Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

A Comprehensive Evaluation of Chemical, Bioactive Profile, and Anti-oxidant Potential of Gabiroba (Campomanesia cambessedeana): An Underexplored Fruit from Brazil

Author(s): Diana Lopes da Silva, Rômulo Alves Morais*, Hermanny Matos da Silva Sousa, Larissa daSilva Gualberto, Guilherme Rodrigues Serra and Glêndara Aparecida de Souza Martins

Volume 20, Issue 9, 2024

Published on: 24 April, 2024

Page: [1165 - 1176] Pages: 12

DOI: 10.2174/1573401319666230719155449

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The Cerrado region has one of the world's largest and most diverse tropical biodiversity, hosting several species of exotic fruits little explored. In this context, we can highlight the gabiroba (Campomanesia cambessedeana), a native fruit tree belonging to the Myrtaceae family. However, its fruits are not used frequently, except by the local population who consume them, and are also reported as nutritional.

Objective: This work evaluated the chemical composition of the whole fruit, pulp, peel, and seed of gabiroba.

Methods: Physicochemical characterization, bioactive compounds and antioxidant potential, and mineral profile (ICP-OES) were evaluated. Individual phenolic compounds and organic acids by liquid chromatography (HPLC-DAD) of the pulp, peel, and seed fractions of gabiroba were also explored.

Results: The results showed that the gabiroba fruit has a low lipid content (1.09 g 100 g-1), high magnesium content (12.60 μg g-1), and significant values of total phenolics (153.17 mg EAG 100 g-1), vitamin C (51.20 mg AA 100 g-1) and antioxidant potential by DPPH radical scavenging (15.35 g sample g-1 DPPH). The analysis of organic acids showed that the pulp and peel are rich in malic acid (7.29 and 8.15 mg 100 g-1, respectively) and the seed in citric acid (10.26 mg 100 g-1). On the other hand, both pulp, peel, and seed fractions showed similar individual phenolic composition, mainly being composed of catechin (3.36, 2.71, and 2.70 mg 100 g-1), gallic acid (1.67, 1.66, and 1.68 mg 100 g-1) and rutin (0.85, 1.39 and 1.16 mg 100 g-1, respectively).

Conclusion: The individual phenolics in the gabiroba fractions may have been responsible for the high antioxidant activity. In this way, gabiroba has demonstrated its technological potential for its full use in producing food products and applications in the pharmaceutical and cosmetics industry.

Keywords: Bioactive compounds, antioxidant potential, native fruit, organic acids, individual phenolics, Campomanesia cambessedeana.

« Previous
Graphical Abstract
[1]
Valli M, Russo HM, Bolzani VS. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An Acad Bras Cienc 2018; 90: 763-78.
[http://dx.doi.org/10.1590/0001-3765201820170653] [PMID: 29668803]
[2]
Santos DC, Oliveira Filho JG, Sousa TL, Ribeiro CB, Egea MB. Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: a narrative review. Crit Rev Food Sci Nutr 2022; 62(27): 7632-49.
[http://dx.doi.org/10.1080/10408398.2021.1916430] [PMID: 33977838]
[3]
Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional composition and bioactive compounds of native brazilian fruits of the arecaceae family and its potential applications for health promotion. Nutrients 2022; 14(19): 4009.
[http://dx.doi.org/10.3390/nu14194009] [PMID: 36235663]
[4]
Lamarão CV, Gomes MLS, Martins GAS, et al. Antioxidantes inorgânicos em frutos amazônicos. Brazilian Journal of Development 2020; 6(3): 12237-53.
[http://dx.doi.org/10.34117/bjdv6n3-184]
[5]
Souza CJL, Borges L, Reges NPR, Mota EES, Leonídio RL. Caracterização física e química de gabiroba e murici. Rev Cienc Agrar (Belem) 2019; 42: 792-800.
[http://dx.doi.org/10.19084/rca.17521]
[6]
Copetti CLK, Orssatto LBR, Diefenthaeler F, et al. Acute effect of juçara juice (Euterpe edulis Martius) on oxidative stress biomarkers and fatigue in a high-intensity interval training session: A single-blind cross-over randomized study. J Funct Foods 2020; 67: 103835.
[http://dx.doi.org/10.1016/j.jff.2020.103835]
[7]
Castro GMMA, Passos TS, Nascimento SSC, et al. Gelatin nanoparticles enable water dispersibility and potentialize the antimicrobial activity of Buriti (Mauritia flexuosa) oil. BMC Biotechnol 2020; 20(1): 55.
[http://dx.doi.org/10.1186/s12896-020-00649-4] [PMID: 33066751]
[8]
Silva FP, De Miranda DA, Carnier M, et al. Low dose of Juçara pulp (Euterpe edulis Mart.) minimizes the colon inflammatory milieu promoted by hypercaloric and hyperlipidic diet in mice. J Funct Foods 2021; 77: 104343.
[http://dx.doi.org/10.1016/j.jff.2020.104343]
[9]
Karasawa MMG, Mohan C. Fruits as prospective reserves of bioactive compounds: a review. Nat Prod Bioprospect 2018; 8(5): 335-46.
[http://dx.doi.org/10.1007/s13659-018-0186-6] [PMID: 30069678]
[10]
Teles JS, Morais RA, Silva SMT, Pereira AS, Pires CRF. Physicochemical and sensory characterization of jambolan jams. J Food Process Preserv 2021; 45(9): e15667.
[http://dx.doi.org/10.1111/jfpp.15667]
[11]
Santos MDS, Lima JJ, Petkowicz CLDO, Cândido LMB. Chemical characterization and evaluation of the antioxidant potential of gabiroba jam (Campomanesia xanthocarpa Berg). Acta Sci Agron 2013; 35(1): 73-82.
[http://dx.doi.org/10.4025/actasciagron.v35i1.14389]
[12]
Leonard W, Zhang P, Ying D, Fang Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr Rev Food Sci Food Saf 2020; 19(1): 218-46.
[http://dx.doi.org/10.1111/1541-4337.12514] [PMID: 33319515]
[13]
Cavalcanti TG, de Souza AF, Ferreira GF, et al. Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste Biomass Valoriz 2019; 10(1): 205-14.
[http://dx.doi.org/10.1007/s12649-017-0041-8]
[14]
Official methods of analysis. (19th ed.), Gaithersburg 2012.
[16]
Strohecker R, Henning HM. Vitamin analysis: Proven methods. In: Madrid: Paz Montalvo 1967.
[17]
Rodriguez-Amaya DB. A guide to carotenoid analysis in foods 2001. Available from: https://pdf.usaid.gov/pdf_docs/pnacq929.pdf
[18]
Rufino MSM, Alves RE, de Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 2010; 121(4): 996-1002.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.037]
[19]
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 1995; 28(1): 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[20]
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996; 239(1): 70-6.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[21]
Singleton VL, Rossi JA. Contributions of grape phenols to oxygen absorption and browning of wines 1965. Available from: https://www.ajevonline.org/content/16/3/144.article-info
[22]
Escriche I, Juan-Borrás M. Standardizing the analysis of phenolic profile in propolis. Food Res Int 2018; 106: 834-41.
[http://dx.doi.org/10.1016/j.foodres.2018.01.055] [PMID: 29579994]
[23]
Vieira HC, Rios PDA, Santos TMGQM, et al. Agrupamento e caracterização anatômica da madeira de espécies nativas da Floresta Ombrófila Mista. Rodriguésia 2019; 70: e04382017.
[http://dx.doi.org/10.1590/2175-7860201970038]
[24]
Neto JPS, Silva VDN, Silva PA, Santos YMP, Monteiro PHS, Silva LASG. 2019. Available from: https://www.seer.ufal.br/index.php/era/article/view/7741
[25]
Mohd Naeem MN, Mohd Fairulnizal MN, Norhayati MK, et al. The nutritional composition of fruit jams in the Malaysian market. J Saudi Soc Agric Sci 2017; 16(1): 89-96.
[http://dx.doi.org/10.1016/j.jssas.2015.03.002]
[26]
Joardder MU, Masud MH, Joardder MU, Masud MH. Food preservation techniques in developing countries Food preservation in developing countries: Challenges and solutions. Cham: Springer 2019; 1: pp. 67-125.
[http://dx.doi.org/10.1007/978-3-030-11530-2_4]
[27]
Goldoni J, Giacobbo CL, Galon L, Zarzzeka C, Uberti A, Lugaresi A. Physicochemical characterization of fruits of Campomanesia guazumifolia (Cambess.) O. Berg (Myrtaceae). Acta Sci Biol Sci 2019; 41: e45923.
[http://dx.doi.org/10.4025/actascibiolsci.v41i1.45923]
[28]
Leonarski E, Reis NND, Bertan LC, Pinto VZ. Optimization and sensorial evaluation of guabiroba jam with prebiotic. Pesquisa Agropecuária Brasileira 2020.
[29]
Egea MB, Pereira-Netto AB. Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: changes in antioxidant activity and related bioactive compounds during ripening. Eur Food Res Technol 2019; 245(5): 1081-93.
[http://dx.doi.org/10.1007/s00217-018-3208-z]
[30]
Alves AM, Alves MSO, Fernandes TDO, Naves RV, Naves MMV. Physical and chemical characterization, total phenolics and antioxidant activity of the gabiroba pulp and residue. Rev Bras Frutic 2013; 35: 837-44.
[http://dx.doi.org/10.1590/S0100-29452013000300021]
[31]
Morzelle MC, Bachiega P, Souza ECD, Vilas Boas EVDB, Lamounier ML. Caracterização química e física de frutos de curriola, gabiroba e murici provenientes do cerrado brasileiro. Rev Bras Frutic 2015; 37(1): 96-103.
[http://dx.doi.org/10.1590/0100-2945-036/14]
[32]
Negri TC, Berni PRA, Canniatti SG. Valor nutricional de frutas nativas e exóticas do Brasil Nutritional value of native and exotic fruits of Brazil. Biosaúde 2016; 18: 82-96.
[33]
Ministry of Health National Health Surveillance Agency, resolution-rdc no 272, of september 22, 2005 2005. Available from: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0272_22_09_2005.html=
[34]
Wang G, Xu M, Wang W, Galili G. Fortifying horticultural crops with essential amino acids: a review. Int J Mol Sci 2017; 18(6): 1306.
[http://dx.doi.org/10.3390/ijms18061306] [PMID: 28629176]
[35]
Paull RE, Duarte O. Tropical fruits. London, UK: CAB International 2011.
[36]
Lemos DM, Rocha APT, Gouveia JPGD, Oliveira ENAD, Sousa EPD, Silva SFD. Elaboration and characterization of jabuticaba and acerola prebiotic jelly. Brazilian J Food Technol 2019.
[37]
Silva MR, Lacerda DBCL, Santos GG, Martins DMO. Caracterização química de frutos nativos do cerrado. Cienc Rural 2008; 38(6): 1790-3.
[http://dx.doi.org/10.1590/S0103-84782008000600051]
[38]
Mendes RDM, Pinto EG, Soares DBS. Determination of gabiroba bioactive compounds. Agrarian (Dourados) 2018; 11: 68-72.
[http://dx.doi.org/10.30612/agrarian.v11i39.7045]
[39]
Souza FG, Barbosa FF, Rodrigues FM. Avaliação de geleia de tamarindo sem pectina e com pectina proveniente do albedo do maracujá amarelo. J Bioenergy Food Sci 2016; 3: 78-88.
[http://dx.doi.org/10.18067/jbfs.v3i2.52]
[40]
Bekele M, Satheesh N, Sadik JA. Screening of Ethiopian mango cultivars for suitability for preparing jam and determination of pectin, sugar, and acid effects on physico-chemical and sensory properties of mango jam. Sci Am 2020; 7: e00277.
[http://dx.doi.org/10.1016/j.sciaf.2020.e00277]
[41]
Yuliarti O, Hoon ALS, Chong SY. Influence of pH, pectin and Ca concentration on gelation properties of low-methoxyl pectin extracted from Cyclea barbata Miers. Food Structure 2017; 11: 16-23.
[http://dx.doi.org/10.1016/j.foostr.2016.10.005]
[42]
Lima JDSS, Castro JMCD, Sabino LBDS, Lima ACSD, Torres LBDV. Physicochemical Properties of Gabiroba (Campomanesia lineatifolia) and myrtle (Blepharocalyx salicifolius) Native to the Mountainous Region of IBIAPABA-CE, Brazil. Rev Caatinga 2016; 29(3): 753-7.
[http://dx.doi.org/10.1590/1983-21252016v29n327rc]
[43]
Silva EPD, Boas EVBV, Rodrigues LJ, Siqueira HH. Physical, chemical and physiological characterization of gabiroba fruit (Campomanesia pubescens) during its development. Food Sci Technol (Campinas) 2009; 29: 803-9.
[http://dx.doi.org/10.1590/S0101-20612009000400016]
[44]
Malherbi NM, Schmitz AC, Grando RC, et al. Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag Shelf Life 2019; 19: 140-6.
[http://dx.doi.org/10.1016/j.fpsl.2018.12.008]
[45]
Damasceno NRT, Sala-Vila A, Cofán M, et al. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk. Atherosclerosis 2013; 230(2): 347-53.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.08.014] [PMID: 24075767]
[46]
Grusak MA, Cakmak I. Methods to improve the crop-delivery of minerals to humans and livestock. 2005. Available from: http://eprints.icrisat.ac.in/45/1/Grusak_Chapter_Nutritional_Genomics_2005.pdf
[47]
Gernand AD, Schulze KJ, Stewart CP, West KP Jr, Christian P. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol 2016; 12(5): 274-89.
[http://dx.doi.org/10.1038/nrendo.2016.37] [PMID: 27032981]
[48]
Martínez-Ballesta MC, Dominguez-Perles R, Moreno DA, et al. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev 2010; 30(2): 295-309.
[http://dx.doi.org/10.1051/agro/2009022]
[49]
Vallilo MI, Lamardo LCA, Gaberlotti ML, Oliveira E, Moreno PRH. Composição química dos frutos de Campomanesia adamantium (Cambessédes) O.Berg. Food Sci Technol (Campinas) 2006; 26(4): 805-10.
[http://dx.doi.org/10.1590/S0101-20612006000400015]
[50]
Barbieri SF, Ruthes AC, Petkowicz CLO, et al. Extraction, purification and structural characterization of a galactoglucomannan from the gabiroba fruit (Campomanesia xanthocarpa Berg), Myrtaceae family. Carbohydr Polym 2017; 174: 887-95.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.015] [PMID: 28821144]
[51]
Alminger M, Aura AM, Bohn T, et al. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr Rev Food Sci Food Saf 2014; 13(4): 413-36.
[http://dx.doi.org/10.1111/1541-4337.12081] [PMID: 33412708]
[52]
Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 2015; 66 (Suppl. 2): 22-33.
[http://dx.doi.org/10.1159/000371618] [PMID: 26045325]
[53]
Malta LG, Tessaro EP, Eberlin M, Pastore GM, Liu RH. Assessment of antioxidant and antiproliferative activities and the identification of phenolic compounds of exotic Brazilian fruits. Food Res Int 2013; 53(1): 417-25.
[http://dx.doi.org/10.1016/j.foodres.2013.04.024]
[54]
Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys 2018; 652: 18-26.
[http://dx.doi.org/10.1016/j.abb.2018.06.001] [PMID: 29885291]
[55]
Walsh RP, Bartlett H, Eperjesi F. Variation in carotenoid content of kale and other vegetables: A review of pre-and post-harvest effects. J Agric Food Chem 2015; 63(44): 9677-82.
[http://dx.doi.org/10.1021/acs.jafc.5b03691] [PMID: 26477753]
[56]
Gadkari PV, Balaraman M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod Process 2015; 93: 122-38.
[http://dx.doi.org/10.1016/j.fbp.2013.12.004]
[57]
Grutzmann Arcari S, Arena K, Kolling J, et al. Polyphenolic compounds with biological activity in guabiroba fruits (Campomanesia xanthocarpa Berg.) by comprehensive two‐dimensional liquid chromatography. Electrophoresis 2020; 41(20): 1784-92.
[http://dx.doi.org/10.1002/elps.202000170] [PMID: 32779212]
[58]
Sant’Anna LS, Merlugo L, Ehle CS, et al. Chemical composition and hypotensive effect of Campomanesia xanthocarpa O. Berg. Evid Based Complement Alternat Med 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/1591762] [PMID: 28584558]
[59]
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol Biochem 2019; 144: 135-43.
[http://dx.doi.org/10.1016/j.plaphy.2019.09.039] [PMID: 31563754]
[60]
Song X, Tan L, Wang M, et al. Myricetin: A review of the most recent research. Biomed Pharmacother 2021; 134: 111017.
[http://dx.doi.org/10.1016/j.biopha.2020.111017] [PMID: 33338751]
[61]
Chen LY, Huang CN, Liao CK, et al. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants 2020; 9(11): 1122.
[http://dx.doi.org/10.3390/antiox9111122] [PMID: 33202817]
[62]
Fahmy NM, Al-Sayed E, Abdel-Daim MM, Karonen M, Singab AN. Protective effect of Terminalia muelleri against carbon tetrachloride-induced hepato and nephro-toxicity in mice and characterization of its bioactive constituents. Pharm Biol 2016; 54(2): 303-13.
[http://dx.doi.org/10.3109/13880209.2015.1035794] [PMID: 25894213]
[63]
Panico R, Powell WH, Richer JC. A guide to IUPAC Nomenclature of Organic Compounds 1993. Available from: upac.org/publications/books/author/panico.html
[64]
Betta FD, Nehring P, Seraglio SKT, et al. Phenolic compounds determined by LC-MS/MS and in vitro antioxidant capacity of Brazilian fruits in two edible ripening stages. Plant Foods Hum Nutr 2018; 73(4): 302-7.
[http://dx.doi.org/10.1007/s11130-018-0690-1] [PMID: 30218257]
[65]
Rezaire A, Robinson JC, Bereau D, et al. Amazonian palm Oenocarpus bataua (“patawa”): Chemical and biological antioxidant activity – Phytochemical composition. Food Chem 2014; 149: 62-70.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.077] [PMID: 24295677]
[66]
Matta FV, Xiong J, Lila MA, Ward NI, Felipe-Sotelo M, Esposito D. Chemical composition and bioactive properties of commercial and non-commercial purple and white açaí berries. Foods 2020; 9(10): 1481.
[http://dx.doi.org/10.3390/foods9101481] [PMID: 33081306]
[67]
Taheri Y, Suleria HAR, Martins N, et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC compl med therap 2020; 20: 1-14.
[http://dx.doi.org/10.1186/s12906-020-03033-z]
[68]
Kaur S, Muthuraman A. Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat. Life Sci 2016; 150: 89-94.
[http://dx.doi.org/10.1016/j.lfs.2016.02.080] [PMID: 26920631]
[69]
Liu Q, Tang GY, Zhao CN, Gan RY, Li HB. Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants 2019; 8(4): 78.
[http://dx.doi.org/10.3390/antiox8040078] [PMID: 30934715]
[70]
Tsegay ZT. Total titratable acidity and organic acids of wines produced from cactus pear (Opuntia-ficus-indica) fruit and Lantana camara (L. Camara) fruit blended fermentation process employed response surface optimization. Food Sci Nutr 2020; 8(8): 4449-62.
[http://dx.doi.org/10.1002/fsn3.1745] [PMID: 32884725]
[71]
Baccichet I, Chiozzotto R, Bassi D, Gardana C, Cirilli M, Spinardi A. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection. Sci Hortic (Amsterdam) 2021; 278: 109865.
[http://dx.doi.org/10.1016/j.scienta.2020.109865]
[72]
Burbidge CA, Ford CM, Melino VJ, et al. Biosynthesis and cellular functions of tartaric acid in grapevines. Front Plant Sci 2021; 12: 643024.
[http://dx.doi.org/10.3389/fpls.2021.643024] [PMID: 33747023]
[73]
Baccichet I, Chiozzotto R, Spinardi A, Gardana C, Bassi D, Cirilli M. Evaluation of a large apricot germplasm collection for fruit skin and flesh acidity and organic acids composition. Sci Hortic (Amsterdam) 2022; 294: 110780.
[http://dx.doi.org/10.1016/j.scienta.2021.110780]
[74]
Scherer R, Rybka ACP, Godoy HT. Determinação simultânea dos ácidos orgânicos tartárico, málico, ascórbico e cítrico em polpas de acerola, açaí e caju e avaliação da estabilidade em sucos de caju. Quim Nova 2008; 31(5): 1137-40.
[http://dx.doi.org/10.1590/S0100-40422008000500039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy