Review Article

Current Prospects of Saponins as Promising Anti-Trypanosoma brucei Compounds: Insight into the Mechanisms of Action

Author(s): Boniface Pone Kamdem* and Fabrice Fekam Boyom

Volume 24, Issue 10, 2023

Published on: 27 July, 2023

Page: [838 - 855] Pages: 18

DOI: 10.2174/1389450124666230719105147

Price: $65

conference banner
Abstract

Background: Human African trypanosomiasis (HAT) is a parasitic infection that may lead to death if left untreated. This disease is caused by a protozoan parasite of the genus Trypanosoma and is transmitted to humans through tsetse fly bites. The disease is widespread across Sub- -Saharan Africa, with 70% of cases in recent reports in the Democratic Republic of the Congo and an average of less than 1000 cases are declared annually. Since there is no appropriate treatment for HAT, steroidal and triterpenoid saponins have been reported to be effective in in vitro studies and might serve as scaffolds for the discovery of new treatments against this disease.

Aim of the Study: The present study aimed to summarize up-to-date information on the anti-Trypanosoma brucei activity of steroidal and triterpenoid saponins. The mechanisms of action of in vitro bioactive compounds were also discussed.

Methods: Information on the anti-Trypanosoma brucei activity of plant saponins was obtained from published articles, dissertations, theses, and textbooks through a variety of libraries and electronic databases.

Results: There has been incredible progress in the identification of steroidal and triterpenoid saponins with pronounced in vitro activity against Trypanosoma brucei. Indeed, more than forty saponins were identified as having anti-T. brucei effect with activity ranging from moderate to highly active. The mechanisms of action of most of these saponins included DNA damage, cell cycle arrest, induction of apoptosis through downregulation of bcl-2 and MDM2, and upregulation of Bax and Bak, among others.

Conclusion: Referring to in vitro studies, plant saponins have shown anti-Trypanosoma brucei activity; however, more cytotoxic and in vivo studies and detailed mechanisms of action of the bioactive saponins should be further considered.

Keywords: Human African trypanosomiasis, saponins, Trypanosoma brucei, synthesis, structural modifications, toxicity.

« Previous
Graphical Abstract
[1]
Carvalho L, Martínez-García M, Pérez-Victoria I, et al. The oral antimalarial drug tafenoquine shows activity against Trypanosoma brucei. Antimicrob Agents Chemother 2015; 59(10): 6151-60.
[http://dx.doi.org/10.1128/AAC.00879-15] [PMID: 26195527]
[2]
Franco JR, Cecchi G, Priotto G, et al. Monitoring the elimination of human African trypanosomiasis: Update to 2016. PLoS Negl Trop Dis 2018; 12(12): e0006890.
[http://dx.doi.org/10.1371/journal.pntd.0006890] [PMID: 30521525]
[3]
The World Health Organization (WHO). Human African Trypanosomiasis. 2022. Available From: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
[4]
Phillips MA. Stoking the drug target pipeline for human African trypanosomiasis. Mol Microbiol 2012; 86(1): 10-4.
[http://dx.doi.org/10.1111/mmi.12001] [PMID: 22925123]
[5]
Drugs for Neglected Diseases Initiative (DNDi). Sleeping Sickness. 2022. Available From: https://dndi.org/diseases/sleeping-sickness/facts
[6]
Babokhov P, Sanyaolu AO, Oyibo WA, Fagbenro-Beyioku AF, Iriemenam NC. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health 2013; 107(5): 242-52.
[http://dx.doi.org/10.1179/2047773213Y.0000000105]
[7]
Kennedy PGE. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 2013; 12(2): 186-94.
[http://dx.doi.org/10.1016/S1474-4422(12)70296-X] [PMID: 23260189]
[8]
P De Koning H. The drugs of sleeping sickness: Their mechanisms of action and resistance, and a brief history. Trop Med Infect Dis 2020; 5(1): 1-23.
[http://dx.doi.org/10.3390/tropicalmed5010014] [PMID: 31963784]
[9]
Sina G, Testa G, Triolo N, Trova P, Cramet B. [Some new cases of congenital human African trypanosomiasis (T. gambiense) (author’s transl)]. Med Trop 1979; 39(1): 57-63.
[PMID: 459787]
[10]
Ugoji UC, Bock-Oruma AA, Umukoro D, Ndukwu GU. Human African trypanosomiasis successfully treated with melarsoprol in pregnancy in a Niger Delta rural hospital. Clin Med Case Rep 2014; 3(6): 1-4.
[11]
The World Health Organization (WHO). WHO interim guidelines for the treatment of gambiense human African trypanosomiasis 2019. Available From: https://apps.who.int/iris/bitstream/handle/10665/326178/9789241550567
[12]
Médecins Sans Frontières (MSF). Human African trypanosomiasis (sleeping sickness). Clinical Guidelines-Diagnosis and treatment manual. 2023. Available From: https://medicalguidelines.msf.org/en/viewport/CG/english/human-african-trypanosomiasis-sleeping-sickness
[13]
Lejon V, Büscher P. Review Article: Cerebrospinal fluid in human African trypanosomiasis: A key to diagnosis, therapeutic decision and post-treatment follow-up. Trop Med Int Health 2005; 10(5): 395-403.
[http://dx.doi.org/10.1111/j.1365-3156.2005.01403.x] [PMID: 15860085]
[14]
Mpia B, Pépin J. Combination of eflornithine and melarsoprol for melarsoprol-resistant Gambian trypanosomiasis. Trop Med Int Health 2002; 7(9): 775-9.
[http://dx.doi.org/10.1046/j.1365-3156.2002.00933.x] [PMID: 12225509]
[15]
Kuemmerle A, Schmid C, Bernhard S, et al. Effectiveness of Nifurtimox Eflornithine Combination Therapy (NECT) in T. b. gambiense second stage sleeping sickness patients in the Democratic Republic of Congo: Report from a field study. PLoS Negl Trop Dis 2021; 15(11): e0009903.
[http://dx.doi.org/10.1371/journal.pntd.0009903] [PMID: 34748572]
[16]
Yun O, Priotto G, Tong J, Flevaud L, Chappuis F. NECT is next: Implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 2010; 4(5): e720.
[http://dx.doi.org/10.1371/journal.pntd.0000720] [PMID: 20520803]
[17]
Rodgers J, Jones A, Gibaud S, et al. Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. PLoS Negl Trop Dis 2011; 5(9): e1308.
[http://dx.doi.org/10.1371/journal.pntd.0001308] [PMID: 21909447]
[18]
Kennedy PGE. An alternative form of melarsoprol in sleeping sickness. Trends Parasitol 2012; 28(8): 307-10.
[http://dx.doi.org/10.1016/j.pt.2012.05.003] [PMID: 22704910]
[19]
Franco JR, Simarro PP, Diarra A, Ruiz-Postigo JA, Jannin JG. The journey towards elimination of gambiense human African trypanosomiasis: Not far, nor easy. Parasitology 2014; 141(6): 748-60.
[http://dx.doi.org/10.1017/S0031182013002102] [PMID: 24709291]
[20]
Welburn SC, Molyneux DH, Maudlin I. Beyond tsetse-implications for research and control of human African trypanosomiasis epidemics. Trends Parasitol 2016; 32(3): 230-41.
[http://dx.doi.org/10.1016/j.pt.2015.11.008] [PMID: 26826783]
[21]
Mehlitz D, Molyneux DH. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: Expect the unexpected. Parasite Epidemiol Control 2019; 6: e00113.
[http://dx.doi.org/10.1016/j.parepi.2019.e00113] [PMID: 31528738]
[22]
Centers for Disease Control (CDC). Parasites - African Trypanosomiasis. 2022.https://www.cdc.gov/parasites/sleepingsickness
[23]
Tian L, Shen D, Li X, et al. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 2016; 7(2): 1619-32.
[http://dx.doi.org/10.18632/oncotarget.6451] [PMID: 26636541]
[24]
Sun C, Yu Y, Wang L, et al. Additive antiangiogenesis effect of ginsenoside Rg3 with low-dose metronomic temozolomide on rat glioma cells both in vivo and in vitro. J Exp Clin Cancer Res 2016; 35(1): 32.
[http://dx.doi.org/10.1186/s13046-015-0274-y] [PMID: 26872471]
[25]
Xu XH, Li T, Fong C, et al. Saponins from Chinese medicines as anticancer agents. Molecules 2016; 21(10): 1326.
[http://dx.doi.org/10.3390/molecules21101326] [PMID: 27782048]
[26]
Wong VK, Zhang MM, Zhou H, et al. Saikosaponin-D enhances the anticancer potency of TNF-α via overcoming its undesirable response of activating NF-κB signalling in cancer cells. Evid-Based Complement Altern Med 2013; 2013: 745295.
[27]
Naessens J, Kitani H, Nakamura Y, Yagi Y, Sekikawa K, Iraqi F. TNF-a mediates the development of anaemia in a murine Trypanosoma brucei rhodesiense infection, but not the anaemia associated with a murine Trypanosoma congolense infection. Clin Exp Immunol 2005; 139(3): 405-10.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02717.x] [PMID: 15730385]
[28]
Namangala B, De Baetselier P, Beschin A. Both type-I and type-II responses contribute to murine trypanotolerance. J Vet Med Sci 2009; 71(3): 313-8.
[http://dx.doi.org/10.1292/jvms.71.313] [PMID: 19346699]
[29]
Kato CD, Matovu E, Mugasa CM, Nanteza A, Alibu VP. The role of cytokines in the pathogenesis and staging of Trypanosoma brucei rhodesiense sleeping sickness. Allergy Asthma Clin Immunol 2016; 12(1): 4.
[http://dx.doi.org/10.1186/s13223-016-0113-5] [PMID: 26807135]
[30]
Mony BM, MacGregor P, Ivens A, et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 2014; 505(7485): 681-5.
[http://dx.doi.org/10.1038/nature12864] [PMID: 24336212]
[31]
Lun ZR, Lai DH, Wen YZ, et al. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii. Proc Natl Acad Sci USA 2015; 112(29): 8835-42.
[http://dx.doi.org/10.1073/pnas.1502599112] [PMID: 26195778]
[32]
Boniface PK, Ferreira EI. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 2019; 33(10): 2473-517.
[http://dx.doi.org/10.1002/ptr.6383] [PMID: 31441148]
[33]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[34]
Bouteille B, Buguet A. The detection and treatment of human African trypanosomiasis. Res Rep Trop Med 2012; 3: 35-45.
[http://dx.doi.org/10.2147/RRTM.S24751] [PMID: 30890865]
[35]
Romero-Meza G, Mugnier MR. Trypanosoma brucei. Trends Parasitol 2020; 36(6): 571-2.
[http://dx.doi.org/10.1016/j.pt.2019.10.007] [PMID: 31757771]
[36]
Lindner AK, Priotto G. The unknown risk of vertical transmission in sleeping sickness--a literature review. PLoS Negl Trop Dis 2010; 4(12): e783.
[http://dx.doi.org/10.1371/journal.pntd.0000783] [PMID: 21200416]
[37]
Büscher P, Deborggraeve S. How can molecular diagnostics contribute to the elimination of human African trypanosomiasis? Expert Rev Mol Diagn 2015; 15(5): 607-15.
[http://dx.doi.org/10.1586/14737159.2015.1027195] [PMID: 25786994]
[38]
Cunningham LJ, Lingley JK, Haines LR, Ndung’u JM, Torr SJ, Adams ER. Illuminating the prevalence of Trypanosoma brucei s.l. in Glossina using LAMP as a tool for xenomonitoring. PLoS Negl Trop Dis 2016; 10(2): e0004441.
[http://dx.doi.org/10.1371/journal.pntd.0004441] [PMID: 26890882]
[39]
Kabayo JP. Aiming to eliminate tsetse from Africa. Trends Parasitol 2002; 18(11): 473-5.
[http://dx.doi.org/10.1016/S1471-4922(02)02371-1] [PMID: 12473355]
[40]
Ibrahim MAM, Weber JS, Ngomtcho SCH, et al. Diversity of trypanosomes in humans and cattle in the HAT foci Mandoul and Maro, Southern Chad—A matter of concern for zoonotic potential? PLoS Negl Trop Dis 2021; 15(6): e0009323.
[http://dx.doi.org/10.1371/journal.pntd.0009323] [PMID: 34106914]
[41]
Aksoy S, Caccone A, Galvani AP, Okedi LM. Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda. Trends Parasitol 2013; 29(8): 394-406.
[http://dx.doi.org/10.1016/j.pt.2013.06.005] [PMID: 23845311]
[42]
Attardo GM, Abila PP, Auma JE, et al. Genome sequence of the tsetse fly (Glossina morsitans): Vector of African trypanosomiasis. Science 2014; 344(6182): 380-6.
[http://dx.doi.org/10.1126/science.1249656] [PMID: 24763584]
[43]
Solano P, Ravel S, de Meeûs T. How can tsetse population genetics contribute to African trypanosomiasis control? Trends Parasitol 2010; 26(5): 255-63.
[http://dx.doi.org/10.1016/j.pt.2010.02.006] [PMID: 20202905]
[44]
Cheok CY, Salman HAK, Sulaiman R. Extraction and quantification of saponins: A review. Food Res Int 2014; 59: 16-40.
[http://dx.doi.org/10.1016/j.foodres.2014.01.057]
[45]
Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: A review. Phytochem Rev 2010; 9(3): 425-74.
[http://dx.doi.org/10.1007/s11101-010-9183-z] [PMID: 20835386]
[46]
Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J Med Food 2004; 7(1): 67-78.
[http://dx.doi.org/10.1089/109662004322984734] [PMID: 15117556]
[47]
Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 2014; 12(44): 8803-22.
[http://dx.doi.org/10.1039/C4OB01652A] [PMID: 25295776]
[48]
Mugford ST, Osbourn A. Saponin Synthesis and Function.Isoprenoid Synthesis in Plants and Microorganisms. London: Springer Nature 2012.
[http://dx.doi.org/10.1007/978-1-4614-4063-5_28]
[49]
Yu B, Hui Y. Chemical synthesis of bioactive steroidal saponins.Glycochemistry: Principles, Synthesis and Application. New York: Marcel Dekker 2001; pp. 1670-4.
[http://dx.doi.org/10.1201/9780585407500.ch6]
[50]
Yu B, Sun J, Yang X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc Chem Res 2012; 45(8): 1227-36.
[http://dx.doi.org/10.1021/ar200296m] [PMID: 22493991]
[51]
Regalado EL, Tasdemir D, Kaiser M, Cachet N, Amade P, Thomas OP. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J Nat Prod 2010; 73(8): 1404-10.
[http://dx.doi.org/10.1021/np100348x] [PMID: 20614907]
[52]
Regalado EL, Jiménez-Romero C, Genta-Jouve G, et al. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron 2011; 67(5): 1011-8.
[http://dx.doi.org/10.1016/j.tet.2010.11.103]
[53]
Krstin S, Peixoto HS, Wink M. Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei. Antimicrob Agents Chemother 2015; 59(11): 7011-7.
[http://dx.doi.org/10.1128/AAC.01315-15] [PMID: 26349826]
[54]
Mahmoud AB, Danton O, Kaiser M, et al. Lignans, amides, and saponins from Haplophyllum tuberculatum and their antiprotozoal activity. Molecules 2020; 25(12): 2825.
[http://dx.doi.org/10.3390/molecules25122825] [PMID: 32575379]
[55]
Zaki AA, Kaddah MMY, Abulkhair HS, Ashour A. Unravelling the antifungal and antiprotozoal activities and LC-MS/MS quantification of steroidal saponins isolated from Panicum turgidum. RSC Advances 2022; 12(5): 2980-91.
[http://dx.doi.org/10.1039/D1RA08532H] [PMID: 35425313]
[56]
Gögelein H, Hüby A. Interaction of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim Biophys Acta Biomembr 1984; 773(1): 32-8.
[http://dx.doi.org/10.1016/0005-2736(84)90547-9] [PMID: 6733096]
[57]
Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K. Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 1984; 96(4): 1231-9.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a134941] [PMID: 6097588]
[58]
Jekunen AP, Shalinsky DR, Hom DK, Albright KD, Heath D, Howell SB. Modulation of cisplatin cytotoxicity by permeabilization of the plasma membrane by digitonin in vitro. Biochem Pharmacol 1993; 45(10): 2079-85.
[http://dx.doi.org/10.1016/0006-2952(93)90019-S] [PMID: 8512589]
[59]
Sudji I, Subburaj Y, Frenkel N, García-Sáez A, Wink M. Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol. Molecules 2015; 20(11): 20146-60.
[http://dx.doi.org/10.3390/molecules201119682] [PMID: 26569199]
[60]
Fuchs H, Bachran D, Panjideh H, et al. Saponins as tool for improved targeted tumor therapies. Curr Drug Targets 2009; 10(2): 140-51.
[http://dx.doi.org/10.2174/138945009787354584] [PMID: 19199910]
[61]
Frenkel N, Makky A, Sudji IR, Wink M, Tanaka M. Mechanistic investigation of interactions between steroidal saponin digitonin and cell membrane models. J Phys Chem B 2014; 118(50): 14632-9.
[http://dx.doi.org/10.1021/jp5074939] [PMID: 25412206]
[62]
Berrué F, McCulloch MWB, Boland P, et al. Isolation of steroidal glycosides from the Caribbean sponge Pandaros acanthifolium. J Nat Prod 2012; 75(12): 2094-100.
[http://dx.doi.org/10.1021/np300520w] [PMID: 23245401]
[63]
Chauhan NS, Porte S, Joshi V, Shah K. Plants’ steroidal saponins - A review on its pharmacology properties and analytical techniques. World J Tradit Chin Med 2022; 8(3): 350-85.
[http://dx.doi.org/10.4103/2311-8571.353503]
[64]
Teponno RB, Dzoyem JP, Nono RN, et al. Cytotoxicity of secondary metabolites from Dracaena viridiflora Engl & Krause and their semisynthetic analogs. Rec Nat Prod 2017; 11(5): 421-30.
[http://dx.doi.org/10.25135/rnp.54.17.03.050]
[65]
Boniface PK, Elizabeth FI. Flavonoid-derived privileged scaffolds in anti-Trypanosoma brucei drug discovery. Curr Drug Targets 2019; 20(12): 1295-314.
[http://dx.doi.org/10.2174/1389450120666190618114857] [PMID: 31215385]
[66]
Boniface PK, Sano CM, Elizabeth FI. Unveiling the targets involved in the quest of antileishmanial leads using in silico methods. Curr Drug Targets 2020; 21(7): 681-712.
[http://dx.doi.org/10.2174/1389450121666200128112948] [PMID: 32003668]
[67]
Lee SR, Han JY, Kang HR, et al. A new steroidal saponin from the tubers of Ophiopogon japonicus and its protective effect against cisplatin-induced renal cell toxicity. J Braz Chem Soc 2016; 27: 706-11.
[68]
Kou Y, Ji L, Wang H, et al. Connexin 43 upregulation by dioscin inhibits melanoma progression via suppressing malignancy and inducing M1 polarization. Int J Cancer 2017; 141(8): 1690-703.
[http://dx.doi.org/10.1002/ijc.30872] [PMID: 28677156]
[69]
Duan CL, Li YJ, Wang FY, Miao L, Tang XD. New steroidal glycosides from the fibrous roots of Ophiopogon japonicus. J Asian Nat Prod Res 2018; 20(8): 744-51.
[http://dx.doi.org/10.1080/10286020.2018.1478819] [PMID: 30014711]
[70]
Wu Y, Bi SX, Huang Z, Qi J, Yu BY. Novel steroidal saponins with cytotoxic activities from the roots of Ophiopogon japonicus (L. f.) Ker-Gawl. RSC Advances 2018; 8(5): 2498-505.
[http://dx.doi.org/10.1039/C7RA12363A] [PMID: 35541437]
[71]
Wang P, Li J, Attia FAK, et al. A critical review on chemical constituents and pharmacological effects of Lilium. Food Sci Hum Wellness 2019; 8(4): 330-6.
[http://dx.doi.org/10.1016/j.fshw.2019.09.001]
[72]
Wang XY, He J, Bai HJ, et al. 2019b. Daturanolide A-C, three new withanolides from Datura metel L. and their cytotoxic activities. Chem Biodivers 2019; 16(4): e1900004.
[http://dx.doi.org/10.1002/cbdv.201900004] [PMID: 30784185]
[73]
Zhao Y, Kang LP, Liu YX, et al. Steroidal saponins from the rhizome of Paris polyphylla and their cytotoxic activities. Planta Med 2009; 75(4): 356-63.
[http://dx.doi.org/10.1055/s-0028-1088380] [PMID: 19085682]
[74]
Kang L, Yu K, Zhao Y, et al. Characterization of steroidal glycosides from the extract of Paris Polyphylla var. Yunnanensis by UPLC/Q-TOF MSE. J Pharm Biomed Anal 2012; 62: 235-49.
[http://dx.doi.org/10.1016/j.jpba.2011.12.027] [PMID: 22264845]
[75]
Qin XJ, Yu MY, Ni W, et al. Steroidal saponins from stems and leaves of Paris polyphylla var. yunnanensis. Phytochemistry 2016; 121: 20-9.
[http://dx.doi.org/10.1016/j.phytochem.2015.10.008] [PMID: 26546502]
[76]
Liang MY, Wang YZ, Qiao X, et al. Structural characterisation and discrimination of the aerial parts of Paris polyphylla var. yunnanensis and Paris polyphylla var. chinensis by UHPLC-QTOF-MS coupled with multivariate data analysis. Phytochem Anal 2019; 30(4): 437-46.
[http://dx.doi.org/10.1002/pca.2826] [PMID: 30816611]
[77]
Tasdemir D, Brun R, Franzblau SG, Sezgin Y, Çalıs I. Evaluation of antiprotozoal and antimycobacterial activities of the resin glycosides and the other metabolites of Scrophularia cryptophila. Phytomedicine 2008; 15(3): 209-15.
[http://dx.doi.org/10.1016/j.phymed.2007.07.032] [PMID: 17761408]
[78]
Foubert K, Cuyckens F, Matheeussen A, et al. Antiprotozoal and antiangiogenic saponins from Apodytes dimidiata. Phytochemistry 2011; 72(11-12): 1414-23.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.009] [PMID: 21601896]
[79]
Mohamed SM, Bachkeet EY, Bayoumi SA, et al. Potent antitrypanosomal triterpenoid saponins from Mussaenda luteola. Fitoterapia 2015; 107: 114-21.
[http://dx.doi.org/10.1016/j.fitote.2015.10.011] [PMID: 26524249]
[80]
Mohamed SM, Backheet EY, Bayoumi SA, Ross SA. New cycloartane saponin and monoterpenoid glucoindole alkaloids from Mussaenda luteola. Fitoterapia 2016; 110: 129-34.
[http://dx.doi.org/10.1016/j.fitote.2016.03.009] [PMID: 26969788]
[81]
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front Pharmacol 2018; 9: 892.
[http://dx.doi.org/10.3389/fphar.2018.00892] [PMID: 30233358]
[82]
Dini I, Schettino O, Simioli T, Dini A. Studies on the constituents of Chenopodium quinoa seeds: Isolation and characterization of new triterpene saponins. J Agric Food Chem 2001; 49(2): 741-6.
[http://dx.doi.org/10.1021/jf000971y] [PMID: 11262022]
[83]
Dini I, Tenore GC, Schettino O, Dini A. New oleanane saponins in Chenopodium quinoa. J Agric Food Chem 2001; 49(8): 3976-81.
[http://dx.doi.org/10.1021/jf010361d] [PMID: 11513698]
[84]
Mshvildadze V, Favel A, Delmas F, et al. Antifungal and antiprotozoal activities of saponins from Hedera colchica. Pharmazie 2000; 55(4): 325-6.
[PMID: 10798254]
[85]
Al-Bayati FA, Al-Mola HF. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J Zhejiang Univ Sci B 2008; 9(2): 154-9.
[http://dx.doi.org/10.1631/jzus.B0720251] [PMID: 18257138]
[86]
Patra AK, Saxena J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 2009; 22(2): 204-19.
[http://dx.doi.org/10.1017/S0954422409990163] [PMID: 20003589]
[87]
Zhong J, Tan L, Chen M, He C. Pharmacological activities and molecular mechanisms of Pulsatilla saponins. Chin Med 2022; 17(1): 59.
[http://dx.doi.org/10.1186/s13020-022-00613-8] [PMID: 35606807]
[88]
Jiang X, Strobel BW, Cedergreen N, Cao Y, Hansen HCB. Stability of saponin biopesticides: Hydrolysis in aqueous solutions and lake waters. Environ Sci Process Impacts 2019; 21(7): 1204-14.
[http://dx.doi.org/10.1039/C9EM00012G] [PMID: 31241099]
[89]
Navarro del Hierro J, Herrera T, Fornari T, Reglero G, Martin D. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J Funct Foods 2018; 40: 484-97.
[http://dx.doi.org/10.1016/j.jff.2017.11.032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy