General Research Article

SFXN3 is Associated with Poor Clinical Outcomes and Sensitivity to the Hypomethylating Therapy in Non-M3 Acute Myeloid Leukemia Patients

Author(s): Yuxuan Dong, Fengbo Jin, Jing Wang, Qingsheng Li, Zhenqi Huang, Leiming Xia* and Mingzhen Yang*

Volume 23, Issue 5, 2023

Published on: 01 August, 2023

Page: [410 - 418] Pages: 9

DOI: 10.2174/1566523223666230724121515

open access plus

Open Access Journals Promotions 2
Abstract

Background: DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet.

Objective: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients.

Methods: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals.

Results: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1.

Conclusion: In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.

Keywords: Acute Myeloid Leukemia (AML), SFXN3 (Sideroflexin3), DNA methylation, epigenetics, hypomethylating therapy, outcome.

Graphical Abstract
[1]
Giacopelli B, Wang M, Cleary A, et al. DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res 2021; 31(5): 747-61.
[http://dx.doi.org/10.1101/gr.269233.120] [PMID: 33707228]
[2]
Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol 2019; 56(2): 84-9.
[http://dx.doi.org/10.1053/j.seminhematol.2018.08.001] [PMID: 30926095]
[3]
Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood 2016; 127(1): 42-52.
[http://dx.doi.org/10.1182/blood-2015-07-604512] [PMID: 26660432]
[4]
Yang X, Wong MPM, Ng RK. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci 2019; 20(18): 4576.
[http://dx.doi.org/10.3390/ijms20184576] [PMID: 31527484]
[5]
Gardin C, Dombret H. Hypomethylating agents as a therapy for AML. Curr Hematol Malig Rep 2017; 12(1): 1-10.
[http://dx.doi.org/10.1007/s11899-017-0363-4] [PMID: 28286907]
[6]
Stahl M, DeVeaux M, Montesinos P, et al. Hypomethylating agents in relapsed and refractory AML: Outcomes and their predictors in a large international patient cohort. Blood Adv 2018; 2(8): 923-32.
[http://dx.doi.org/10.1182/bloodadvances.2018016121] [PMID: 29685952]
[7]
Bocchia M, Candoni A, Borlenghi E, et al. Real-world experience with decitabine as a first-line treatment in 306 elderly acute myeloid leukaemia patients unfit for intensive chemotherapy. Hematol Oncol 2019; 37(4): 447-55.
[http://dx.doi.org/10.1002/hon.2663] [PMID: 31385337]
[8]
Kory N, Wyant GA, Prakash G, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 2018; 362(6416)eaat9528
[http://dx.doi.org/10.1126/science.aat9528] [PMID: 30442778]
[9]
Acoba MG, Alpergin ESS, Renuse S, et al. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep 2021; 34(11)108869
[http://dx.doi.org/10.1016/j.celrep.2021.108869] [PMID: 33730581]
[10]
Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab 2017; 25(1): 27-42.
[http://dx.doi.org/10.1016/j.cmet.2016.08.009] [PMID: 27641100]
[11]
Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: Understanding the specificity. In: Braaten D, Ed. Diet, Sulfur Amino Acids, and Health Span Annals of the New York Academy of Sciences 2016; 1363: pp. 91-98.
[http://dx.doi.org/10.1111/nyas.12956]
[12]
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165841
[http://dx.doi.org/10.1016/j.bbadis.2020.165841] [PMID: 32439610]
[13]
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 2016; 16(10): 650-62.
[http://dx.doi.org/10.1038/nrc.2016.81] [PMID: 27634448]
[14]
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one carbon metabolism in cancer. (Review). Int J Oncol 2020; 58(2): 158-70.
[http://dx.doi.org/10.3892/ijo.2020.5158] [PMID: 33491748]
[15]
Maddocks ODK, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA Methylation through De Novo atp synthesis in cancer cells. Mol Cell 2016; 61(2): 210-21.
[http://dx.doi.org/10.1016/j.molcel.2015.12.014] [PMID: 26774282]
[16]
Chiang PK, Gordon RK, Tal J, et al. S-adenosylmetliionine and methylation. FASEB J 1996; 10(4): 471-80.
[http://dx.doi.org/10.1096/fasebj.10.4.8647346] [PMID: 8647346]
[17]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[18]
Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884-90.
[http://dx.doi.org/10.1093/bioinformatics/bty560] [PMID: 30423086]
[19]
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 2011; 27(11): 1571-2.
[http://dx.doi.org/10.1093/bioinformatics/btr167] [PMID: 21493656]
[20]
Akalin A, Kormaksson M, Li S, et al. methylkit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012; 13(10): R87.
[http://dx.doi.org/10.1186/gb-2012-13-10-r87] [PMID: 23034086]
[21]
Wagih O. ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics 2017; 33(22): 3645-7.
[http://dx.doi.org/10.1093/bioinformatics/btx469] [PMID: 29036507]
[22]
Kroeger H, Jelinek J, Estécio MRH, et al. Aberrant cpg island methylation in acute myeloid leukemia is accentuated at relapse. Blood 2008; 112(4): 1366-73.
[http://dx.doi.org/10.1182/blood-2007-11-126227] [PMID: 18523155]
[23]
Dogan S, Cilic A, Marjanovic D, Kurtovic-Kozaric A. Detection of cytosine and CpG density in proto-oncogenes and tumor suppressor genes in promoter sequences of acute myeloid leukemia. Nucleos Nucleot Nucl Acids 2017; 36(4): 302-16.
[http://dx.doi.org/10.1080/15257770.2017.1279738] [PMID: 28323522]
[24]
Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484-92.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[25]
Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2017; 31(1): 63-76.
[http://dx.doi.org/10.1016/j.blre.2016.08.005] [PMID: 27639498]
[26]
Stölzel F, Mohr B, Kramer M, et al. Karyotype complexity and prognosis in acute myeloid leukemia. Blood Cancer J 2016; 6(1)e386
[http://dx.doi.org/10.1038/bcj.2015.114] [PMID: 26771812]
[27]
Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and future molecular targets for acute myeloid leukemia therapy. Curr Treat Options Oncol 2020; 21(1): 3.
[http://dx.doi.org/10.1007/s11864-019-0694-6] [PMID: 31933183]
[28]
Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059-74.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[29]
Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18(6): 553-67.
[http://dx.doi.org/10.1016/j.ccr.2010.11.015] [PMID: 21130701]
[30]
Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 2015; 29(9): 910-22.
[http://dx.doi.org/10.1101/gad.260174.115] [PMID: 25886910]
[31]
Chen K, Gong S, Fang X, et al. Non-coding RNA-mediated high expression of SFXN3 as a prognostic biomarker associated with paclitaxel resistance and immunosuppressive microenvironment in head and neck cancer. Front Immunol 2022; 13920136
[http://dx.doi.org/10.3389/fimmu.2022.920136] [PMID: 36159813]
[32]
Murase R, Abe Y, Takeuchi T, et al. Serum autoantibody to sideroflexin 3 as a novel tumor marker for oral squamous cell carcinoma. Proteomics Clin Appl 2008; 2(4): 517-27.
[http://dx.doi.org/10.1002/prca.200780123] [PMID: 21136855]
[33]
Lamba JK, Cao X, Raimondi S, et al. DNA methylation clusters and their relation to cytogenetic features in pediatric AML. Cancers 2020; 12(10): 3024.
[http://dx.doi.org/10.3390/cancers12103024] [PMID: 33080932]
[34]
He PF, Zhou JD, Yao DM, et al. Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: A systematic review and meta-analysis. Oncotarget 2017; 8(25): 41498-507.
[http://dx.doi.org/10.18632/oncotarget.17241] [PMID: 28489568]
[35]
Bohl SR, Bullinger L, Rücker FG. Epigenetic therapy: Azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 2018; 11(5): 361-71.
[http://dx.doi.org/10.1080/17474086.2018.1453802] [PMID: 29543073]
[36]
Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol 2019; 20(1): 249.
[http://dx.doi.org/10.1186/s13059-019-1824-y] [PMID: 31767039]
[37]
Brunetti L, Gundry MC, Goodell MA. Dnmt3a in leukemia. Cold Spring Harb Perspect Med 2017; 7(2)a030320
[http://dx.doi.org/10.1101/cshperspect.a030320] [PMID: 28003281]
[38]
Viré E, Brenner C, Deplus R, et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439(7078): 871-4.
[http://dx.doi.org/10.1038/nature04431] [PMID: 16357870]
[39]
Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: Associations with prognosis and potential treatment strategies. Leukemia 2014; 28(9): 1774-83.
[http://dx.doi.org/10.1038/leu.2014.124] [PMID: 24699305]
[40]
Zhang M, Zhao J, Dong H, et al. DNA methylation-specific analysis of G protein-coupled receptor-related genes in pan-cancer. Genes 2022; 13(7): 1213.
[http://dx.doi.org/10.3390/genes13071213] [PMID: 35885996]
[41]
Byun S, Affolter KE, Snow AK, et al. Differential methylation of G-protein coupled receptor signaling genes in gastrointestinal neuroendocrine tumors. Sci Rep 2021; 11(1): 12303.
[http://dx.doi.org/10.1038/s41598-021-91934-5] [PMID: 34112938]
[42]
Zhang K, Zhai Z, Yu S, Tao Y. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer 2021; 12(18): 5473-85.
[http://dx.doi.org/10.7150/jca.52338] [PMID: 34405010]
[43]
Schmidl C, Delacher M, Huehn J, Feuerer M. Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol 2018; 142(3): 728-43.
[http://dx.doi.org/10.1016/j.jaci.2018.07.014] [PMID: 30195378]
[44]
Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13148-019-0632-2] [PMID: 30808407]
[45]
Tahara T, Shibata T, Nakamura M, et al. Association between IL-17A, -17F and MIF polymorphisms predispose to CpG island hyper-methylation in gastric cancer. Int J Mol Med 2010; 25(3): 471-7.
[http://dx.doi.org/10.3892/ijmm_00000367] [PMID: 20127054]
[46]
Veeck J, Chorovicer M, Naami A, et al. The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 2008; 27(6): 865-76.
[http://dx.doi.org/10.1038/sj.onc.1210669] [PMID: 17653090]
[47]
Zhang XY, Li M, Sun K, et al. Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma. Oncotarget 2015; 6(1): 101-15.
[http://dx.doi.org/10.18632/oncotarget.2684] [PMID: 25575809]
[48]
Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363(25): 2424-33.
[http://dx.doi.org/10.1056/NEJMoa1005143] [PMID: 21067377]
[49]
Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328-33.
[http://dx.doi.org/10.1038/nature13038] [PMID: 24522528]
[50]
Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci 2014; 111(7): 2548-53.
[http://dx.doi.org/10.1073/pnas.1324297111] [PMID: 24550281]
[51]
Grisendi S, Mecucci C, Falini B, Pandolfi PP. Nucleophosmin and cancer. Nat Rev Cancer 2006; 6(7): 493-505.
[http://dx.doi.org/10.1038/nrc1885] [PMID: 16794633]
[52]
Dawson MA, Gudgin EJ, Horton SJ, et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 2014; 28(2): 311-20.
[http://dx.doi.org/10.1038/leu.2013.338] [PMID: 24220271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy