Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Dysprosium-containing Cobalt Sulfide Nanoparticles as Anticancer Drug Carriers

Author(s): Govindaraj Sri Varalakshmi, Charan Singh Pawar, Varnitha Manikantan, Archana Sumohan Pillai, Aleyamma Alexander, Bose Allben Akash, N. Rajendra Prasad and Israel V. M. V. Enoch*

Volume 21, Issue 8, 2024

Published on: 19 September, 2023

Page: [1128 - 1141] Pages: 14

DOI: 10.2174/1567201821666230817122011

Price: $65

conference banner
Abstract

Background: Among various materials designed for anticancer drug transport, sulfide nanoparticles are uniquely intriguing owing to their spectral characteristics. Exploration of newer nanoscale copper sulfide particles with dysprosium doping is reported herein. It leads to a change in the physicochemical properties of the sulfide nanoparticles and hence the difference in drug release and cytotoxicity.

Objective: We intend to purport the suitably engineered cobalt sulfide and dysprosium-doped cobalt sulfide nanoparticles that are magnetic and NIR-absorbing, as drug delivery vehicles. The drug loading and release are based on the supramolecular drug complex formation on the surface of the nanoparticles.

Method: The nanomaterials are synthesized employing hydrothermal procedures, coated with a biocompatible poly-β-cyclodextrin, and characterized using the methods of diffractometry, microscopy, spectroscopy, thermogravimetry and magnetometry. The sustained drug release is investigated in vitro. 5-Fluorouracil is loaded in the nanocarriers. The empty and 5-fluorouracil-loaded nanocarriers are screened for their anti-breast cancer activity in vitro on MCF-7 cells.

Results: The size of the nanoparticles is below 10 nm. They show soft ferromagnetic characteristics. Further, they show broad NIR absorption bands extending up to 1200 nm, with the dysprosium-doped material displaying greater absorbance. The drug 5-fluorouracil is encapsulated in the nanocarriers and released sustainably, with the expulsion duration extending over 10 days. The IC50 of the blank and the drug-loaded cobalt sulfide are 16.24 ± 3.6 and 12.2 ± 2.6 μg mL-1, respectively. For the drug-loaded, dysprosium-doped nanocarrier, the IC50 value is 9.7 ± 0.3 μg mL-1.

Conclusion: The ultrasmall nanoparticles possess a size suitable for drug delivery and are dispersed well in the aqueous medium. The release of the loaded 5-fluorouracil is slow and sustained. The anticancer activity of the drug-loaded nanocarrier shows an increase in efficacy, and the cytotoxicity is appreciable due to the controlled release. The nanocarriers show multi-functional characteristics, i.e., magnetic and NIR-absorbing, and are promising drug delivery agents.

Keywords: Cobalt sulfide, dysprosium, 5-fluorouracil, poly-cyclodextrin, magnetic nanoparticles, drug delivery, anticancer activity.

Graphical Abstract
[1]
Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2021, 2(6), 1821-1871.
[http://dx.doi.org/10.1039/D0MA00807A]
[2]
Wu, H.X.; Cao, W.M.; Chen, Q.; Liu, M.M.; Qian, S.X.; Jia, N.Q.; Yang, H.; Yang, S.P. Metal sulfide coated multiwalled carbon nanotubes synthesized by an in situ method and their optical limiting properties. Nanotechnology, 2009, 20(19), 195604.
[http://dx.doi.org/10.1088/0957-4484/20/19/195604] [PMID: 19420643]
[3]
Wang, X.; Li, J.; Li, Q.; Chen, B.; Song, G.; Zhang, W.; Shi, L.; Zou, B.; Liu, R. Yellow-light generation and engineering in zinc-doped cadmium sulfide nanobelts with low-threshold two-photon excitation. Nanotechnology, 2014, 25(32), 325702.
[http://dx.doi.org/10.1088/0957-4484/25/32/325702] [PMID: 25051942]
[4]
Gupta, K.; Singh, M.; Mohan, P.; Mott, D.; Maenosono, S. Synthesis and characterization of copper sulfide-manganese sulfide nanoparticles with chestnut morphology and study on the semiconducting properties. ChemistrySelect, 2019, 4(13), 3898-3904.
[http://dx.doi.org/10.1002/slct.201803920]
[5]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[6]
Kristl, M.; Dojer, B.; Gyergyek, S.; Kristl, J. Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon, 2017, 3(3), e00273.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00273] [PMID: 28393121]
[7]
Rumale, N.; Arbuj, S.; Umarji, G.; Shinde, M.; Mulik, U.; Joy, P.; Amalnerkar, D. Tuning magnetic behavior of nanoscale cobalt sulfide and its nanocomposite with an engineering thermoplastic. J. Electron. Mater., 2015, 44(7), 2308-2311.
[http://dx.doi.org/10.1007/s11664-015-3753-1]
[8]
Bao, S.J.; Li, Y.; Li, C.M.; Bao, Q.; Lu, Q.; Guo, J. Shape evolution and magnetic properties of cobalt sulfide. Cryst. Growth Des., 2008, 8(10), 3745-3749.
[http://dx.doi.org/10.1021/cg800381e]
[9]
Hafeez, M.; Shaheen, R.; Akram, B.; Zain-ul-Abdin; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express, 2020, 7(2), 025019.
[http://dx.doi.org/10.1088/2053-1591/ab70dd]
[10]
Houshiar, M.; Zebhi, F.; Razi, Z.J.; Alidoust, A.; Askari, Z. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater., 2014, 371, 43-48.
[http://dx.doi.org/10.1016/j.jmmm.2014.06.059]
[11]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[12]
Mansor, M.; Cantando, E.; Wang, Y.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L.; Hochella, M.F., Jr; Xu, J. Insights into the biogeochemical cycling of cobalt: Precipitation and transformation of cobalt sulfide nanoparticles under low-temperature aqueous conditions. Environ. Sci. Technol., 2020, 54(9), 5598-5607.
[http://dx.doi.org/10.1021/acs.est.0c01363] [PMID: 32243750]
[13]
Krishnamoorthy, K.; Veerasubramani, G.K.; Kim, S.J. Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles. Mater. Sci. Semicond. Process., 2015, 40, 781-786.
[http://dx.doi.org/10.1016/j.mssp.2015.06.070]
[14]
Qiu, X.; Yu, Y.; Peng, Z.; Asif, M.; Wang, Z.; Jiang, L.; Wang, W.; Xu, Z.; Wang, H.; Liu, H. Cobalt sulfides nanoparticles encapsulated in N, S co-doped carbon substrate for highly efficient oxygen reduction. J. Alloys Compd., 2020, 815, 152457.
[http://dx.doi.org/10.1016/j.jallcom.2019.152457]
[15]
Ertugrul, M.S.; Nadaroglu, H.; Nalci, O.B.; Hacimuftuoglu, A.; Alayli, A. Preparation of CoS nanoparticles-cisplatin bio-conjugates and investigation of their effects on SH-SY5Y neuroblastoma cell line. Cytotechnology, 2020, 72(6), 885-896.
[http://dx.doi.org/10.1007/s10616-020-00432-5] [PMID: 33095405]
[16]
Yang, G.; Park, S.J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials, 2019, 12(7), 1177.
[http://dx.doi.org/10.3390/ma12071177] [PMID: 30978917]
[17]
Viet, P.V.; Huy, T.H.; You, S.J.; Hieu, L.V.; Thi, C.M. Hydrothermal synthesis, characterization, and photocatalytic activity of silicon doped TiO2 nanotubes. Superlattices Microstruct., 2018, 123, 447-455.
[http://dx.doi.org/10.1016/j.spmi.2018.09.035]
[18]
Grodzinski, P.; Kircher, M.; Goldberg, M.; Gabizon, A. Integrating nanotechnology into cancer care. ACS Nano, 2019, 13(7), 7370-7376.
[http://dx.doi.org/10.1021/acsnano.9b04266] [PMID: 31240914]
[19]
Garg, P.; Attri, P.; Sharma, R.; Chauhan, M.; Chaudhary, G.R. Advances and perspective on antimicrobial nanomaterials for biomedical applications. Front. Nanotechnol., 2022, 4, 898411.
[http://dx.doi.org/10.3389/fnano.2022.898411]
[20]
Hariharan, M.S.; Sivaraj, R.; Ponsubha, S.; Jagadeesh, R.; Enoch, I.V.M.V. 5-Fluorouracil-loaded β-cyclodextrin-carrying polymeric poly(methylmethacrylate)-coated samarium ferrite nanoparticles and their anticancer activity. J. Mater. Sci., 2019, 54(6), 4942-4951.
[http://dx.doi.org/10.1007/s10853-018-3161-z]
[21]
Ramasamy, S.; Samathanam, B.; Reuther, H.; Adyanpuram, M.N.M.S.; Enoch, I.V.M.V.; Potzger, K. Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium Ferrite/Cyclodextrin-tethered polymer hybrid. Colloids Surf. B Biointerfaces, 2018, 161, 347-355.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.048] [PMID: 29100128]
[22]
Li, Z.; Zhang, C.; Zhang, X.; Sui, J.; Jin, L.; Lin, L.; Fu, Q.; Lin, H.; Song, J. NIR-II Functional materials for photoacoustic theranostics. Bioconjug. Chem., 2022, 33(1), 67-86.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00520] [PMID: 34995076]
[23]
Ramasamy, S.; Enoch, I.V.M.V.; Rex Jeya Rajkumar, S. Polymeric cyclodextrin-dextran spooled nickel ferrite nanoparticles: Expanded anticancer efficacy of loaded camptothecin. Mater. Lett., 2020, 261, 127114.
[http://dx.doi.org/10.1016/j.matlet.2019.127114]
[24]
Enoch, I.V.M.V.; Ramasamy, S.; Mohiyuddin, S.; Gopinath, P.; Manoharan, R. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Appl. Nanosci., 2018, 8(3), 273-284.
[http://dx.doi.org/10.1007/s13204-018-0798-5]
[25]
Selvam, R.; Ramasamy, S.; Mohiyuddin, S.; Enoch, I.V.M.V.; Gopinath, P.; Filimonov, D. Molecular encapsulator-appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer-drug loading and anticancer property. Mater. Sci. Eng. C, 2018, 93, 125-133.
[http://dx.doi.org/10.1016/j.msec.2018.07.058] [PMID: 30274045]
[26]
Antony, E.J.; Shibu, A.; Ramasamy, S.; Paulraj, M.S.; Enoch, I.V.M.V. Loading of atorvastatin and linezolid in β-cyclodextrin-conjugated cadmium selenide/silica nanoparticles: A spectroscopic study. Mater. Sci. Eng. C, 2016, 65, 194-198.
[http://dx.doi.org/10.1016/j.msec.2016.04.034] [PMID: 27157743]
[27]
Di, X.; Liang, X.; Shen, C.; Pei, Y.; Wu, B.; He, Z. Carbohydrates used in polymeric systems for drug delivery: From structures to applications. Pharmaceutics, 2022, 14(4), 739.
[http://dx.doi.org/10.3390/pharmaceutics14040739] [PMID: 35456573]
[28]
Ansari, R.; Sadati, S.M.; Mozafari, N.; Ashrafi, H.; Azadi, A. Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. Eur. Polym. J., 2020, 128, 109607.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109607]
[29]
Kaliyamoorthi, K.; Sumohan Pillai, A.; Alexander, A.; Ramasamy, S.; Arivarasu, A.; Enoch, I.V.M.V. Designed poly(ethylene glycol) conjugate-erbium-doped magnetic nanoparticle hybrid carrier: Enhanced activity of anticancer drug. J. Mater. Sci., 2021, 56(5), 3925-3934.
[http://dx.doi.org/10.1007/s10853-020-05466-w]
[30]
Sudha, N.; Enoch, I.M.V. Interaction of curculigosides and their β-cyclodextrin complexes with bovine serum albumin: A fluorescence spectroscopic study. J. Solution Chem., 2011, 40(10), 1755-1768.
[http://dx.doi.org/10.1007/s10953-011-9750-y]
[31]
Enoch, I.V.M.V.; Swaminathan, M. Stoichiometrically different inclusion complexes of 2-aminofluorene and 2-amino-9-hydroxyfluorene in β-cyclodextrin: A spectrofluorimetric study. J. Fluoresc., 2006, 16(5), 697-704.
[http://dx.doi.org/10.1007/s10895-006-0112-x] [PMID: 16969690]
[32]
Alaboalirat, M.; Matson, J.B. Poly(β-cyclodextrin) prepared by ring-opening metathesis polymerization enables creation of supramolecular polymeric networks. ACS Macro Lett., 2021, 10(12), 1460-1466.
[http://dx.doi.org/10.1021/acsmacrolett.1c00590] [PMID: 35549146]
[33]
Chai, F.; Abdelkarim, M.; Laurent, T.; Tabary, N.; Degoutin, S.; Simon, N.; Peters, F.; Blanchemain, N.; Martel, B.; Hildebrand, H.F. Poly-cyclodextrin functionalized porous bioceramics for local chemotherapy and anticancer bone reconstruction. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(6), 1130-1139.
[http://dx.doi.org/10.1002/jbm.b.33094] [PMID: 24347296]
[34]
Matulionyte, M.; Skripka, A.; Ramos-Guerra, A.; Benayas, A.; Vetrone, F. The coming of age of neodymium: Redefining its role in rare earth doped nanoparticles. Chem. Rev., 2023, 123(1), 515-554.
[http://dx.doi.org/10.1021/acs.chemrev.2c00419] [PMID: 36516409]
[35]
Wang, Q.; Liang, T.; Wu, J.; Li, Z.; Liu, Z. Dye-sensitized rare earth-doped nanoparticles with boosted nir-iib emission for dynamic imaging of vascular network-related disorders. ACS Appl. Mater. Interfaces, 2021, 13(25), 29303-29312.
[http://dx.doi.org/10.1021/acsami.1c04612] [PMID: 34133138]
[36]
Fan, Q.; Cui, X.; Guo, H.; Xu, Y.; Zhang, G.; Peng, B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J. Biomater. Appl., 2020, 35(2), 237-263.
[http://dx.doi.org/10.1177/0885328220924540] [PMID: 32423319]
[37]
Yu, Z.; Eich, C.; Cruz, L.J. Recent advances in rare-earth-doped nanoparticles for NIR-II imaging and cancer theranostics. Front Chem., 2020, 8, 496.
[http://dx.doi.org/10.3389/fchem.2020.00496] [PMID: 32656181]
[38]
Al-Jameel, S.S.; Rehman, S.; Almessiere, M.A.; Khan, F.A.; Slimani, Y.; Al-Saleh, N.S.; Manikandan, A.; Al-Suhaimi, E.A.; Baykal, A. Anti-microbial and anti-cancer activities of Mn 0.5 Zn 0.5 Dy x Fe 2-x O 4 (x ≤ 0.1) nanoparticles. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 493-499.
[http://dx.doi.org/10.1080/21691401.2021.1938592] [PMID: 34159846]
[39]
Al-Jameel, S.S.; Almessiere, M.A.; Khan, F.A.; Taskhandi, N.; Slimani, Y.; Al-Saleh, N.S.; Manikandan, A.; Al-Suhaimi, E.A.; Baykal, A. Synthesis, Characterization, Anti-cancer analysis of Sr0.5Ba0.5DyxSmxFe8-2xO19 (0.00 ≤ x ≤ 1.0) microsphere nanocomposites. Nanomaterials, 2021, 11(3), 700.
[http://dx.doi.org/10.3390/nano11030700] [PMID: 33799552]
[40]
Wu, Y.; Li, J.; Shin, H.J. Self-assembled viral nanoparticles as targeted anticancer vehicles. Biotechnol. Bioprocess Eng.; BBE, 2021, 26(1), 25-38.
[http://dx.doi.org/10.1007/s12257-020-0383-0] [PMID: 33584104]
[41]
Sharma, K.S.; Thoh, M.; Dubey, A.K.; Phadnis, P.P.; Sharma, D.; Sandur, S.K.; Vatsa, R.K. The synthesis of rare earth metal-doped upconversion nanoparticles coated with D -glucose or 2-deoxy- D -glucose and their evaluation for diagnosis and therapy in cancer. New J. Chem., 2020, 44(32), 13834-13842.
[http://dx.doi.org/10.1039/D0NJ00666A]
[42]
Jain, A.; Fournier, P.G.J.; Mendoza-Lavaniegos, V.; Sengar, P.; Guerra-Olvera, F.M.; Iñiguez, E.; Kretzschmar, T.G.; Hirata, G.A.; Juárez, P. Functionalized rare earth-doped nanoparticles for breast cancer nanodiagnostic using fluorescence and CT imaging. J. Nanobiotechnol., 2018, 16(1), 26.
[http://dx.doi.org/10.1186/s12951-018-0359-9] [PMID: 29566719]
[43]
Barker, E.; Shepherd, J.; Asencio, I.O. The use of cerium compounds as antimicrobials for biomedical applications. Molecules, 2022, 27(9), 2678.
[http://dx.doi.org/10.3390/molecules27092678] [PMID: 35566026]
[44]
Navarro-López, D.E.; Sánchez-Huerta, T.M.; Flores-Jimenez, M.S.; Tiwari, N.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Garcia-Gonzalez, A.; Fuentes-Aguilar, R.Q.; Sanchez-Ante, G.; Corona-Romero, K.; Rincón-Enríquez, G.; López-Mena, E.R.; Sanchez-Ante, G.; Corona-Romero, K.; Rincón-Enríquez, G.; López-Mena, E.R. Nanocomposites based on doped ZnO nanoparticles for antibacterial applications. Colloids Surf. A Physicochem. Eng. Asp., 2022, 652, 129871.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129871]
[45]
Karthikeyan, M.; Jafar Ahamed, A.; Karthikeyan, C.; Vijaya Kumar, P. Enhancement of antibacterial and anticancer properties of pure and REM doped ZnO nanoparticles synthesized using Gymnema sylvestre leaves extract. SN Appl. Sci., 2019, 1(4), 355.
[http://dx.doi.org/10.1007/s42452-019-0375-x]
[46]
Bagwade, P.P.; Malavekar, D.B.; Ghogare, T.T.; Ubale, S.B.; Mane, V.J.; Bulakhe, R.N.; In, I.; Lokhande, C.D. A high performance flexible solid-state asymmetric supercapacitor based on composite of reduced graphene oxide@dysprosium sulfide nanosheets and manganese oxide nanospheres. J. Alloys Compd., 2021, 859, 157829.
[http://dx.doi.org/10.1016/j.jallcom.2020.157829]
[47]
Yuan, H.; Zhang, J.; Yu, R.; Su, Q. Synthesis of rare earth sulfides and their UV-vis absorption spectra. J. Rare Earths, 2009, 27(2), 308-311.
[http://dx.doi.org/10.1016/S1002-0721(08)60239-2]
[48]
Pillai, A.S.; Alexander, A.; Manikantan, V.; Varalakshmi, G. S.; Akash, B. A.; Enoch, I. V. M. V. Camptothecin-carrying cobalt-doped copper sulfide nanoparticles. J. Clust. Sci., 2023.
[http://dx.doi.org/10.1007/s10876-023-02441-8]
[49]
Sumohan Pillai, A.; Alexander, A.; Sri Varalakshmi, G.; Manikantan, V.; Allben Akash, B.; Enoch, I.V.M.V. Poly-β-Cyclodextrin-coated neodymium-containing copper sulphide nanoparticles as an effective anticancer drug carrier. J. Microencapsul., 2022, 39(5), 409-418.
[http://dx.doi.org/10.1080/02652048.2022.2094486] [PMID: 35748468]
[50]
Canchanya-Huaman, Y.; Mayta-Armas, A.F.; Pomalaya-Velasco, J.; Bendezú-Roca, Y.; Guerra, J.A.; Ramos-Guivar, J.A. Strain and grain size determination of CeO2 and TiO2 nanoparticles: Comparing integral breadth methods versus Rietveld, μ-Raman, and TEM. Nanomaterials, 2021, 11(9), 2311.
[http://dx.doi.org/10.3390/nano11092311] [PMID: 34578630]
[51]
Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W.; Han, X. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10(10), 4816-4824.
[http://dx.doi.org/10.1039/C7NR09424H] [PMID: 29473086]
[52]
Pan, Y.; Liu, Y.; Liu, C. Phase- and morphology-controlled synthesis of cobalt sulfide nanocrystals and comparison of their catalytic activities for hydrogen evolution. Appl. Surf. Sci., 2015, 357A, 1133-1140.
[53]
Alexander, A.; Sumohan Pillai, A.; Manikantan, V.; Sri Varalakshmi, G.; Allben Akash, B.; Enoch, I.V.M.V. Magnetic and luminescent neodymium-doped carbon dot-cyclodextrin polymer nanocomposite as an anticancer drug-carrier. Mater. Lett., 2022, 313, 131830.
[http://dx.doi.org/10.1016/j.matlet.2022.131830]
[54]
Lannon, J.M., Jr; Meng, Q. Analysis of a poly(oxymethylene) polymer by XPS. Surf. Sci. Spectra, 1999, 6(2), 99-102.
[http://dx.doi.org/10.1116/1.1247907]
[55]
Tholkappiyan, R.; Vishista, K. Synthesis, structural, magnetic and XPS studies of garnet type-dysprosium iron oxides by glycine-assisted combustion method. Nanosci. Nanotechnol. Lett., 2015, 7(6), 469-475.
[http://dx.doi.org/10.1166/nnl.2015.1967]
[56]
Al-Mamun, M.; Wang, Y.; Liu, P.; Zhong, Y.L.; Yin, H.; Su, X.; Zhang, H.; Yang, H.; Wang, D.; Tang, Z.; Zhao, H. One-step solid phase synthesis of a highly efficient and robust cobalt pentlandite electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(47), 18314-18321.
[http://dx.doi.org/10.1039/C6TA07962H]
[57]
Pillai, A.S.; Manikantan, V.; Alexander, A.; Varalakshmi, G.S.; Akash, B.A.; Enoch, I.V.M.V. Designed dual-functional surface-modified copper-iron sulfide nanocarrier for anticancer drug delivery. Mater. Today Commun., 2022, 33, 104862.
[http://dx.doi.org/10.1016/j.mtcomm.2022.104862]
[58]
Vékony, V.; Matta, C.; Pál, P.; Szabó, I.A. Structural and magnetic characterisation of a biocompatible magnetic nanoparticle assembly. J. Magn. Magn. Mater., 2022, 545, 168772.
[http://dx.doi.org/10.1016/j.jmmm.2021.168772]
[59]
Alsmadi, A.M.; Bsoul, I.; Mahmood, S.H.; Alnawashi, G.; Prokeš, K.; Siemensmeyer, K.; Klemke, B.; Nakotte, H. Magnetic study of M-type doped barium hexaferrite nanocrystalline particles. J. Appl. Phys., 2013, 114(24), 243910.
[http://dx.doi.org/10.1063/1.4858383]
[60]
Xiang, B.; Qi, Y.; Wang, S.; Zhang, J. Using a novel and easy-to-use sandwich structure device to evaluate the cooling properties of cool materials. IJPAC Int. J. Polym. Anal. Charact., 2015, 20(6), 529-540.
[http://dx.doi.org/10.1080/1023666X.2015.1051406]
[61]
Shariatinia, Z.; Sardsahra, F.B. Synthesis and characterization of novel spinel Zn 1.114 La 1.264 Al 0.5 O 4.271 nanoparticles. J. Alloys Compd., 2016, 686, 384-393.
[http://dx.doi.org/10.1016/j.jallcom.2016.06.061]
[62]
Singh, A.; Manivannan, R.; Noyel Victoria, S. Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications. Arab. J. Chem., 2019, 12(8), 2439-2447.
[http://dx.doi.org/10.1016/j.arabjc.2015.03.013]
[63]
Lin, B.; Chen, H.; Liang, D.; Lin, W.; Qi, X.; Liu, H.; Deng, X. Acidic pH and high-H2O2 Dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl. Mater. Interfaces, 2019, 11(12), 11157-11166.
[http://dx.doi.org/10.1021/acsami.8b22487] [PMID: 30869853]
[64]
Ramasamy, S.; David, R.J.R.S.; Enoch, I.V.M.V. Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artif. Cell. Nanomed. Biotechnol., 2018, 46(S2), 675-682.
[65]
Li, C.; Wang, Y.; Zhang, H.; Li, M.; Zhu, Z.; Xue, Y. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized gold nanoparticles using cardiospermum halicacabum on AGS gastric carcinoma cells. Int. J. Nanomedicine, 2019, 14, 951-962.
[http://dx.doi.org/10.2147/IJN.S193064] [PMID: 30787609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy