Mini-Review Article

CDK20蛋白在致癌中的作用

卷 24, 期 10, 2023

发表于: 20 July, 2023

页: [790 - 796] 页: 7

弟呕挨: 10.2174/1389450124666230719102112

价格: $65

conference banner
摘要

癌症是一种复杂的疾病,当异常细胞因细胞周期蛋白活性不受调节而不受控制地分裂时就会发生。因此,细胞周期对于DNA复制和细胞分裂期间维持细胞内的稳态至关重要。特定基因内突变的存在会破坏细胞内的平衡,最终导致癌症的生长。 CDK20(细胞周期依赖性激酶 20)最近被确定为细胞周期检查点的主要控制者,它调节细胞生长和增殖,并在许多恶性肿瘤的发展中发挥作用。 CCRK(细胞周期相关激酶)最近已更名为 CDK20。新兴研究表明,在卵巢癌、脑癌、结肠癌、胃癌、肝癌和肺癌中发现了 CDK20 的上调。当 CDK20 与 Cyclin H 复合时,CDK20 被认为对 CDK2 具有细胞周期蛋白依赖性激活激酶 (CAK) 活性。此外,最近的研究表明 CDK20 参与 Wnt、EZH2/NF-B 和 KEAP1-NRF2 信号通路,所有这些都与癌症的形成和增殖相互关联。此外,CDK20的结构是使用ColabFold进行预测的,ColabFold是一款集成了AlphaFold先进人工智能系统的强大软件。本综述的重点是对来自体外和体内研究的 CDK20 的当前知识进行系统概述,并强调其在致癌作用中的作用。现有 CDK20 AlphaFold 结构与 ColabFold 的验证比较发现,在生成可靠模型方面异常快速且准确。

关键词: CDK20,CCRK,恶性肿瘤,wnt通路,EZH2 / NF-B信号通路,KEAP1-NRF2信号通路。

图形摘要
[1]
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach. Cancers 2020; 12(8): 2276.
[http://dx.doi.org/10.3390/cancers12082276] [PMID: 32823876]
[2]
Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting cdk in cancer therapy: Current evidence and future directions. Target Oncol 2018; 13(1): 21-38.
[http://dx.doi.org/10.1007/s11523-017-0541-2] [PMID: 29218622]
[3]
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14(2): 130-46.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[4]
Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: Structures of cdks, their cyclin activators, and cip and INK4 inhibitors. J Mol Biol 1999; 287(5): 821-8.
[http://dx.doi.org/10.1006/jmbi.1999.2640] [PMID: 10222191]
[5]
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of cyclin-dependent kinases: Types and their mechanism of action. Int J Mol Sci 2021; 22(6): 2806.
[http://dx.doi.org/10.3390/ijms22062806] [PMID: 33802080]
[6]
Łukasik P, Załuski M, Gutowska I. Cyclin-dependent kinases (Cdk) and their role in diseases development–review. Int J Mol Sci 2021; 22(6): 2935.
[http://dx.doi.org/10.3390/ijms22062935] [PMID: 33805800]
[7]
Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 1997; 29(4): 559-73.
[http://dx.doi.org/10.1016/S1357-2725(96)00178-1] [PMID: 9363633]
[8]
Cicenas J, Valius M. The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 2011; 137(10): 1409-18.
[http://dx.doi.org/10.1007/s00432-011-1039-4] [PMID: 21877198]
[9]
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11(1): 30-54.
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[10]
Visconti R, Della Monica R, Grieco D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J Exp Clin Cancer Res 2016; 35(1): 153.
[http://dx.doi.org/10.1186/s13046-016-0433-9] [PMID: 27670139]
[11]
Malumbres M. Cyclin-dependent kinases. Genome Biol 2014; 15(6): 122.
[http://dx.doi.org/10.1186/gb4184]
[12]
Malumbres M, Harlow E, Hunt T, et al. Cyclin-dependent kinases: A family portrait. Nat Cell Biol 2009; 11(11): 1275-6.
[http://dx.doi.org/10.1038/ncb1109-1275] [PMID: 19884882]
[13]
Lai L, Shin GY, Qiu H. The role of cell cycle regulators in cell survival—dual functions of cyclin-dependent kinase 20 and p21cip1/waf1. Int J Mol Sci 2020; 21(22): 8504.
[http://dx.doi.org/10.3390/ijms21228504]
[14]
Tian Y, Wan H, Tan G. Cell cycle-related kinase in carcinogenesis. Oncol Lett 2012; 4(4): 601-6.
[http://dx.doi.org/10.3892/ol.2012.828] [PMID: 23205069]
[15]
Wu GQ, Xie D, Yang GF, et al. Cell cycle-related kinase supports ovarian carcinoma cell proliferation via regulation of cyclin d1 and is a predictor of outcome in patients with ovarian carcinoma. Int J Cancer 2009; 125(11): 2631-42.
[http://dx.doi.org/10.1002/ijc.24630] [PMID: 19672860]
[16]
Suryadevara R, Fadel H, Michelhaugh SK, et al. Tumors of the central nervous system. Nanotechnology-Based Target Drug Deliv Syst Brain Tumors 2018; 1-26.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00001-4]
[17]
Ng SSM, Cheung YT, An XM, et al. Cell cycle-related kinase: A novel candidate oncogene in human glioblastoma. J Natl Cancer Inst 2007; 99(12): 936-48.
[http://dx.doi.org/10.1093/jnci/djm011] [PMID: 17565152]
[18]
Liu Y, Wu C, Galaktionov K. p42, a novel cyclin-dependent kinase-activating kinase in mammalian cells. J Biol Chem 2004; 279(6): 4507-14.
[http://dx.doi.org/10.1074/jbc.M309995200] [PMID: 14597612]
[19]
Caligiuri M, Becker F, Murthi K, et al. A proteome-wide CDK/CRK-specific kinase inhibitor promotes tumor cell death in the absence of cell cycle progression. Chem Biol 2005; 12(10): 1103-15.
[http://dx.doi.org/10.1016/j.chembiol.2005.08.008] [PMID: 16242653]
[20]
Kaldis P, Solomon MJ. Analysis of CAK activities from human cells. Eur J Biochem 2000; 267(13): 4213-21.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01455.x] [PMID: 10866826]
[21]
Yao H, Ashihara E, Strovel JW, et al. AV-65, a novel Wnt/β-catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model. Blood Cancer J 2011; 1(11): e43.
[http://dx.doi.org/10.1038/bcj.2011.41] [PMID: 22829079]
[22]
Yang K, Wang X, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies. Lab Invest 2016; 96(2): 116-36.
[http://dx.doi.org/10.1038/labinvest.2015.144] [PMID: 26618721]
[23]
An X, Ng SS, Xie D, et al. Functional characterisation of cell cycle-related kinase (CCRK) in colorectal cancer carcinogenesis. Eur J Cancer 2010; 46(9): 1752-61.
[http://dx.doi.org/10.1016/j.ejca.2010.04.007] [PMID: 20466538]
[24]
Wang R, Xu X, Zhu H, et al. Androgen receptor promotes gastric carcinogenesis via upregulating cell cycle-related kinase expression. J Cancer 2019; 10(18): 4178-88.
[http://dx.doi.org/10.7150/jca.34430] [PMID: 31413736]
[25]
Low JT, Lin GL, Chan MWY. CCRK—a hub for liver metastasis and cancer. Cell Mol Immunol 2021; 18(5): 1341-2.
[http://dx.doi.org/10.1038/s41423-020-00569-5] [PMID: 33139906]
[26]
Feng H, Cheng ASL, Tsang DP, et al. Cell cycle–related kinase is a direct androgen receptor–regulated gene that drives β-catenin/T cell factor–dependent hepatocarcinogenesis. J Clin Invest 2011; 121(8): 3159-75.
[http://dx.doi.org/10.1172/JCI45967] [PMID: 21747169]
[27]
Wang Q, Ma J, Lu Y, et al. CDK20 interacts with KEAP1 to activate NRF2 and promotes radiochemoresistance in lung cancer cells. Oncogene 2017; 36(37): 5321-30.
[http://dx.doi.org/10.1038/onc.2017.161] [PMID: 28534518]
[28]
Xie Z, Hou S, Yang X, et al. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J Med Chem 2022; 65(9): 6356-89.
[29]
Yu Z, Feng H, Sun X, et al. Bufalin suppresses hepatocarcinogenesis by targeting β-catenin/TCF signaling via cell cycle-related kinase. Sci Rep 2018; 8(1): 3891.
[http://dx.doi.org/10.1038/s41598-018-22113-2] [PMID: 29497076]
[30]
Varadi M, Anyango S, Deshpande M, et al. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022; 50(D1): D439-44.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[31]
Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature 2021; 596(7873): 590-6.
[http://dx.doi.org/10.1038/s41586-021-03828-1] [PMID: 34293799]
[32]
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nat Methods 2022; 19(6): 679-82.
[http://dx.doi.org/10.1038/s41592-022-01488-1] [PMID: 35637307]
[33]
Bateman A, Martin MJ, O’Donovan C, et al. UniProt: A hub for protein information. Nucleic Acids Res 2015; 43(D1): D204-12.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[34]
Gupta CLP, Gaur S, Soni MK. A Review on homology and thread modelling of protein sequenceusing protein similarity search and alphafold2 colab. J Pharm Negat Results 2022; 13: 1110-6.
[http://dx.doi.org/10.47750/pnr.2022.13.S08.140]
[35]
Feig M. Local protein structure refinement via molecular dynamics simulations with locPREFMD. J Chem Inf Model 2016; 56(7): 1304-12.
[http://dx.doi.org/10.1021/acs.jcim.6b00222] [PMID: 27380201]
[36]
Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. science 1991; 253(5016): 164-70.
[http://dx.doi.org/10.1126/science.1853201]
[37]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[38]
Wiederstein M, Sippl MJ. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007; 35(Web Server): W407-10.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy