Mini-Review Article

Targets Involved in Skin Aging and Photoaging and their Possible Inhibitors: A Mini-review

Author(s): Jéssica Paiva de Moura, Érika Paiva de Moura Fernandes, Teresa Carolliny Moreira Lustoza Rodrigues, Alex France Messias Monteiro, Natália Ferreira de Sousa, Aline Matilde Ferreira dos Santos, Marcus Tullius Scotti and Luciana Scotti*

Volume 24, Issue 10, 2023

Published on: 27 July, 2023

Page: [797 - 815] Pages: 19

DOI: 10.2174/1389450124666230719105849

Price: $65

conference banner
Abstract

Background: Skin aging is a natural process resulting from intrinsic (hormonal and genetic) and extrinsic (environmental) factors. Photoaging occurs due to prolonged exposure of the skin to ultraviolet radiation, accounting for 80% of facial aging.

Introduction: Characteristics of aging skin include reduced elasticity, the appearance of fine wrinkles, uneven tone, and dryness. Clinical signs of photoaging involve the presence of deeper wrinkles, rough texture, dyschromia and a greater loss of elasticity compared to chronological aging.

Methods: This work reported several scientific articles that used computational techniques, such as molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to identify natural products and their derivatives against skin aging and photoaging.

Results: The in silico analyses carried out by the researchers predicted the binding affinity and interactions of the natural products with the targets matrix metalloproteinase-1, matrix metalloproteinase- 3, matrix metalloproteinase-9 and tyrosinase. Furthermore, some studies have reported the stability of the protein-ligand complex and the physicochemical properties of the studied compounds. Finally, this research proposes promising molecules against the targets.

Conclusion: Thus, studies like this one are relevant to guide new research related to skin aging and photoaging.

Keywords: Skin aging, photoaging, molecular docking, MMP-1, MMP-3, MMP-9, tyrosinase.

Graphical Abstract
[1]
Kim JC, Park TJ, Kang HY. Skin-aging pigmentation: Who is the real enemy? Cells 2022; 11(16): 2541.
[http://dx.doi.org/10.3390/cells11162541] [PMID: 36010618]
[2]
Bocheva G, Slominski RM, Janjetovic Z, et al. Protective role of melatonin and its metabolites in skin aging. Int J Mol Sci 2022; 23(3): 1238.
[http://dx.doi.org/10.3390/ijms23031238] [PMID: 35163162]
[3]
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59(59): 101036.
[http://dx.doi.org/10.1016/j.arr.2020.101036] [PMID: 32105850]
[4]
Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71(7-8): 817-31.
[http://dx.doi.org/10.1007/s00011-022-01598-8] [PMID: 35748903]
[5]
Figueres Juher T, Basés Pérez E. An overview of the beneficial effects of hydrolysed collagen intake on joint and bone health and on skin ageing. Nutr Hosp 2015; 32(S1): 62-6.
[http://dx.doi.org/10.3305/nh.2015.32.sup1.9482] [PMID: 26267777]
[6]
Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 85(3): 152-61.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.015] [PMID: 27720464]
[7]
Zhang S, Duan E. Fighting against Skin Aging. Cell Transplant 2018; 27(5): 729-38.
[http://dx.doi.org/10.1177/0963689717725755] [PMID: 29692196]
[8]
Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-photoaging and anti-melanogenesis effects of fucoidan isolated from hizikia fusiforme and its underlying mechanisms. Mar Drugs 2020; 18(8): 427.
[http://dx.doi.org/10.3390/md18080427] [PMID: 32824148]
[9]
Bocheva G, Slominski RM, Slominski AT. Neuroendocrine aspects of skin aging. Int J Mol Sci 2019; 20(11): 2798.
[http://dx.doi.org/10.3390/ijms20112798] [PMID: 31181682]
[10]
Ophelia EFA. Screening of bioactive compounds from natural remedies for photoaging, to target ap-1; an in silico approach. 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). 27-28 February 2016; Chennai, India. 2016; pp. 14-6.
[11]
Damayanti S, Fabelle NR, Yooin W, Insanu M, Jiranusornkul S, Wongrattanakamon P. Molecular modeling for potential cathepsin L inhibitor identification as new anti-photoaging agents from tropical medicinal plants. J Bioenerg Biomembr 2021; 53(3): 259-74.
[http://dx.doi.org/10.1007/s10863-021-09893-5] [PMID: 33818669]
[12]
Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 2019; 37(4): 365-72.
[http://dx.doi.org/10.1016/j.clindermatol.2019.04.002] [PMID: 31345325]
[13]
Parrado C, Mercado-Saenz S, Perez-Davo A, Gilaberte Y, Gonzalez S, Juarranz A. Environmental stressors on skin aging. Mechanistic insights. Front Pharmacol 2019; 10(July): 759.
[http://dx.doi.org/10.3389/fphar.2019.00759] [PMID: 31354480]
[14]
Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev 2015; 21: 16-29.
[http://dx.doi.org/10.1016/j.arr.2015.01.001] [PMID: 25653189]
[15]
Vashi NA, de Castro MMB, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol 2016; 9(1): 31-8.
[PMID: 26962390]
[16]
Kim OK, Kim D, Lee M, et al. Standardized edible bird’s nest extract prevents UVB irradiation-mediated oxidative stress and photoaging in the skin. Antioxidants 2021; 10(9): 1452.
[http://dx.doi.org/10.3390/antiox10091452] [PMID: 34573084]
[17]
Campa M, Baron E. Anti-aging effects of select botanicals: Scientific evidence and current trends. Cosmetics 2018; 5(3): 54.
[http://dx.doi.org/10.3390/cosmetics5030054]
[18]
Jeong EJ, Jegal J, Jung YS, Chung KW, Chung HY, Yang MH. Fermented onions extract inhibits tyrosinase and collagenase-1 activities as a potential new anti–photoaging agent. Nat Prod Commun 2017; 12(7): 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200711]
[19]
Li C, Fu Y, Dai H, Wang Q, Gao R, Zhang Y. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Sci Hum Wellness 2022; 11(2): 218-29.
[http://dx.doi.org/10.1016/j.fshw.2021.11.003]
[20]
Limtrakul P, Yodkeeree S, Thippraphan P, Punfa W, Srisomboon J. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement Altern Med 2016; 16(1): 497.
[http://dx.doi.org/10.1186/s12906-016-1484-3] [PMID: 27912751]
[21]
Patra S, Saravanan P, Das B, Subramanian V, Patra S. Scaffold-based screening and molecular dynamics simulation study to identify two structurally related phenolic compounds as potent MMP1 inhibitors. Comb Chem High Throughput Screen 2020; 23(8): 757-74.
[http://dx.doi.org/10.2174/1386207323666200428114216] [PMID: 32342802]
[22]
Mechqoq H, Hourfane S, El Yaagoubi M, et al. Molecular docking, tyrosinase, collagenase, and elastase inhibition activities of argan by-products. Cosmetics 2022; 9(1): 24.
[http://dx.doi.org/10.3390/cosmetics9010024]
[23]
Krisnamurti GC, Sari DRT. Does Centella asiatica have antiaging activity in skincare products? Proceedings of the 2nd International Conference on Education and Technology (ICETECH 2021). 240-5.
[http://dx.doi.org/10.2991/assehr.k.220103.035]
[24]
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: From classical to artificial intelligence. Front Chem 2020; 8(April): 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[25]
Maia EHB, Medaglia LR, da Silva AM, Taranto AG. Molecular architect: A user-friendly workflow for virtual screening. ACS Omega 2020; 5(12): 6628-40.
[http://dx.doi.org/10.1021/acsomega.9b04403] [PMID: 32258898]
[26]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: Advances and applications in drug discovery. Front Pharmacol 2018; 9(NOV): 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[27]
Vázquez J, López M, Gibert E, Herrero E, Luque FJ. Merging ligand-based and structure-based methods in drug discovery: An overview of combined virtual screening approaches. Molecules 2020; 25(20): 4723.
[http://dx.doi.org/10.3390/molecules25204723] [PMID: 33076254]
[28]
Daina A, Zoete V. Application of the SwissDrugDesign online resources in virtual screening. Int J Mol Sci 2019; 20(18): 4612.
[http://dx.doi.org/10.3390/ijms20184612] [PMID: 31540350]
[29]
Rica E, Álvarez S, Serratosa F. Ligand-based virtual screening based on the graph edit distance. Int J Mol Sci 2021; 22(23): 12751.
[http://dx.doi.org/10.3390/ijms222312751] [PMID: 34884555]
[30]
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR QSAR Environ Res 2021; 32(2): 85-110.
[http://dx.doi.org/10.1080/1062936X.2020.1862297] [PMID: 33517778]
[31]
Tian Y, Zhang S, Yin H, Yan A. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemom Intell Lab Syst 2020; 196: 103888.
[http://dx.doi.org/10.1016/j.chemolab.2019.103888]
[32]
Garcia-Hernandez C, Fernández A, Serratosa F. Learning the edit costs of graph edit distance applied to ligand-based virtual screening. Curr Top Med Chem 2020; 20(18): 1582-92.
[http://dx.doi.org/10.2174/1568026620666200603122000] [PMID: 32493194]
[33]
Wang Z, Sun H, Shen C, et al. Combined strategies in structure-based virtual screening. Phys Chem Chem Phys 2020; 22(6): 3149-59.
[http://dx.doi.org/10.1039/C9CP06303J] [PMID: 31995074]
[34]
Varela-Rial A, Majewski M, De Fabritiis G. Structure based virtual screening: Fast and slow. Wiley Interdiscip Rev Comput Mol Sci 2022; 12(2): 1-17.
[http://dx.doi.org/10.1002/wcms.1544]
[35]
Sohraby F, Aryapour H. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs. Semin Cancer Biol 2021; 68(March): 249-57.
[http://dx.doi.org/10.1016/j.semcancer.2020.04.007] [PMID: 32360530]
[36]
Khelfaoui H, Harkati D, Saleh BA. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn 2021; 39(18): 7246-62.
[http://dx.doi.org/10.1080/07391102.2020.1803967] [PMID: 32752951]
[37]
Keretsu S, Bhujbal SP, Cho SJ. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep 2020; 10(1): 17716.
[http://dx.doi.org/10.1038/s41598-020-74468-0] [PMID: 33077821]
[38]
Kralj S, Jukič M, Bren U. Commercial SARS-CoV-2 targeted, protease inhibitor focused and protein–protein interaction inhibitor focused molecular libraries for virtual screening and drug design. Int J Mol Sci 2021; 23(1): 393.
[http://dx.doi.org/10.3390/ijms23010393] [PMID: 35008818]
[39]
Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT. Sequential ligand- and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Advances 2019; 9(5): 2525-38.
[http://dx.doi.org/10.1039/C8RA09318K] [PMID: 35520492]
[40]
Gimeno A, Ojeda-Montes M, Tomás-Hernández S, et al. The light and dark sides of virtual screening: What is there to know? Int J Mol Sci 2019; 20(6): 1375.
[http://dx.doi.org/10.3390/ijms20061375] [PMID: 30893780]
[41]
Yeo H, Lee JY, Kim J, et al. Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes. BMB Rep 2020; 53(6): 323-8.
[http://dx.doi.org/10.5483/BMBRep.2020.53.6.290] [PMID: 32317080]
[42]
Laronha H, Carpinteiro I, Portugal J, et al. Challenges in matrix metalloproteinases inhibition. Biomolecules 2020; 10(5): 717.
[http://dx.doi.org/10.3390/biom10050717] [PMID: 32380782]
[43]
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016; 17(6): 868.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[44]
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 2017; 147(1): 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[45]
Son WC, Yun JW, Kim BH. Adipose-derived mesenchymal stem cells reduce MMP-1 expression in UV-irradiated human dermal fibroblasts: therapeutic potential in skin wrinkling. Biosci Biotechnol Biochem 2015; 79(6): 919-25.
[http://dx.doi.org/10.1080/09168451.2015.1008972] [PMID: 25685961]
[46]
Mohamed MAA, Jung M, Lee SM, Lee TH, Kim J. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells. J Photochem Photobiol B 2014; 133: 73-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.03.002] [PMID: 24705373]
[47]
Cui B, Wang Y, Jin J, et al. Resveratrol treats UVB-induced photoaging by anti-MMP expression, through anti-inflammatory, antioxidant, and antiapoptotic properties, and treats photoaging by upregulating VEGF-B expression. Oxid Med Cell Longev 2022; 2022: 1-19.
[http://dx.doi.org/10.1155/2022/6037303] [PMID: 35028009]
[48]
Atienza JJ, Arcinue RJ, Butalid MD, et al. in silico evaluation of the inhibitory property of Holothuria scabra (sea cucumber) with the catalytic domain of matrix metalloproteinase-1 for collagen degradation via interaction of triterpenoid saponins. J Pharmacogn Phytochem 2022; 11(2): 247-57.
[http://dx.doi.org/10.22271/phyto.2022.v11.i2c.14391]
[49]
Yasmeen S, Gupta P. Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: An in silico assessment of their anti-wrinkling potential. Bioinform Biol Insights 2019; 13
[http://dx.doi.org/10.1177/1177932219896538] [PMID: 31903022]
[50]
Girsang E, Lister INE, Ginting CN, et al. Chemical constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico anti-aging analysis. MCBS 2019; 3(2): 122-8.
[http://dx.doi.org/10.21705/mcbs.v3i2.80]
[51]
Girsang E, Ginting CN, Nyoman I. in silico analysis of phytochemical compound found in snake fruit (Salacca zalacca) peel as anti-aging agent. TJPS 2019; 43(2)
[52]
Krisnayana IGB, Febyani PD, Sari IAYP, Laksmiani NPL. Molecular docking of lutein as anti-photoaging agent in silico. Pharmacy Reports 2021; 1(1): 15-5.
[http://dx.doi.org/10.51511/pr.15]
[53]
Dewi NKDP, Suryadewi KD, Fitriari DM, Andini KL, Laksmiani NPL. Molecular docking of gallic acid as anti-photoaging in silico. Pharmacy Reports 2021; 1(2): 18-8.
[http://dx.doi.org/10.51511/pr.18]
[54]
Uzun M, Guvenalp Z, Kazaz C, Demirezer LO. Matrix metalloproteinase inhibitor and sunscreen effective compounds fromRumex crispus L.: isolation, identification, bioactivity and molecular docking study. Phytochem Anal 2020; 31(6): 818-34.
[http://dx.doi.org/10.1002/pca.2948] [PMID: 32488908]
[55]
Zhang C, Lv J, Qin X, Peng Z, Lin H. Novel antioxidant peptides from crassostrea hongkongensis improve photo-oxidation in UV-induced HaCaT cells. Mar Drugs 2022; 20(2): 100.
[http://dx.doi.org/10.3390/md20020100]
[56]
Liping S, Qiuming L, Jian F, Xiao L, Yongliang Z. Purification and characterization of peptides inhibiting MMP-1 activity with C Terminate of Gly-Leu from simulated gastrointestinal digestion hydrolysates of tilapia ( Oreochromis niloticus ) skin gelatin. J Agric Food Chem 2018; 66(3): 593-601.
[http://dx.doi.org/10.1021/acs.jafc.7b04196] [PMID: 29272917]
[57]
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. Biochim Biophys Acta Proteins Proteomics 2022; 1870(3): 140757.
[http://dx.doi.org/10.1016/j.bbapap.2022.140757] [PMID: 35051666]
[58]
Lee KE, Bharadwaj S, Yadava U, Kang SG. Computational and in vitro investigation of (-)-epicatechin and proanthocyanidin B2 as inhibitors of human matrix metalloproteinase 1. Biomol 2020; 10(10): 1379.
[http://dx.doi.org/10.3390/biom10101379]
[59]
Geng R, Kang SG, Huang K, Tong T. Boosting the photoaged skin: The potential role of dietary components. Nutrients 2021; 13(5): 1691.
[http://dx.doi.org/10.3390/nu13051691] [PMID: 34065733]
[60]
Lu J, Guo JH, Tu XL, et al. Tiron inhibits UVB-Induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 Promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One 2016; 11(8): e0159998.
[http://dx.doi.org/10.1371/journal.pone.0159998] [PMID: 27486852]
[61]
Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. Int J Mol Sci 2021; 22(22): 12489.
[http://dx.doi.org/10.3390/ijms222212489] [PMID: 34830368]
[62]
Zheng Z, Xiao Z, He YL, et al. Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19(11): 626.
[http://dx.doi.org/10.3390/md19110626] [PMID: 34822497]
[63]
Sajjad W, Abbasi SW, Ali L. Molecular docking study of astaxanthin derived from radio-resistant bacterium deinococcus sp. Strain WMA-LM9 to matrix metalloproteinase-1, 3 (MMP-1, MMP-3). Life Sci 2021; 2(1): 6.
[http://dx.doi.org/10.37185/LnS.1.1.105]
[64]
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chaiyana W, Jiranusornkul S. Molecular modeling of non-covalent binding of Ligustrum lucidum secoiridoid glucosides to AP-1/matrix metalloproteinase pathway components. J Bioenerg Biomembr 2018; 50(4): 315-27.
[http://dx.doi.org/10.1007/s10863-018-9756-x] [PMID: 29687366]
[65]
Govindharaj D, Nachimuthu S, Gonsalves DF, et al. Molecular docking analysis of chlorogenic acid against matrix metalloproteinases (MMPs). Biointerface Res Appl Chem 2020; 10(6): 6865-73.
[http://dx.doi.org/10.33263/BRIAC106.68656873]
[66]
Crascì L, Basile L, Panico A, et al. Correlating in vitro target-oriented screening and docking: Inhibition of matrix metalloproteinases activities by flavonoids. Planta Med 2017; 83(11): 901-11.
[http://dx.doi.org/10.1055/s-0043-104775] [PMID: 28288492]
[67]
Xiao Z, Yang S, Liu Y, et al. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351(351): 109737.
[http://dx.doi.org/10.1016/j.cbi.2021.109737] [PMID: 34740599]
[68]
Xiao Z, Liang P, Chen J, et al. A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB -mediated skin photoaging by regulating MMP -1 and MMP -9 expression in HaCaT cells. Photochem Photobiol 2019; 95(6): 1424-32.
[http://dx.doi.org/10.1111/php.13135] [PMID: 31230361]
[69]
Oh JH, Karadeniz F, Kong CS, Seo Y. Antiphotoaging effect of 3,5-Dicaffeoyl-epi-quinic acid against UVA-induced skin damage by protecting human dermal fibroblasts in vitro. Int J Mol Sci 2020; 21(20): 7756.
[http://dx.doi.org/10.3390/ijms21207756] [PMID: 33092202]
[70]
Lee HJ, Im A-R, Kim S-M, Kang H-S, Lee JD, Chae S. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement Altern Med 2018; 18(1): 39.
[http://dx.doi.org/10.1186/s12906-017-2058-8] [PMID: 29295712]
[71]
Chen J, Liang P, Xiao Z, et al. Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells. Food Nutr Res 2019; 63(0): 1-13.
[http://dx.doi.org/10.29219/fnr.v63.3508] [PMID: 31762729]
[72]
He YL, Xiao Z, Yang S, et al. Phlorotanin, 6,6′-Bieckol from ecklonia cava, against photoaging by inhibiting MMP-1, -3 and -9 expression on UVB-induced HaCaT keratinocytes. Photochem Photobiol 2021; (23): 1-9.
[http://dx.doi.org/10.1111/php.13575] [PMID: 34897721]
[73]
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chaiyana W, Jiranusornkul S. Investigation of the skin anti-photoaging potential of swertia chirayita secoiridoids through the AP-1/Matrix metalloproteinase pathway by molecular modeling. Int J Pept Res Ther 2019; 25(2): 517-33.
[http://dx.doi.org/10.1007/s10989-018-9695-8]
[74]
Xiao Z, Yang S, Chen J, et al. Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020; 74(September): 104198.
[http://dx.doi.org/10.1016/j.jff.2020.104198]
[75]
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-Induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients 2018; 10(4): 420.
[http://dx.doi.org/10.3390/nu10040420] [PMID: 29597313]
[76]
Bang E, Lee EK, Noh SG, et al. in vitro and in vivo evidence of tyrosinase inhibitory activity of a synthesized (Z) -5-(3-hydroxy-4-methoxybenzylidene)-2-thioxothiazolidin-4-one (5- HMT ). Exp Dermatol 2019; 28(6): 734-7.
[http://dx.doi.org/10.1111/exd.13863] [PMID: 30554432]
[77]
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry 2018; 24(1): 47-55.
[http://dx.doi.org/10.1002/chem.201704410] [PMID: 29052256]
[78]
Yu S, He M, Zhai Y, et al. Inhibitory activity and mechanism of trilobatin on tyrosinase: kinetics, interaction mechanism and molecular docking. Food Funct 2021; 12(6): 2569-79.
[http://dx.doi.org/10.1039/D0FO03264F] [PMID: 33625428]
[79]
Hariri R, Saeedi M, Akbarzadeh T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J Pept Sci 2021; 27(7): e3329.
[http://dx.doi.org/10.1002/psc.3329] [PMID: 33860571]
[80]
Rosa GP, Palmeira A, Resende DISP, et al. Xanthones for melanogenesis inhibition: Molecular docking and qsar studies to understand their anti-tyrosinase activity. Bioorg Med Chem 2020; 2021: 29.
[http://dx.doi.org/10.1016/j.bmc.2020.115873] [PMID: 33242700]
[81]
Wang Y, Hao MM, Sun Y, et al. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018; 23(1): 106.
[http://dx.doi.org/10.3390/molecules23010106] [PMID: 29300356]
[82]
Moon KM, Yang JH, Lee MK, et al. Maclurin exhibits antioxidant and anti-tyrosinase activities, suppressing melanogenesis. Antioxidants 2022; 11(6): 1164.
[http://dx.doi.org/10.3390/antiox11061164] [PMID: 35740060]
[83]
Gou L, Lee J, Yang JM, et al. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int J Biol Macromol 2017; 105(Pt 3): 1663-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.013] [PMID: 27940340]
[84]
Xie P, Huang L, Zhang C, Ding S, Deng Y, Wang X. Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Ind Crops Prod 2018; 111(111): 238-46.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.017]
[85]
Chen J, Ran M, Wang M, et al. Evaluation of antityrosinase activity and mechanism, antioxidation, and UV filter properties of theaflavin. Biotechnol Appl Biochem 2022; 69(3): 951-62.
[http://dx.doi.org/10.1002/bab.2166] [PMID: 33878231]
[86]
Bhardwaj V, Sharma K, Maksimovic S, Fan A, Adams-Woodford A, Mao J. Professional-grade TCA-lactic acid chemical peel: Elucidating mode of action to treat photoaging and hyperpigmentation. Front Med 2021; 8(February): 617068.
[http://dx.doi.org/10.3389/fmed.2021.617068] [PMID: 33681250]
[87]
Gupta MK, Senthilkumar S, Chiranjivi AK, et al. Antioxidant, anti-tyrosinase and anti-inflammatory activities of 3,5-dihydroxy-4′,7-dimethoxyflavone isolated from the leaves of Alpinia nigra. Phytomedicine Plus 2021; 1(3): 100097.
[http://dx.doi.org/10.1016/j.phyplu.2021.100097]
[88]
Sepehri N, Khoshneviszadeh M, Farid SM, et al. Design, synthesis, biological evaluation, and molecular docking study of thioxo-2,3-dihydroquinazolinone derivative as tyrosinase inhibitors. J Mol Struct 2022; 1253: 132283.
[http://dx.doi.org/10.1016/j.molstruc.2021.132283]
[89]
Nazir Y, Rafique H, Roshan S, et al. Molecular Docking, Synthesis, and Tyrosinase Inhibition Activity of Acetophenone Amide: Potential Inhibitor of Melanogenesis. Int J Biol Macromol 2022; 105: 1663-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy