General Research Article

SFXN3与非M3急性髓系白血病患者的临床结局差和对低甲基化治疗的敏感性有关

卷 23, 期 5, 2023

发表于: 01 August, 2023

页: [410 - 418] 页: 9

弟呕挨: 10.2174/1566523223666230724121515

open access plus

摘要

背景:DNA高甲基化在急性髓系白血病(AML)的发生和进展中起着至关重要的作用。线粒体丝氨酸转运蛋白 SFXN3 对于碳代谢和 DNA 甲基化至关重要。然而,SFXN3对AML发生和进展的影响尚未见报道。 目的:在本研究中,我们假设 SFXN3 表明预后不良,并建议针对 AML 患者进行量身定制的治疗。 方法:我们使用 GEPIA 和 TCGA 存储库数据分析 SFXN3 的表达及其与 AML 患者生存的相关性。 RT-qPCR 用于检测我们入组的 AML 患者和志愿者中的 SFXN3 水平。此外,全基因组亚硫酸氢盐测序(WGBS)用于检测个体基因组甲基化水平。 结果:通过 TCGA 和 GEPIA 数据库,我们发现 SFXN3 在 AML 患者中富集,预测生存期较短。此外,我们证实 SFXN3 主要在 AML 患者中过度表达,尤其是非 M3 患者,并且发现非 M3 AML 患者中高 SFXN3 与不良预后和频繁出现母细胞有关。有趣的是,接受低甲基化治疗的 SFXN3 水平高的非 M3 AML 患者显示出更高的 CR 率。最后,我们发现 SFXN3 可以促进非 M3 AML 患者转录起始位点 (TSS) 的 DNA 甲基化。这些位点被发现聚集在多种重要细胞功能中,并且经常伴有 DNMT3A 和 NPM1 的突变。 结论: 总之,SXFN3 在非 M3 AML 患者的进展和高甲基化中发挥重要作用,并可能成为指示低甲基化治疗高 CR 率的潜在生物标志物。

关键词: 急性髓系白血病(AML),SFXN3(铁屈蛋白3),DNA甲基化,表观遗传学,低甲基化治疗结果。

图形摘要
[1]
Giacopelli B, Wang M, Cleary A, et al. DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res 2021; 31(5): 747-61.
[http://dx.doi.org/10.1101/gr.269233.120] [PMID: 33707228]
[2]
Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol 2019; 56(2): 84-9.
[http://dx.doi.org/10.1053/j.seminhematol.2018.08.001] [PMID: 30926095]
[3]
Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 2016; 127(1): 42-52.
[http://dx.doi.org/10.1182/blood-2015-07-604512] [PMID: 26660432]
[4]
Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci 2019; 20(18): 4576.
[http://dx.doi.org/10.3390/ijms20184576] [PMID: 31527484]
[5]
Gardin C, Dombret H. Hypomethylating agents as a therapy for AML. Curr Hematol Malig Rep 2017; 12(1): 1-10.
[http://dx.doi.org/10.1007/s11899-017-0363-4] [PMID: 28286907]
[6]
Stahl M, DeVeaux M, Montesinos P, et al. Hypomethylating agents in relapsed and refractory AML: Outcomes and their predictors in a large international patient cohort. Blood Adv 2018; 2(8): 923-32.
[http://dx.doi.org/10.1182/bloodadvances.2018016121] [PMID: 29685952]
[7]
Bocchia M, Candoni A, Borlenghi E, et al. Real-world experience with decitabine as a first-line treatment in 306 elderly acute myeloid leukaemia patients unfit for intensive chemotherapy. Hematol Oncol 2019; 37(4): 447-55.
[http://dx.doi.org/10.1002/hon.2663] [PMID: 31385337]
[8]
Kory N, Wyant GA, Prakash G, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 2018; 362(6416)eaat9528
[http://dx.doi.org/10.1126/science.aat9528] [PMID: 30442778]
[9]
Acoba MG, Alpergin ESS, Renuse S, et al. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep 2021; 34(11)108869
[http://dx.doi.org/10.1016/j.celrep.2021.108869] [PMID: 33730581]
[10]
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab 2017; 25(1): 27-42.
[http://dx.doi.org/10.1016/j.cmet.2016.08.009] [PMID: 27641100]
[11]
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: Understanding the specificity. In: Braaten D, Ed. Diet, Sulfur Amino Acids, and Health Span Annals of the New York Academy of Sciences 2016; 1363: pp. 91-98.
[http://dx.doi.org/10.1111/nyas.12956]
[12]
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165841
[http://dx.doi.org/10.1016/j.bbadis.2020.165841] [PMID: 32439610]
[13]
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 2016; 16(10): 650-62.
[http://dx.doi.org/10.1038/nrc.2016.81] [PMID: 27634448]
[14]
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one carbon metabolism in cancer. (Review). Int J Oncol 2020; 58(2): 158-70.
[http://dx.doi.org/10.3892/ijo.2020.5158] [PMID: 33491748]
[15]
Maddocks ODK, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA Methylation through De Novo atp synthesis in cancer cells. Mol Cell 2016; 61(2): 210-21.
[http://dx.doi.org/10.1016/j.molcel.2015.12.014] [PMID: 26774282]
[16]
Chiang PK, Gordon RK, Tal J, et al. S-adenosylmetliionine and methylation. FASEB J 1996; 10(4): 471-80.
[http://dx.doi.org/10.1096/fasebj.10.4.8647346] [PMID: 8647346]
[17]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[18]
Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884-90.
[http://dx.doi.org/10.1093/bioinformatics/bty560] [PMID: 30423086]
[19]
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 2011; 27(11): 1571-2.
[http://dx.doi.org/10.1093/bioinformatics/btr167] [PMID: 21493656]
[20]
Akalin A, Kormaksson M, Li S, et al. methylkit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012; 13(10): R87.
[http://dx.doi.org/10.1186/gb-2012-13-10-r87] [PMID: 23034086]
[21]
Wagih O. ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics 2017; 33(22): 3645-7.
[http://dx.doi.org/10.1093/bioinformatics/btx469] [PMID: 29036507]
[22]
Kroeger H, Jelinek J, Estécio MRH, et al. Aberrant cpg island methylation in acute myeloid leukemia is accentuated at relapse. Blood 2008; 112(4): 1366-73.
[http://dx.doi.org/10.1182/blood-2007-11-126227] [PMID: 18523155]
[23]
Dogan S, Cilic A, Marjanovic D, Kurtovic-Kozaric A. Detection of cytosine and CpG density in proto-oncogenes and tumor suppressor genes in promoter sequences of acute myeloid leukemia. Nucleos Nucleot Nucl Acids 2017; 36(4): 302-16.
[http://dx.doi.org/10.1080/15257770.2017.1279738] [PMID: 28323522]
[24]
Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484-92.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[25]
Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2017; 31(1): 63-76.
[http://dx.doi.org/10.1016/j.blre.2016.08.005] [PMID: 27639498]
[26]
Stölzel F, Mohr B, Kramer M, et al. Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J 2016; 6(1)e386
[http://dx.doi.org/10.1038/bcj.2015.114] [PMID: 26771812]
[27]
Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and future molecular targets for acute myeloid leukemia therapy. Curr Treat Options Oncol 2020; 21(1): 3.
[http://dx.doi.org/10.1007/s11864-019-0694-6] [PMID: 31933183]
[28]
Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059-74.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[29]
Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18(6): 553-67.
[http://dx.doi.org/10.1016/j.ccr.2010.11.015] [PMID: 21130701]
[30]
Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 2015; 29(9): 910-22.
[http://dx.doi.org/10.1101/gad.260174.115] [PMID: 25886910]
[31]
Chen K, Gong S, Fang X, et al. Non-coding RNA-mediated high expression of SFXN3 as a prognostic biomarker associated with paclitaxel resistance and immunosuppressive microenvironment in head and neck cancer. Front Immunol 2022; 13920136
[http://dx.doi.org/10.3389/fimmu.2022.920136] [PMID: 36159813]
[32]
Murase R, Abe Y, Takeuchi T, et al. Serum autoantibody to sideroflexin 3 as a novel tumor marker for oral squamous cell carcinoma. Proteomics Clin Appl 2008; 2(4): 517-27.
[http://dx.doi.org/10.1002/prca.200780123] [PMID: 21136855]
[33]
Lamba JK, Cao X, Raimondi S, et al. DNA methylation clusters and their relation to cytogenetic features in pediatric AML. Cancers 2020; 12(10): 3024.
[http://dx.doi.org/10.3390/cancers12103024] [PMID: 33080932]
[34]
He PF, Zhou JD, Yao DM, et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget 2017; 8(25): 41498-507.
[http://dx.doi.org/10.18632/oncotarget.17241] [PMID: 28489568]
[35]
Bohl SR, Bullinger L, Rücker FG. Epigenetic therapy: Azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 2018; 11(5): 361-71.
[http://dx.doi.org/10.1080/17474086.2018.1453802] [PMID: 29543073]
[36]
Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol 2019; 20(1): 249.
[http://dx.doi.org/10.1186/s13059-019-1824-y] [PMID: 31767039]
[37]
Brunetti L, Gundry MC, Goodell MA. Dnmt3a in leukemia. Cold Spring Harb Perspect Med 2017; 7(2)a030320
[http://dx.doi.org/10.1101/cshperspect.a030320] [PMID: 28003281]
[38]
Viré E, Brenner C, Deplus R, et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439(7078): 871-4.
[http://dx.doi.org/10.1038/nature04431] [PMID: 16357870]
[39]
Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: Associations with prognosis and potential treatment strategies. Leukemia 2014; 28(9): 1774-83.
[http://dx.doi.org/10.1038/leu.2014.124] [PMID: 24699305]
[40]
Zhang M, Zhao J, Dong H, et al. DNA methylation-specific analysis of G protein-coupled receptor-related genes in pan-cancer. Genes 2022; 13(7): 1213.
[http://dx.doi.org/10.3390/genes13071213] [PMID: 35885996]
[41]
Byun S, Affolter KE, Snow AK, et al. Differential methylation of G-protein coupled receptor signaling genes in gastrointestinal neuroendocrine tumors. Sci Rep 2021; 11(1): 12303.
[http://dx.doi.org/10.1038/s41598-021-91934-5] [PMID: 34112938]
[42]
Zhang K, Zhai Z, Yu S, Tao Y. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer 2021; 12(18): 5473-85.
[http://dx.doi.org/10.7150/jca.52338] [PMID: 34405010]
[43]
Schmidl C, Delacher M, Huehn J, Feuerer M. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol 2018; 142(3): 728-43.
[http://dx.doi.org/10.1016/j.jaci.2018.07.014] [PMID: 30195378]
[44]
Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13148-019-0632-2] [PMID: 30808407]
[45]
Tahara T, Shibata T, Nakamura M, et al. Association between IL-17A, -17F and MIF polymorphisms predispose to CpG island hyper-methylation in gastric cancer. Int J Mol Med 2010; 25(3): 471-7.
[http://dx.doi.org/10.3892/ijmm_00000367] [PMID: 20127054]
[46]
Veeck J, Chorovicer M, Naami A, et al. The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 2008; 27(6): 865-76.
[http://dx.doi.org/10.1038/sj.onc.1210669] [PMID: 17653090]
[47]
Zhang XY, Li M, Sun K, et al. Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma. Oncotarget 2015; 6(1): 101-15.
[http://dx.doi.org/10.18632/oncotarget.2684] [PMID: 25575809]
[48]
Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363(25): 2424-33.
[http://dx.doi.org/10.1056/NEJMoa1005143] [PMID: 21067377]
[49]
Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328-33.
[http://dx.doi.org/10.1038/nature13038] [PMID: 24522528]
[50]
Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci 2014; 111(7): 2548-53.
[http://dx.doi.org/10.1073/pnas.1324297111] [PMID: 24550281]
[51]
Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer 2006; 6(7): 493-505.
[http://dx.doi.org/10.1038/nrc1885] [PMID: 16794633]
[52]
Dawson MA, Gudgin EJ, Horton SJ, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 2014; 28(2): 311-20.
[http://dx.doi.org/10.1038/leu.2013.338] [PMID: 24220271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy