] [PMID: 36396013]
[41]
He, S.; Fang, J.; Zhong, C.; Ren, F.; Wang, M. Controlled pVEGF delivery via a gene-activated matrix comprised of a peptide-modified non-viral vector and a nanofibrous scaffold for skin wound healing. Acta Biomater., 2022, 140, 149-162.
[http://dx.doi.org/10.1016/j.actbio.2021.11.037] [PMID: 34852301]
[42]
Wang, H.; Qu, R.; Chen, Q.; Zhang, T.; Chen, X.; Wu, B.; Chen, T. PEGylated Prussian blue nanoparticles for modulating polyethyleneimine cytotoxicity and attenuating tumor hypoxia for dual-enhanced photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(28), 5410-5421.
[http://dx.doi.org/10.1039/D2TB00571A] [PMID: 35775500]
[43]
Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, 114(1), 100-109.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.014] [PMID: 16831482]
[44]
Chou, Y.H.; Liu, Y.L.; Hsu, T.C.; Yow, J.L.; Tzang, B.S.; Chiang, W.H. Tumor acidity-responsive polymeric nanoparticles to promote intracellular delivery of zoledronic acid by PEG detachment and positive charge exposure for enhanced antitumor potency. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(23), 4363-4374.
[http://dx.doi.org/10.1039/D2TB00695B] [PMID: 35587692]
[45]
Meenakshi Sundaram, D.N.; Plianwong, S.; Kc, R.; Ostergaard, H.; Uludağ, H. In vitro cytotoxicity and cytokine production by lipid-substituted low molecular weight branched PEIs used for gene delivery. Acta Biomater., 2022, 148, 279-297.
[http://dx.doi.org/10.1016/j.actbio.2022.06.030] [PMID: 35738388]
[46]
Sharma, N.; Kumari, R.M.; Gupta, N.; Syed, A.; Bahkali, A.H.; Nimesh, S. Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules, 2020, 25(18), 4243.
[http://dx.doi.org/10.3390/molecules25184243] [PMID: 32947799]
[47]
Kong, L.; Zhang, S.; Chu, J.; Liu, X.; Zhang, L.; He, S.; Yang, S.; Ju, R.; Li, X. Tumor microenvironmental responsive liposomes simultaneously encapsulating biological and chemotherapeutic drugs for enhancing antitumor efficacy of NSCLC. Int. J. Nanomedicine, 2020, 15, 6451-6468.
[http://dx.doi.org/10.2147/IJN.S258906] [PMID: 32922011]
[48]
Li, W.; Li, X.; Liu, S.; Yang, W.; Pan, F.; Yang, X.Y.; Du, B.; Qin, L.; Pan, Y. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int. J. Nanomedicine, 2017, 12, 3509-3520.
[http://dx.doi.org/10.2147/IJN.S128802] [PMID: 28496326]
[49]
Long, L.; Hu, Y.; Long, T.; Lu, X.; Tuo, Y.; Li, Y.; Wang, M.; Ke, Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J. Immunother. Cancer, 2021, 9(12), e003973.
[http://dx.doi.org/10.1136/jitc-2021-003973] [PMID: 34969774]
[50]
Su, S.; Liu, Q.; Chen, J.; Chen, J.; Chen, F.; He, C.; Huang, D.; Wu, W.; Lin, L.; Huang, W.; Zhang, J.; Cui, X.; Zheng, F.; Li, H.; Yao, H.; Su, F.; Song, E. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 2014, 25(5), 605-620.
[http://dx.doi.org/10.1016/j.ccr.2014.03.021] [PMID: 24823638]
[51]
Saxena, K.; Jolly, M.K.; Balamurugan, K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl. Oncol., 2020, 13(11), 100845.
[http://dx.doi.org/10.1016/j.tranon.2020.100845] [PMID: 32781367]
[52]
Chen, L.; Lin, G.; Chen, K.; Liang, R.; Wan, F.; Zhang, C.; Tian, G.; Zhu, X. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma. J. Cancer, 2020, 11(24), 7291-7301.
[http://dx.doi.org/10.7150/jca.46429] [PMID: 33193893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy