Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

The Role of Hypoxia-inducible Factor-1 in Bladder Cancer

Author(s): Jiagui Chai, Sifan Yin, Wenbo Feng, Tao Zhang and Changxing Ke*

Volume 24, Issue 7, 2024

Published on: 24 August, 2023

Page: [827 - 834] Pages: 8

DOI: 10.2174/1566524023666230720163448

open access plus

Abstract

Bladder cancer (BC) is one of the most common malignant tumors worldwide and poses a significant hazard to human health. During the development of BC, hypoxia plays a crucial role. Hypoxia-inducible factor (HIF) is a key transcription factor for hypoxic adaptation, which regulates the transcription of various genes, including inflammation, angiogenesis, and glycolytic metabolism. Recent studies have shown the precise role of HIF in various biological behaviors of BC. More importantly, a new antitumor medication targeting HIF-2 has been used to treat renal cancer. However, therapies targeting HIF-1 in BC have not yet been developed. In this review, we discussed how HIF-1 is expressed and affects the growth, metastasis, and angiogenesis of BC. At the same time, we investigated several HIF-1 inhibitors that provide new perspectives for targeting HIF-1.

Keywords: HIF-1, bladder cancer, glucose metabolism, angiogenesis, proliferation, metastasis, drug resistance, treatment.

Next »
[1]
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development. Int J Mol Sci 2021; 22(9): 4483.
[http://dx.doi.org/10.3390/ijms22094483] [PMID: 33923108]
[2]
Li Y, Zhao L, Li XF. Hypoxia and the tumor microenvironment. Technol Cancer Res Treat 2021; 20: 15330338211036304.
[http://dx.doi.org/10.1177/15330338211036304] [PMID: 34350796]
[3]
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12: 961637.
[http://dx.doi.org/10.3389/fonc.2022.961637] [PMID: 36212414]
[4]
Liang S, Dong S, Liu W, et al. Accumulated ros activates hif-1α-induced glycolysis and exerts a protective effect on sensory hair cells against noise-induced damage. Front Mol Biosci 2022; 8: 806650.
[http://dx.doi.org/10.3389/fmolb.2021.806650] [PMID: 35096971]
[5]
Rashid M, Zadeh LR, Baradaran B, et al. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798: 145796.
[http://dx.doi.org/10.1016/j.gene.2021.145796] [PMID: 34175393]
[6]
Pezzuto A, Carico E. Role of hif-1 in cancer progression: Novel insights. a review. Curr Mol Med 2018; 18(6): 343-51.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[7]
Xue X, Kang JB, Yang X, et al. An efficient strategy for digging protein-protein interactions for rational drug design - A case study with HIF-1α/VHL. Eur J Med Chem 2022; 227: 113871.
[http://dx.doi.org/10.1016/j.ejmech.2021.113871] [PMID: 34638033]
[8]
Li M, Li G, Yang X, Yin W, Lv G, Wang S. HIF in gastric cancer: Regulation and therapeutic target. Molecules 2022; 27(15): 4893.
[http://dx.doi.org/10.3390/molecules27154893] [PMID: 35956843]
[9]
Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V. Cancer cell metabolism in hypoxia: Role of hif-1 as key regulator and therapeutic target. Int J Mol Sci 2021; 22(11): 5703.
[http://dx.doi.org/10.3390/ijms22115703] [PMID: 34071836]
[10]
Tang W, Long T, Li F, et al. Hif-1α may promote glycolysis in psoriasis vulgaris via upregulation of cd147 and glut1. J Cent South Univ 2021; 46(4): 333-4.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2021.200010]
[11]
Chiu DKC, Tse APW, Xu IMJ, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun 2017; 8(1): 517.
[http://dx.doi.org/10.1038/s41467-017-00530-7] [PMID: 28894087]
[12]
Wyss CB, Duffey N, Peyvandi S, et al. Gain of HIF1 activity and loss of mirna let-7d promote breast cancer metastasis to the brain via the pdgf/pdgfr axis. Cancer Res 2021; 81(3): 594-605.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3560] [PMID: 33526470]
[13]
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 2016; 138(5): 1058-66.
[http://dx.doi.org/10.1002/ijc.29519] [PMID: 25784597]
[14]
Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: All you need to know. Cureus 2022; 14(7): e27330.
[http://dx.doi.org/10.7759/cureus.27330] [PMID: 36042998]
[15]
Yafi FA, Aprikian AG, Chin JL, et al. Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: A Canadian multicentre experience. BJU Int 2011; 108(4): 539-45.
[http://dx.doi.org/10.1111/j.1464-410X.2010.09912.x] [PMID: 21166753]
[16]
Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin 2020; 70(5): 404-23.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[17]
Zhang Z, Li X, Ren S, Zhang W. CNN1 represses bladder cancer progression and metabolic reprogramming by modulating hif-1α signaling pathway. Front Oncol 2022; 12: 859707.
[http://dx.doi.org/10.3389/fonc.2022.859707] [PMID: 35903683]
[18]
Yu M, Ozaki T, Sun D, et al. HIF-1α-dependent miR-424 induction confers cisplatin resistance on bladder cancer cells through down-regulation of pro-apoptotic UNC5B and SIRT4. J Exp Clin Cancer Res 2020; 39(1): 108.
[http://dx.doi.org/10.1186/s13046-020-01613-y] [PMID: 32522234]
[19]
Judge A, Dodd MS. Metabolism. Essays Biochem 2020; 64(4): 607-47.
[http://dx.doi.org/10.1042/EBC20190041] [PMID: 32830223]
[20]
Zhou Y, Guo Y, Tam KY. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 2022; 32(4): 441-53.
[http://dx.doi.org/10.1080/13543776.2022.2027912]
[21]
Vaupel P, Schmidberger H, Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019; 95(7): 912-9.
[http://dx.doi.org/10.1080/09553002.2019.1589653] [PMID: 30822194]
[22]
Zahra K, Dey T. Ashish, Mishra SP, Pandey U. Pyruvate kinase m2 and cancer: The role of pkm2 in promoting tumorigenesis. Front Oncol 2020; 10: 159.
[http://dx.doi.org/10.3389/fonc.2020.00159] [PMID: 32195169]
[23]
Zhang G, Zhang Y, Dong D, et al. MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer 2018; 9(14): 2492-501.
[http://dx.doi.org/10.7150/jca.25257] [PMID: 30026847]
[24]
Jou YC, Tsai YS, Lin CT, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget 2016; 7(40): 65403-17.
[http://dx.doi.org/10.18632/oncotarget.11395] [PMID: 27557492]
[25]
Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun 2021; 41(7): 560-75.
[http://dx.doi.org/10.1002/cac2.12158] [PMID: 33991457]
[26]
Zhang H, Lu C, Fang M, et al. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun 2016; 476(3): 146-52.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.026] [PMID: 27181362]
[27]
Zhu J, Zheng G, Xu H, et al. Expression and prognostic significance of pyruvate dehydrogenase kinase 1 in bladder urothelial carcinoma. Virchows Arch 2020; 477: 637-49.
[http://dx.doi.org/10.1007/s00428-020-02782-z]
[28]
Xia Y, Wang X, Liu Y, et al. PKM2 is essential for bladder cancer growth and maintenance. Cancer Res 2022; 82(4): 571-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0403] [PMID: 34903602]
[29]
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. ‘Warburg effect’ controls tumor growth, bacterial, viral infections and immunity: Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86(Pt 2): 334-46.
[http://dx.doi.org/10.1016/j.semcancer.2022.07.004] [PMID: 35820598]
[30]
Duan F, Mei C, Yang L, et al. Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci Rep 2020; 10(1): 7714.
[http://dx.doi.org/10.1038/s41598-020-64880-x] [PMID: 32382009]
[31]
Dematei A, Fernandes R, Soares R, et al. Angiogenesis in schistosoma haematobium-associated urinary bladder cancer. APMIS. Acta pathologica, microbiologica, et immunologica Scandinavica 2017; 125(12): 1056-62.
[http://dx.doi.org/10.1111/apm.12756]
[32]
Wang Y, Zhang L, Wei N, Sun Y, Pan W, Chen Y. Silencing LINC00482 inhibits tumor-associated inflammation and angiogenesis through down-regulation of MMP-15 via FOXA1 in bladder cancer. Aging 2020; 13(2): 2264-78.
[http://dx.doi.org/10.18632/aging.202247] [PMID: 33323547]
[33]
Yang F, Liu XQ, He JZ, et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J Cell Mol Med 2022; 26(8): 2363-76.
[http://dx.doi.org/10.1111/jcmm.17257] [PMID: 35224833]
[34]
Badr S, Salem A, Yuosif AH, Awadallah H, Awed N, Bakr A. Hypoxia inducible factor-1α and microvessel density as angiogenic factors in bilharzial and non-bilharzial bladder cancer. Clin Lab 2013; 59(7-8): 805-12.
[http://dx.doi.org/10.7754/Clin.Lab.2012.120605] [PMID: 24133909]
[35]
Kozakowska M, Dobrowolska-Glazar B, Okoń K, Józkowicz A, Dobrowolski Z, Dulak J. Preliminary analysis of the expression of selected proangiogenic and antioxidant genes and micrornas in patients with non-muscle-invasive bladder cancer. J Clin Med 2016; 5(3): 29.
[http://dx.doi.org/10.3390/jcm5030029] [PMID: 26927195]
[36]
Mortada WI, Awadalla A, Khater S, et al. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: A case-controlled clinical study. Environ Sci Pollut Res Int 2020; 27(13): 15835-41.
[http://dx.doi.org/10.1007/s11356-020-08113-8] [PMID: 32095963]
[37]
Wu SQ, He HQ, Kang Y, et al. MicroRNA-200c affects bladder cancer angiogenesis by regulating the Akt2/mTOR/HIF-1 axis. Transl Cancer Res 2019; 8(8): 2713-24.
[http://dx.doi.org/10.21037/tcr.2019.10.23] [PMID: 35117029]
[38]
Mortada WI, Awadalla A, Khater SM, Barakat NM, Husseiny SM, Shokeir AA. Preventive effect of pomegranate juice against chemically induced bladder cancer: An experimental study. Heliyon 2020; 6(10): e05192.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05192] [PMID: 33083625]
[39]
Chen MC, Hsu WL, Chang WL, Chou T-C. Antiangiogenic activity of phthalides-enriched angelica sinensis extract by suppressing wsb-1/pvhl/hif-1α/vegf signaling in bladder cancer. Sci Rep 2017; 7(1): 5376.
[http://dx.doi.org/10.1038/s41598-017-05512-9] [PMID: 28710377]
[40]
Chen MC, Hsu WL, Hwang PA, Chou T-C. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of hif-1/vegf signaling under hypoxia. Mar Drugs 2015; 13(7): 4436-51.
[http://dx.doi.org/10.3390/md13074436] [PMID: 26193287]
[41]
Chen MC, Lee CF, Huang WH, Chou T-C. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells. Biochem Pharmacol 2013; 85(9): 1278-87.
[http://dx.doi.org/10.1016/j.bcp.2013.02.009] [PMID: 23416116]
[42]
Fus ŁP, Pihowicz P, Koperski Ł, et al. Hif-1α expression is inversely associated with tumor stage, grade and microvessel density in urothelial bladder carcinoma. Pol J Pathol 2018; 69(4): 395-404.
[http://dx.doi.org/10.5114/pjp.2018.81699]
[43]
Pietzak EJ, Whiting K, Srinivasan P, et al. Inherited germline cancer susceptibility gene variants in individuals with non-muscle-invasive bladder cancer. Clin Cancer Res 2022; 28(19): 4267-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1006] [PMID: 35833951]
[44]
Lu M, Ge Q, Wang G, et al. CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1α. Cell Death Dis 2018; 9(10): 1046.
[http://dx.doi.org/10.1038/s41419-018-1109-5] [PMID: 30315244]
[45]
Xue M, Li X, Chen W. Hypoxia regulates the expression and localization of CCAAT/enhancer binding protein α by hypoxia inducible factor-1α in bladder transitional carcinoma cells. Mol Med Rep 2015; 12(2): 2121-7.
[http://dx.doi.org/10.3892/mmr.2015.3563] [PMID: 25824695]
[46]
Blick C, Ramachandran A, Wigfield S, et al. Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer. Br J Cancer 2013; 109(1): 50-9.
[http://dx.doi.org/10.1038/bjc.2013.240] [PMID: 23778527]
[47]
Xue M, Li X, Li Z, Chen W. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol 2014; 35(7): 6901-12.
[http://dx.doi.org/10.1007/s13277-014-1925-x] [PMID: 24737584]
[48]
Blick C, Ramachandran A, McCormick R, et al. Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis. Br J Cancer 2015; 113(4): 634-44.
[http://dx.doi.org/10.1038/bjc.2015.203] [PMID: 26196183]
[49]
Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F. The role and regulation of hypoxia-inducible factor-1α expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Brain Res Rev 2009; 62(1): 99-108.
[http://dx.doi.org/10.1016/j.brainresrev.2009.09.006] [PMID: 19786048]
[50]
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15(1): 129.
[http://dx.doi.org/10.1186/s13045-022-01347-8] [PMID: 36076302]
[51]
Santarosa M, Maestro R. The autophagic route of e-cadherin and cell adhesion molecules in cancer progression. Cancers 2021; 13(24): 6328.
[http://dx.doi.org/10.3390/cancers13246328] [PMID: 34944948]
[52]
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[53]
Zhu J, Huang Z, Zhang M, et al. HIF-1α promotes ZEB1 expression and EMT in a human bladder cancer lung metastasis animal model. Oncol Lett 2018; 15(3): 3482-9.
[http://dx.doi.org/10.3892/ol.2018.7764] [PMID: 29467870]
[54]
Lu N, Piao MH, Feng CS, Yuan Y. Isoflurane promotes epithelial-to-mesenchymal transition and metastasis of bladder cancer cells through HIF-1α-β-catenin/Notch1 pathways. Life Sci 2020; 258: 118154.
[http://dx.doi.org/10.1016/j.lfs.2020.118154] [PMID: 32735882]
[55]
Dong F, Chen L, Wang R, Yang W, Lu T, Zhang Y. 4-nitrophenol exposure in T24 human bladder cancer cells promotes proliferation, motilities, and epithelial-to-mesenchymal transition. Environ Mol Mutagen 2020; 61(3): 316-28.
[http://dx.doi.org/10.1002/em.22345] [PMID: 31654581]
[56]
Peixoto A, Fernandes E, Gaiteiro C, et al. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 2016; 7(39): 63138-57.
[http://dx.doi.org/10.18632/oncotarget.11257] [PMID: 27542232]
[57]
Zhang T, Fan J, Wu K, et al. Roles of HIF-1α in a novel optical orthotopic spontaneous metastatic bladder cancer animal model. Urol Oncol 2012; 30(6): 928-35.
[http://dx.doi.org/10.1016/j.urolonc.2012.01.003] [PMID: 22341926]
[58]
Hu X, Li G, Wu S. Advances in diagnosis and therapy for bladder cancer. Cancers 2022; 14(13): 3181.
[http://dx.doi.org/10.3390/cancers14133181] [PMID: 35804953]
[59]
Long G, Ma S, Shi R, Sun Y, Hu Z, Chen K. Circular rnas and drug resistance in genitourinary cancers: A literature review. Cancers 2022; 14(4): 866.
[http://dx.doi.org/10.3390/cancers14040866] [PMID: 35205613]
[60]
Zhao F, Vakhrusheva O, Markowitsch SD, et al. Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction. Cells 2020; 9(12): 2643.
[http://dx.doi.org/10.3390/cells9122643] [PMID: 33316936]
[61]
Shi ZD, Hao L, Han XX, et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer 2022; 21(1): 37.
[http://dx.doi.org/10.1186/s12943-022-01517-9] [PMID: 35130920]
[62]
Sun Y, Guan Z, Liang L, et al. HIF-1α/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer. Oncol Rep 2016; 35(3): 1549-56.
[http://dx.doi.org/10.3892/or.2015.4536] [PMID: 26717965]
[63]
Mao X. Nanzhang, Xiao J, Wu H, Ding K. Hypoxia-induced autophagy enhances cisplatin resistance in human bladder cancer cells by targeting hypoxia-inducible factor-1α. J Immunol Res 2021; 2021: 8887437.
[http://dx.doi.org/10.1155/2021/8887437] [PMID: 33681390]
[64]
Yang X, Yin H, Zhang Y, et al. Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1α activation. Int J Oncol 2018; 53(1): 215-24.
[http://dx.doi.org/10.3892/ijo.2018.4376] [PMID: 29693166]
[65]
Roperto S, De Falco F, Perillo A, Catoi C, Roperto F. Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Vet Microbiol 2019; 236: 108396.
[http://dx.doi.org/10.1016/j.vetmic.2019.108396] [PMID: 31500722]
[66]
Huang YT, Cheng CC, Chiu TH, Lai PC. Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer. Int J Oncol 2015; 47(5): 1711-24.
[http://dx.doi.org/10.3892/ijo.2015.3155] [PMID: 26398114]
[67]
Ni Z, Sun P, Zheng J, et al. JNK signaling promotes bladder cancer immune escape by regulating mettl3-mediated m6a modification of pd-l1 mRNA. Cancer Res 2022; 82(9): 1789-802.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-1323] [PMID: 35502544]
[68]
Smith V, Mukherjee D, Lunj S, et al. The effect of hypoxia on PD-L1 expression in bladder cancer. BMC Cancer 2021; 21(1): 1271.
[http://dx.doi.org/10.1186/s12885-021-09009-7] [PMID: 34819027]
[69]
Barsoum IB, Smallwood CA, Siemens DR, Graham CH. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 2014; 74(3): 665-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0992] [PMID: 24336068]
[70]
Tan P, Wang M, Zhong A, et al. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis. Oncogene 2021; 40(42): 6081-92.
[http://dx.doi.org/10.1038/s41388-021-01999-9] [PMID: 34471236]
[71]
Xia Y, Kang TW, Jung YD, Zhang C, Lian S. Sulforaphane inhibits nonmuscle invasive bladder cancer cells proliferation through suppression of hif-1α-mediated glycolysis in hypoxia. J Agric Food Chem 2019; 67(28): 7844-54.
[http://dx.doi.org/10.1021/acs.jafc.9b03027] [PMID: 31241937]
[72]
Zhan Y, Liu Y, Lin J, et al. Synthetic Tet-inducible artificial microRNAs targeting β-catenin or HIF-1α inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Sci Rep 2015; 5(1): 16177.
[http://dx.doi.org/10.1038/srep16177] [PMID: 26541358]
[73]
Yuan Z, Guo G, Sun G, Li Q, Wang L, Qiao B. Magnesium isoglycyrrhizinate suppresses bladder cancer progression by modulating the miR-26b/Nox4 axis. Bioengineered 2022; 13(4): 7986-99.
[http://dx.doi.org/10.1080/21655979.2022.2031677] [PMID: 35293283]
[74]
Chen YC, Wang PY, Huang BM, Chen Y-J, Lee W-C, Chen Y-C. 16-Hydroxycleroda-3,13-dien-15,16-olide induces apoptosis in human bladder cancer cells through cell cycle arrest, mitochondria ros overproduction, and inactivation of egfr-related signalling pathways. Molecules 2020; 25(17): 3958.
[http://dx.doi.org/10.3390/molecules25173958] [PMID: 32872665]
[75]
Huang XX, Wang RX, Lin Q, et al. Inhibitory effects of 2-methoxyestradiol on cell growth and invasion in human bladder cancer T-24 cells. Pharmazie 2017; 72(2): 87-90.
[http://dx.doi.org/10.1691/ph.2017.6839] [PMID: 29441858]
[76]
Dong Y, Hao L, Fang K, et al. A network pharmacology perspective for deciphering potential mechanisms of action of solanum nigrum L. In Bladder Cancer. BMC Complement Med Therap 2021; 21: p. (1)45.
[http://dx.doi.org/10.1186/s12906-021-03215-3]
[77]
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, et al. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through hif-1 and nf-κb activation: a review of the molecular mechanisms. Int J Mol Sci 2021; 22(19): 10701.
[http://dx.doi.org/10.3390/ijms221910701] [PMID: 34639040]

© 2024 Bentham Science Publishers | Privacy Policy