Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Antioxidant, Antibacterial, α-Amylase, and α-Glucosidase Inhibition, and Anti-inflammatory Activities of Mimosa Rubicaulis Lam.

Author(s): Achyut Adhikari*, Dipesh Shrestha, Sushma Thapa, Tamlal Pokhrel, Bishnu Bahadur Sinjali and Janaki Baral

Volume 20, Issue 1, 2024

Published on: 08 September, 2023

Article ID: e200723218928 Pages: 5

DOI: 10.2174/1573407219666230720103734

Price: $65

Abstract

Background: The use of medicinal plants as supplemental or alternative medicine is widespread around the world. For the development of new drugs, studies on these medicinal plants that include pharmacological and toxicological assessments are crucial.

Objective: This work aimed to find the total phenolic and flavonoid content, antioxidant, antibacterial, and antidiabetic potential of the traditionally used medicinal plant Mimosa rubicaulis Lam.

Methods: The in vitro antidiabetic potential of methanolic extract and its fractions of the roots of M. rubicaulis were performed via enzyme (α-glucosidase and α-amylase) inhibition assays. Antioxidant and anti-inflammatory activities were carried out using 2,2 Diphenyl-1-picrylhydrazyl (DPPH), and reactive oxygen species (ROS) inhibiting methods. Well diffusion method is applied for antibacterial activity.

Results: The crude extract reported the highest inhibition activity against α-glucosidase with an IC50 value of 10.29 ± 0.35 μg/mL compared to the standard acarbose’s IC50 value of 5.653 ± 0.29 μg/mL. Similarly, the ethyl acetate (EA) fraction disclosed significant inhibition against α-amylase with an IC50 value of 108.7 ± 0.66 μg/mL compared to the standard acarbose’s IC50 value of 6.01 ± 0.14 μg/mL. Likewise, the EA fraction showed the maximum antioxidant activity with an IC50 value of 11.89 ± 1.05 μg/mL among the crude extract and its fractions.

Conclusion: Mimosa rubicaulis was found to have α-glucosidase and α-amylase inhibition, antiinflammatory, and antibacterial activity. To the best of our knowledge, this is the first report of α- glucosidase and α-amylase inhibition activity of this plant. Further studies on this plant are required to isolate potent compounds.

Keywords: Antioxidant, antibacterial, anti-inflammatory, α-glucosidase, α-amylase, Mimosa rubicaulis.

Graphical Abstract
[1]
Tamboli, A.M.; Wadkar, K.A. A recent review on phytochemical constituents and medicinal properties of Mimosa rubicaulis Lam. Int. J. Sci. Res. Sci. Technol., 2019, 6(2), 300-305.
[http://dx.doi.org/10.32628/IJSRST196251]
[2]
Ramadas, V.; Shibila Selva Kishore, S. Antimicrobial activity of selected medicinal plants against some selected human pathogenic bacteria. Pelagia Res Libr., 2012, 3(5), 3374-3381.
[3]
Shrestha, D.; Pokhrel, T.; Dhakal, K.; Pandey, A.; Sharma, P.; Sapkota, S. α-Glucosidase and α-amylase inhibition study and in silico analysis of Mimosa pudica L. of Nepalese origin. Curr. Bioact. Compd., 2022, 18, 2-8.
[4]
Shrestha, D.; Sharma, P.; Adhikari, A.; Mandal, A.K.; Verma, A. A Review on nepalese medicinal plants used traditionally as alpha-amylase and alpha-glucosidase inhibitors against diabetes mellitus. Curr. Tradit. Med., 2021, 7(5), e020721194443.
[http://dx.doi.org/10.2174/2215083807666210702144103]
[5]
Egwaikhide, P.A.; Okeniyi, S.O.; Gimba, C.E. Screening for anti-microbial activity and phytochemical constituents of some Nigerian medicinal plants. J. Med. Plants Res., 2009, 3(12), 1088-1091.
[6]
Adhikari, A.; Dhakal, K.; Shrestha, D.; Pokhrel, T.; Panta, P.; Pandey, A.; Dhakal, J. Antioxidant, antibacterial, antidiabetic potential, and In silico analysis of Rhus chinensis from western nepal. Curr. Top. Med. Chem., 2022, 22(26), 2145-2151.
[http://dx.doi.org/10.2174/1568026622666220803153226] [PMID: 35927822]
[7]
Ganji, A.R.; Yedla, A.C.; Ravi, P. V MRP. Anti-bacterial Investigation on Different Root Extracts of Mimosa rubicaulis Lam. Int J Pharmacogn Phytochem Res., 2010, 2(4), 18-21.
[8]
Manda, R.M.; Seru, G. Hypoglycaemic activity of the leaves of Mimosa Rubicaulis (LAM). Eur J Iomedical Pharm Sci., 2015, 2(1), 543-548.
[9]
Gurung, R; Adhikari, S; Parajuli, K. Evaluation of the antibacterial and antioxidant activity of Mimosa rubicaulis and reinwardtia indica. Evid Based Complement Alternat Med., 2020, 2020
[http://dx.doi.org/10.1155/2020/3862642]
[10]
Majeed, I.; Rizwan, K.; Ashar, A.; Rasheed, T.; Amarowicz, R.; Kausar, H.; Zia-Ul-Haq, M.; Marceanu, L.G. A comprehensive review of the ethnotraditional uses and biological and pharmacological potential of the genus Mimosa. Int. J. Mol. Sci., 2021, 22(14), 7463.
[http://dx.doi.org/10.3390/ijms22147463] [PMID: 34299082]
[11]
Kupina, S.; Fields, C.; Roman, M.C.; Brunelle, S.L. Determination of total phenolic content using the folin-C assay: Single-laboratory vali-dation, First action 2017.13. J. AOAC Int., 2018, 101(5), 1466-1472.
[http://dx.doi.org/10.5740/jaoacint.18-0031] [PMID: 29895350]
[12]
Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. Yao Wu Shi Pin Fen Xi, 2020, 10(3), 3.
[http://dx.doi.org/10.38212/2224-6614.2748]
[13]
Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res., 2001, 15(2), 127-130.
[http://dx.doi.org/10.1002/ptr.687] [PMID: 11268111]
[14]
Qurrat-ul-Ain, ; Ashiq, U.; Jamal, R.A.; Saleem, M.; Mahroof-Tahir, M. Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd(II)-hydrazide complexes. Arab. J. Chem., 2017, 10(4), 488-499.
[http://dx.doi.org/10.1016/j.arabjc.2015.02.024]
[15]
Pokhrel, T; Shrestha, D; Dhakal, K; Yadav, PM; Adhikari, A Comparative analysis of the antioxidant and antidiabetic potential of nelumbo nucifera gaertn. and nymphaea lotus L. var. pubescens (willd.) J Chem., 2022.
[16]
Shrestha, D; Sharma, P; Pandey, A; Dhakal, K. Chemical characterization, antioxidant and antibacterial activity of essential oil of cymbopogon winterianus jowitt (citronella) from western Nepal. Curr. Biotech., 2022.
[17]
Joshi, B.; Sah, G.P.; Basnet, B.B.; Bhatt, M.R.; Sharma, D.; Subedi, K. Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). J. Microbiol. Antimicrob., 2011, 3(1), 1-7.
[18]
Helfand, S.L.; Werkmeister, J.; Roder, J.C. Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. J. Exp. Med., 1982, 156(2), 492-505.
[http://dx.doi.org/10.1084/jem.156.2.492] [PMID: 6178787]
[19]
Gurung, R. Preliminary phytochemical screening, total phenol and flavonoid content of Mimosa rubicaulis and Reinwardita indica. Int. J. Pharm. Pharm. Sci., 2020, 12, 54-58.
[20]
Gurung, R.; Adhikari, S.; Koirala, N.; Parajuli, K. Extraction and evaluation of anti-inflammatory and analgesic activity of Mimosa rubicaulis in swiss albino rats. Antiinfect. Agents, 2021, 19(5), 6-13.
[http://dx.doi.org/10.2174/2211352518999201009125006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy